
Hybrid Constituent and Dependency Parsing with Tsinghua Chinese Treebank

Rui Wang†, Yi Zhang†‡

† Department of Computational Linguistics, Saarland University
‡ LT-Lab, German Research Center for Artificial Intelligence

Saarbrücken, Germany
{rwang,yzhang}@coli.uni-sb.de

Abstract
In this paper, we describe our hybrid parsing model on Mandarin Chinese processing. The model combines the mainstream constitute
and dependency parsing and the dataset we use it the Tsinghua Chinese Treebank, whose annotation has both constitutes and head
information. We show the adaption of this annotation scheme to the normal constitute structure, dependency structure, and the integration
of both. We achieve a f1-score of 85.23% for the constitute parsing, 82.35% for the partial head information, and 74.27% for the complete
head information.

1. Background
Data-driven statistical natural language parsing techniques
have seen great advance in the past decade. While most of
the initial research were carried out on English, with several
large-scale treebanks for different languages made avail-
able in recent years, many recent studies have been focus-
ing on the multi-linguality of the parsing systems. Among
the rich literature on parsing, several data-driven systems
have claimed to be largely language-independent and easily
adaptable for different treebanks. However, recent investi-
gations have shown that the performance of these systems
usually varies significantly when different datasets are used
for training the models.
From a data-driven view point, one might argue that such
variation does not alway reflect the difficulty in parsing the
underlying language, for similar variation of performance is
also observed for datasets of the same language but adopt-
ing different annotation schemes. However, it is undeniable
that certain linguistic properties (e.g. morphology, word
order, various types of agreements, etc.) of the language
do have strong influence on the performance of particular
parsing models. Therefore, in-depth evaluation of parsing
systems have to be connected to particular languages and
phenomena.
Mandarin Chinese, as the language with most native speak-
ers, has received much attention in the study of parsing.
Several large-scale treebanks have been developed since the
mid-1990s, and now being used to develop various pars-
ing systems. Due to the lack of inflectional morphology
and relatively fixed word order in Chinese, many pars-
ing models developed for English have been successfully
adapted (despite the extra difficulties in word segmentation
and part-of-speech tagging), when compared to their lim-
ited success on languages like German and Arabic.
On the other hand, in recent years the field of computational
linguistics has seen many competing grammar frameworks
which are used as the formalisms of syntactic parsing sys-
tems. Fair comparison of parsing systems based on dif-
ferent frameworks become a very difficult and important
task. Most attempts on cross-framework parser evaluation
either try to define (normally noisy and lossy) mappings
between different representations, or resort to the feedback

from the performance of applications which uses the parser
in specific NLP scenarios. Two grammar frameworks have
gained prominent roles in the study of parsing: constituent-
based and dependency-based frameworks. Both of them
express (different) views on the fundamental structures of
the language, and other “deeper” frameworks can normally
be considered as variants from one of them, or a mix-
ture of both. Parsing techniques developed on these two
frameworks can hopefully be adapted for other derived for-
malisms.

2. Tsinghua Chinese Treebank (TCT)
For Mandarin Chinese, the most well-known public avail-
able treebank is the Penn Chinese Treebank (CTB) (Xue et
al., 2005). Adopting a constituent-based view, the annota-
tion scheme of CTB is similar to that of the English PTB.
Recent release of the treebank contains over 28K sentences
and 781K words, but annotation errors were also frequently
observed and reported. Alternative public available tree-
banks are the Sinica Treebank (Huang et al., 2000), and the
Tsinghua Chinese Treebank (TCT) (Zhou, 2004). The latter
is recently released as training and testing corpus in the Chi-
nese parsing evaluation called CIPS-ParsEval-2009.1 An-
notated with constituent-based analyses, TCT also contain
head information in the phrase structure trees, making it an
interesting treebank for both constituent-based and depen-
dency parsing.
It should be noted that the annotation in TCT are very
different on many levels from other Chinese treebanks,
e.g. CTB. Needless to mention are the differences on seg-
mentation and POS tagsets. On the syntactic level, while
most other treebanks provide complete tree annotation for
sentences, the data provided in CIPS-ParsEval-2009 sepa-
rate two levels of annotation, i.e. the detection of “event
description units” (clauses), and syntactic tree annotation
within each event description units. This is a practical anno-
tation decision, for many chinese sentences are composed
of multiple “event description units”, whose syntactic struc-
tures are largely independent from each other. The detec-
tion of clause boundaries is a relatively easy task compared
to the syntactic parsing task. By separating the sentences

1http://www.ncmmsc.org/CIPS-ParsEval-2009/index.asp

1950



dj

春节 /t
Spring Festival

vp

是 /vC
is

np

dj 的 /uJDE
DE

np

np vp

中国 /nS
Chinese

人民 /n
people

十分 /dD
very

重视 /v
highly-valued

传统 /a
traditional

节日 /n
festival

H

H

H

HH

HH

Figure 1: An Example TCT Tree in CIPS-ParsEval Format

into smaller units, the average length of the parser inputs is
much shorter than usual. As an example, Figure 1 shows a
headed phrase structure tree from TCT (in CIPS-ParsEval
format).

3. The Hybrid Parsing Model
In this paper, we report on a series of parsing experiments
carried out on the TCT, using existing data-driven con-
stituent and dependency parsers with barest linguistic as-
sumption, to see their (dis)similarity and mutual influences:

1. Constituent Parsing on TCT with partial head infor-
mation

2. Dependency Parsing on TCT with partial phrasal in-
formation (i.e. dependency structure extraction from
TCT)

3. Integration of the two structures (i.e. the conversion
from the dependency structure back to the constituent
structure )

3.1. Constituent Parsing
The TCT annotation in CIPS-ParsEval-2009 uses con-
stituent trees together with head indices. It is possible to
consider the phrase category and head information as a
whole, and re-encode the head daughter indices in a way
that can be integrated with data-driven constituent parsers.
Several preprocessing steps are taken to prepare the training
data for two alternative constituent tree parsing models.
For the first model, we remove the head information from
the trees, and only use the constituent parser to produce
the phrase boundaries and category. This results in a small
PCFG grammar with only 16 different phrase categories.
In the second model, we convert the head indexing digits to
the following four types,

-l left, if the head is the left-most daughter of the con-
stituent;

-r right, if the head is the right-most daughter of the con-
stituent;

-m middle, if the constituent has a single head that is nei-
ther on the left-most or right-most position;

-c complex, if the constituent has more than one heads.

This information is combined with the phrase categories,
so that e.g. a nominal phrase with its head daughter on the
right-most position will be marked as np-r. Obviously, the
label “-l” and “-r” can be easily reverted to digit based
head indices. For constituents marked with “-m” and have
more than three daughters, further information is needed to
locate the correct head. The same applies to “-c” that nor-
mally occurs with coordination phenomena. In the dataset,
there are also phrases marked with no head xp-, which will
be copied as it is in our conversion. After this step of con-
version, the treebank contains a total of 55 different phrasal
categories annotated with head indices.
Given the relatively small number of phrasal categories in
both models, we decide to apply the so-called state-splitting
approach to induces PCFG grammars that introduce addi-
tional subcategories automatically. More specifically, we
follow the split-merge approach described in (Petrov and
Klein, 2007), where new sub-categories are introduced only
for more heterogeneous categories.

3.2. Dependency Extraction
In general, the extraction algorithm works recursively to
acquire the lexical head of each constituent or word token,
and link them to their corresponding dependent heads. Fol-
lowing the different constituent markers we have in the pre-
vious section (e.g. “-l”, “-r”, etc.), we deal with them sep-
arately.
The normal cases, which have single heads, can be con-
verted directly by linking all the non-headed components
to the head. For instance, “(np-2 X Y Z)” can be converted
to Z→X and Z→Y. This includes both the single-headed
cases and the xp-m cases mentioned in the previous sec-
tion.
A more complex case is the xp-c case (e.g. “np-024”, mean-
ing a nominal phrase whose daughters whose indices are
0, 2, and 4 are heads), where the TCT annotation scheme
allows multiple heads (e.g. the coordination). We firstly
binarize the tree and then convert it recursively by taking
the first head as the head of each constituent. For example,
“(np-024 X , Y and Z)” will be binarized to “(np-0 X , (np-0
Y and Z))”. After the conversion, it becomes the the same
as the normal cases.
There is one case left, which is xp- without any head in-
formation. This occurs frequently when a long sentence
consists of several shorter clauses. To be different from the
coordination, we simply link all the clauses to the first one,
e.g. “(dj- X , Y , Z)” will be converted to “X→,”, “X→Y”,
“X→,”, and “X→Z”.
Notice that the conversion here is not fully reversible. For
instance, “(np-02 X , Y)” and “(np-0 X , Y)” will be con-
verted into the same dependency tree, “X→,” and “X→Y”.
Consequently, in the final stage, we apply some heuristics
to restore some of the information loss.

1951



Besides the dependency structure conversion, we also need
to consider the labels being given to the dependencies. En-
lightened by (Hall, 2008)’s conversion algorithm, we not
only annotate the dependency label with constituent names,
but more, in order to preserve the information as much as
possible. We use a richer annotation on each dependency
label, which contains two elements,

Path All the constituent names from the head word up
to the last constituent where the two words share the
same ancestor on the tree;

Index The index of the shared ancestor on the correspond-
ing constituent name path.

After applying all these steps mentioned above, an example
of a complete conversion is shown in Figure 2.

3.3. Integration of the Two Structures
After obtaining both the constituent tree and the depen-
dency tree (for the same sentence) from the parsers, we
could then combine them and convert the result back to the
original TCT representation. There are mainly four cate-
gories of conversion:
xp-l or xp-r For those cases with constituent names, xp-
l or xp-r, we simply take the leftmost component or the
rightmost component as the heads.
xp-m For the xp-m cases, we use the dependency parser’s
result as a hint to obtain the head. If there are only three
components in that constituent, we take the second compo-
nent (the middle one) as the head; if there are more than
three components, we use the left-most head given by the
dependency parser as the head, but it cannot be the left-most
daughter of the constituent.
xp-c For the xp-c cases, we again use the dependency
parser’s result as a hint. The tricky part here is that some-
times the dependency parser cannot discover all the heads
correctly. Therefore, we apply heuristics to fix the errors. If
the number of the components is an odd number, we add all
the components at the odd positions to the head list, when
the dependency parser misses some of them; if the num-
ber of the components is an even number, we do the same ,
except for the second last component. These two rules are
aiming to capture coordination like “X , Y and Z” and “X ,
Y , and Z”.
xp- For the xp- cases, we simply keep them as they are.

4. Experiments
In practice, for both mainstream statistical (syntactic)
parsers, we use open source softwares, the Berkeley parser2

(Petrov and Klein, 2007) and the MSTParser3 (McDonald
et al., 2005), partially based on our empirical study on the
parser performance comparison (Zhang and Wang, 2009).
The Berkeley parser is purely data-driven and it does not
have linguistic assumptions. This allows us to retrain the
model with minimum efforts. Some internal comparison
has shown that it outperforms the modified Dan Bikel’s

2http://code.google.com/p/berkeleyparser/
3http://sourceforge.net/projects/mstparser/

parser4 (Bikel, 2004), because the latter system heavily de-
pends on the linguistic or annotation assumptions from the
Penn-style treebanks. The MSTParser is a graph-based de-
pendency parer. The best parse tree is acquired by search-
ing for a spanning tree which maximizes the score on either
a partially or a fully connected graph with all words in the
sentence as nodes (Eisner, 1996; McDonald et al., 2005).
For the Berkeley parser, we use the default settings. For
the MSTParser, based on our experience in participating in
the CoNLL 2009 shared task (Zhang et al., 2009), we use
the second order setting of the parser, which includes fea-
tures over pairs of adjacent edges as well as features over
single edges in the graph, and other settings are default.
Table 1 shows the parsing accuracy of our system on CIPS-
ParsEval-2009 dataset.
From the results, we observe that the Berkeley’s parser
works reasonably fine and the claim is largely confirmed
with a different treebank with different annotation. After 6
split-merge iterations, the resulting grammar induced com-
plex hierarchical categories on nouns and verbs while main-
taining very few subtypes on closed categories like particles
and conjunction words.
In the meanwhile, multi-headed constructions are quite
challenging to handle, though we apply several heuristic
rules besides using the dependency parser to restore the
head information. The improvement of using the depen-
dency parser results as the backup for the constitute parsers
can be seen from comparing the two rows below and above.
Although there is some loss during the conversion from the
dependency structure back to the constitute structure, the
gain on the overall performance is substantial. After tak-
ing a comparison of the two rows above, we find that the
heuristic rules do not help us much, and even decrease the
partial-head f-score; while for the two rows below, the im-
provement is more obvious. This indicate that the heuris-
tics can further fix the errors brought from the dependency-
constitute conversion.
For instance, the following NP

[np-0-2-4 田 赋(land-tax)/n 、(,)/wD 徭

役(forced labor)/n 和(and)/cC [np-1 其

他(other)/rN杂税(misc. taxes)/n ] ]

is mis-parsed into

[np-2 [np-2 田 赋(land-tax)/n 、(,)/wD 徭

役(forced labor)/n ] 和(and)/cC [np-1 其

他(other)/rN杂税(misc. taxes)/n ] ]

This is a typical error caused by the multi-headed coordi-
nation. Due to the binarinization process, the three com-
ponents “田赋(land-tax)”, “徭役(forced labor)”, and “其
他(other) 杂税(misc. taxes)” connected by “、(,)” and
“和(and)” are treated as a recursive construction by our
parser. We apply the heuristics to fix some of such errors,
but a systematic way of handling coordination is still an
open question.
Although the errors of the constitute structure parsing is
not addressed in this work, we still find quite a large por-
tion of the first type of errors could be potentially fixed by

4http://www.cis.upenn.edu/ dbikel/software.html

1952



是 /vC
is

春节 /t
Spring Festival

中国 /nS
Chinese

人民 /n
People

十分 /dD
very

重视 /v
highly-valued

的 /uJDE
DE

传统 /a
traditional

节日 /n
festival

(vp|1)

(vp,dj|2)

(np|1)
(vp|1)

(np,np|2)

(np,np|2)

(np|1)

Figure 2: An example dependency tree with complex labels

Settings F1-Scores
With Conversion With Heuristics No-head Partial-head Full-head

No No 84.41 81.29 73.21
No Yes 84.41 81.21 73.75
Yes No 85.23 80.05 72.79
Yes Yes 85.23 82.35 74.27

Table 1: Parsing Accuracy of Our System on TCT using Different Evaluation Metrics

the dependency structure. For example, the following left-
branching NP structure in the treebank

[np-1 [np-1 财 政(finance)/n 分

配(distribution)/vN ]活动(activity)/n ]

but is parsed as a right-branching binary structure:

[np-1 财 政(finance)/n [np-1 分

配(distribution)/vN活动(activity)/n ]

Another similar example is a right-branching NP

[np-1 封 建(feudal)/n [np-1 赋 役(taxes and
forced labor)/n制度(system)/n ] ]

being mis-parsed as left-branching

[np-1 [np-1 封 建(feudal)/n 赋 役(taxes and
forced labor)/n ]制度(system)/n ] ]

These two complex noun phrases look very similar to
each other from the constitute perspective, although the
POSes are slightly different. The POS of the word “分
配(distribution)” is a “vN” instead of a normal noun (i.e.
“n”), meaning it has both verbal and nominal functions.
Notice that in the gold standard, there is no fixed rule about
combining the noun on the left or right side of the “vN”
first. However, if we obtain the dependency structure of
these two phrases, “财政(financial) 分配(distribution) 活
动(activity)” and “封建(feudal)赋役(taxes and forced la-
bor)制度(system)”, the distinction becomes obvious.

活动(activity)

分配(distribution)

财政(finance)

制度(system)

封建(feudal) 赋役(taxes and forced labor)

The first structure shows that “财政(finance)” and “分
配(distribution)” should be combined together first and

treated as modifier to “活动(activity)”; while the sec-
ond structure suggests that both “封建(feudal)” and “赋
役(taxes and forced labor)” are separate modifiers of “制
度(system)”. Unfortunately, our current parsing model
does not allow the dependency structure to modify the pre-
dicted constitutes, which is on the top list of our future
work.

5. Conclusion and Future Work
Although these results are still preliminary, it is interesting
to have this alternative view of Chinese parsing (compared
with CTB). Our first trial of combining two mainstream
grammar frameworks has shown promising results.
The ongoing and future work includes 1) a closer investiga-
tion of the performance of constituent to dependency (and
vice versa) conversion based on (Hall, 2008); 2) whether
the richer annotation on the labels (head information on
constituents and phrasal information on dependency la-
bels) are useful for constituent and dependency parsing;
and 3) how to feed the pure data-driven parsing models
with more fine-grained linguistic knowledge, such as hand-
crafted grammars, in order to further improve the perfor-
mance.

Aknowledgements
The first author is funded by the PIRE PhD scholarship pro-
gram. The second author thanks the German Excellence
Cluster of Multimodal Computing and Interaction for the
support of the work. We also thank the colleagues at UDS-
SJTU Joint Research Lab for Language Technology for in-
spiring discussions.

6. References
Daniel M. Bikel. 2004. A distributional analysis of a lex-

icalized statistical parsing model. In In Proceedings of

1953



Conference on Empirical Methods in Natural Language
Processing (EMNLP 2004).

Jason Eisner. 1996. Three new probabilistic models for
dependency parsing: An exploration. In Proceedings
of the 16th International Conference on Computational
Linguistics (COLING-96), pages 340–345, Copenhagen,
Denmark.

Johan Hall. 2008. Transition-Based Natural Language
Parsing with Dependency and Constituency Representa-
tions. Phd thesis, Computer Science, Växjö University.

Chu-Ren Huang, Feng-Yi Chen, Keh-Jiann Chen, Zhao
ming Gao, and Kuang-Yu Chen. 2000. Sinica treebank:
design criteria, annotation guidelines, and on-line inter-
face. In Proceedings of the second workshop on Chi-
nese language processing: held in conjunction with the
38th Annual Meeting of the Association for Computa-
tional Linguistics, volume 12, pages 29–37, Hong Kong,
China. Association for Computational Linguistics.

R. McDonald, F. Pereira, K. Ribarov, and J. Hajic. 2005.
Non-projective dependency parsing using spanning tree
algorithms. In Proceedings of HLT-EMNLP 2005, pages
523–530, Vancouver, Canada.

S. Petrov and D. Klein. 2007. Improved inference for
unlexicalized parsing. In Proceedings of HLT-NAACL
2007, Rochester, NY, USA, April 22-27.

Nianwen Xue, Fei Xia, Fu-Dong Chiou, and Martha
Palmer. 2005. The penn chinese treebank: Phrase struc-
ture annotation of a large corpus. Natural Language En-
gineering, 11(2):207–238.

Yi Zhang and Rui Wang. 2009. Correlating natural lan-
guage parser performance with statistical measures of the
text. In Proceedings of the 32nd Annual Conference on
Artificial Intelligence (KI 2009), Paderborn, Germany,
September.

Yi Zhang, Rui Wang, and Stephan Oepen. 2009. Hybrid
multilingual parsing with hpsg for srl. In Proceedings
of the Thirteenth Conference on Computational Natural
Language Learning (CoNLL 2009), Boulder, CO, USA,
June.

Qiang Zhou. 2004. Annotation scheme for chinese
treebank. Journal of Chinese Information Processing,
18(4):1–8.

1954


