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Abstract
We investigate a number of approaches to generating Stanford Dependencies, a widely used semantically-oriented dependency represen-
tation. We examine algorithms specifically designed for dependency parsing (Nivre, Nivre Eager, Covington, Eisner, and RelEx) as well
as dependencies extracted from constituent parse trees created by phrase structure parsers (Charniak, Charniak-Johnson, Bikel, Berkeley
and Stanford). We found that phrase structure parsers systematically outperform algorithms designed specifically for dependency pars-
ing. The most accurate method for generating dependencies is the Charniak-Johnson reranking parser, with 89% (labeled) attachment F1
score. The fastest methods are Nivre, Nivre Eager, and Covington. When used with a linear classifier to make local parsing decisions,
these methods can parse the entire Penn Treebank development set (section 22) in less than 10 seconds on an Intel Xeon E5520. However,
this speed comes with a substantial drop in F1 score (about 76% for labeled attachment) compared to competing methods. By tuning
how much of the search space is explored by the Charniak-Johnson parser, we are able to arrive at a balanced configuration that is both
fast and nearly as good as the most accurate approaches.

1. Introduction
Recent years have seen an increase in the use of depen-
dency representations throughout various natural language
processing (NLP) tasks. The Stanford dependency scheme
(de Marneffe et al., 2006) in particular has gained popu-
larity: it is widely used in both the NLP community (i.a.,
Adams et al. (2007), Blake (2007), Banko et al. (2007),
Harmeling (2007), Meena and Prabhakar (2007), Zouaq et
al. (2007), Kessler (2008)) and the biomedical text min-
ing community (i.a., Pyysalo et al. (2007), Greenwood and
Stevenson (2007), Urbain et al. (2007), Giles and Wren
(2008), Björne et al. (2009), Van Landeghem et al. (2009)).
When the Stanford Dependencies are used as part of an ap-
plied system or when they must be constructed for a large
quantity of text, it is often important not just that the de-
pendency representation is accurate but also that it can be
produced reasonably quickly.
Stanford Dependencies have traditionally been extracted
from constituent parses. Using the default configuration
of off-the-self constituent parsers, it is quite slow to ob-
tain dependencies from raw text as the production of parse
trees is very time consuming. It is reasonable to expect
that approaches specifically designed for dependency pars-
ing, such as Eisner (Eisner, 1996), Covington (Covington,
2001), minimum spanning tree (MST) (McDonald et al.,
2005), and Nivre (Nivre, 2003), would be faster, given that
these approaches have lower algorithmic time complexity.1

However, it is uncertain how much faster these algorithms
perform in practice and how their speed and accuracy com-
pare both to each other and to the standard approach of us-
ing a constituent parser.
In this paper, we systematically explore different meth-
ods for obtaining Stanford Dependencies. There has been
some work examining accuracy using different constituent

1Given a sentence of length n, the time required by a lexical-
ized parser implemented using CKY will scale on the order of
O(n5). In the case of dependency parsing, the time complexities
are O(n3) for Eisner, O(n2) for Covington, and O(n) for Nivre.

parsers to generate Stanford Dependencies (Clegg and
Shepherd, 2007; Clegg, 2008). Miyao et al. (2008) de-
veloped the approach of automatically converting parsers’
default output into dependency representations to evaluate
the contribution of the parser and the representation on a
relation extraction task. We expand the investigation by
looking at time and accuracy trade-offs and examining how
such constituent parsers compare to fast algorithms that
have been specifically developed for dependency parsing.
We then compare these dependency parsers with techniques
for speeding up the traditional extraction pipeline, namely
more aggressive pruning in constituent parsers. We con-
trast the different approaches in terms of aggregate speed
and accuracy and provide an analysis of characteristic er-
rors of each.

2. Methods
Experiments are performed on the Penn Treebank using a
dual CPU Intel Xeon E5520. Parsers are trained using the
standard training set of the Penn Treebank consisting of
sections 2 through 21. We compare five popular state-of-
the-art constituent parsers: Stanford englishPCFG v1.6.2
(Klein and Manning, 2003), Charniak 05Aug16 (Charniak,
2000), Charniak-Johnson June06 (CJ) (Charniak and John-
son, 2005), Bikel v1.2 (Bikel, 2004) and Berkeley v1.1
(Petrov et al., 2006). Such parsers differ in terms of ac-
curacy, speed and the options they provide to trade off time
with accuracy.
We also compare different dependency parsers: several
models from the MaltParser package v1.3 (Nivre, Nivre
Eager, and Covington) (Nivre et al., 2006), the implemen-
tation of the Eisner algoritm provided by the MSTParser
0.4.3b (Eisner, 1996; McDonald et al., 2005), and the rule-
based RelEx parser 1.2.0 (Ross and Vepstas, 2008). The
RelEx parser supports a Stanford dependency compatibility
mode. For the others, we train their models on the Stan-
ford basic dependencies using the default feature set for
each algorithm. The basic dependencies provide projective
grammatical relations between every word in the sentence,
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Figure 1: Basic and standard Stanford dependency rep-
resentations for the sentence Bills on ports and immigra-
tion were submitted by Senator Brownback, Republican of
Kansas.

without any collapsing or propagation of dependencies (de
Marneffe and Manning, 2008). The resulting dependency
trees can then be systematically transformed into the stan-
dard Stanford dependency representation which features
collapsing of dependencies involving prepositions and con-
junctions, as well as propagation of dependencies between
conjuncts. Figure 1 shows the two dependency representa-
tions, basic and standard, for the sentence Bills on ports and
immigration were submitted by Senator Brownback, Repub-
lican of Kansas.
Directly training non-projective parsing models, such as
MST algorithm or Covington, on the standard Stanford de-
pendency representation is not advisable since that repre-
sentation is not just non-projective but the semantic graphs
it defines do not strictly follow a tree structure.

3. Results
Table 1 reports attachment F1 score for the different parsers
on section 22 of the Penn TreeBank using the standard
Stanford dependency representation (i.e., with collapsing
and propagation of dependencies). Table 2 reports the cor-
responding attachment precision and recall scores. We use
F1 score rather than attachment accuracy since the standard

Threads Parse time
1 10:18
2 5:45
4 15:20

Table 4: Multithreading performance of the CJ reranking
parser using the default search space size (T210). While
running with 2 threads improves the speed of the parser,
using more actually slows the parser down.

Stanford dependency representation allows each word to
have multiple governors and parsers may generate a differ-
ent number of dependencies for each sentence. “Gold” de-
pendencies were obtained by running the Stanford extrac-
tion code on the gold phrase structure trees. As in previous
work, the automatic conversion of gold standard parse trees
to dependencies has not been manually checked. The table
also gives the time taken to generate the dependencies. The
dependency parsers require that the data is part-of-speech
tagged. We use the Stanford POS tagger v2.0 with the
MEMM tagging model (left3words-wsj-0-18) (Toutanova
et al., 2003). To better take advantage of multicore ma-
chines, the CJ parser defaults to using 2 threads. However,
to make the comparison fair with the other parsers, only one
thread was used here. Multithreading results are presented
below.
The dependencies extracted from the constituent parsers are
the most accurate, but they are also the slowest to generate.
The best performing parser is CJ reranking. However, it is
followed closely by both Berkeley and Charniak. The per-
formance of CJ reranking and Charniak is not surprising
given that these parsers have been adapted over the years to
do well parsing the English Penn Treebank. Interestingly,
Berkeley, which is a newer and more general parser, is com-
petitive in performance as well as in speed.
The fastest parsers are those included in the Malt package,
Nivre, Nivre Eager, and Covington, when interactions be-
tween model features are not used.2 Nivre Eager with fea-
ture interactions and MSTParser (Eisner) achieve better F1
scores than the other dependency parsers, and come closer
to the scores obtained by constituent parsers. They are also
much faster than the constituent parsers. Nivre Eager with
feature interactions is about 67% faster than Berkeley, the
fastest constituent parser. MSTParser (Eisner) is around
40% faster than Berkeley.
Both the Charniak and the CJ parsers allow users to trade
off parsing accuracy for speed by adjusting how liberal

2As released, the MaltParser (v1.3) has a bug that causes parse
time with liblinear models to be quadratic in the number of words
in the corpus being parsed due to pre-insertion in an array list
that grows with each parsing prediction made. The results pre-
sented here are from our own patched version, which is about 2
orders of magnitude faster than the v1.3 release on the data sets
reported here. This bug is fixed in the v1.3.1 release. The speed
of the MaltParser is significantly impacted by the large number of
feature dot products required (one for each support vector) when
feature interactions are modeled using a SVM with a non-linear
kernel. We thus modified the code so that a polynomial kernel can
be simulated using a linear model. Doing so resulted in an ap-
proximately 5x speedup for our feature interaction results. Table
1 reports results after this fix has been applied.
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Type Parser Attachment F1 Time
Unlabeled Labeled POS tag Parse Dep. extraction Total

Constituent Stanford 87.2 84.2 – 10:04 1:01 11:05
Charniak 90.5 87.8 – 11:09 1:01 12:10
CJ 91.7 89.1 – 10:18 1:00 11:18
Bikel 88.7 85.3 – 28:57 1:00 29:57
Berkeley 90.5 87.9 – 9:14 1:00 10:14

Dependency Covington 80.0 76.6 0:03 0:09 0:04 0:16
Nivre Eager 80.1 76.2 0:03 0:08 0:05 0:16
Nivre 80.2 76.3 0:03 0:08 0:04 0:15
Nivre Eager Feature Interact 84.8 81.1 0:03 3:15 0:05 3:23
MSTParser (Eisner) 82.6 78.8 0:03 5:54 0:04 6:01
RelEx 57.8 48.1 – 31:38 – 31:38

Table 1: Unlabeled and labeled attachment F1 score (%) and time (min:seconds) to generate standard Stanford Dependen-
cies with different types of parsers (constituent vs. dependency). When applicable, dependency extraction times are given
for the Stanford basic dependencies. Converting from the Stanford basic dependencies to the final representation took an
additional 4 to 5 seconds per parser.

Type Parser Unlabeled attachment Labeled attachment
P R P R

Constituent Stanford 87.3 87.1 84.2 84.1
Charniak 90.5 90.4 87.8 87.7
CJ 91.7 91.7 89.2 89.1
Bikel 88.9 88.6 85.4 85.1
Berkeley 90.6 90.5 88.0 87.9

Dependency Covington 80.9 79.1 77.5 75.7
Nivre Eager 80.6 79.5 76.8 75.7
Nivre 80.7 79.8 76.8 75.9
Nivre Eager Feature Interact 85.4 84.2 81.7 80.5
MSTParser (Eisner) 83.0 82.2 79.2 78.4
RelEx 70.4 49.1 58.6 40.8

Table 2: Unlabeled and labeled attachment precision and recall (%) to generate standard Stanford Dependencies with
different types of parsers (constituent vs. dependency).

the system is about expanding edges after the best-first-
search has found one complete parse of the sentence: they
constrain themselves to only examine Tval/10 times more
edges in search of a better parse. As seen in table 3, by
adjusting this parameter down, the time required can be re-
duced to nearly that of the fastest dependency parsing al-
gorithms. Unfortunately, these gains come with a sizable
reduction in dependency accuracy. However, by modestly
expanding the space of hypotheses explored by the parser,
Charniak T50 achieves very competitive parsing accuracy.
By also reranking the parse trees, CJ T50 is more accurate
than nearly all other configurations, while requiring less
time than all but the fastest specialized dependency parsers.
When multiple CPU cores are available, the speed of the CJ
parser can also be improved by using multiple threads. Ta-
ble 4 shows the parse time for the CJ parser when using 1 to
4 threads. Parsing speed nearly doubles when 2 threads are
used instead of 1. However, increasing the threads to 4 re-
sults in much slower performance than just using 1 thread.3

3The dual CPU E5520 we used for our experiments has a total
of 8 CPU cores. On this machine, a good threading implemen-
tation might show speed gains using up to 8 threads. It is worth
noting that a near ideal 8x speedup can be obtained for all of the
parsers presented here by simply starting multiple parsing jobs on

4. Error analysis
We performed error analysis on section 22 of the Penn Tree-
Bank, the same data used for table 1. The very low score
from RelEx is largely due to the parser omitting a sizable
number of dependencies, as can be seen in the recall results
in table 2. However, the dependencies it produces are still
less accurate than those from other parsers.
All the errors made by the constituent parsers are due to
incorrect phrase structures leading to higher or lower at-
tachment as well as to the use of the imprecise generic dep
relation. The latter is produced when the dependency ex-
traction code has difficulty labeling a relationship within
a parse tree. Not surprisingly most of the errors occur
with structures which are inherently hard to attach: sub-
ordinate clauses, prepositional and adverbial phrases. For
example, in (1) But the RTC also requires working cap-
ital to maintain the bad assets-1 of thrifts that are sold-
1 until the assets-2 can be sold-2 separately., Berkeley,
Stanford, Charniak and CJ misattach the adverbial clause:
advcl(sold-1, sold-2) instead of advcl(maintain, sold-2).
Berkeley, Stanford, Bikel and CJ produce xcomp(requires,
maintain) instead of infmod(capital, maintain). In (2) The

the machine with each job being assigned to a different slice of
the corpus to be parsed.
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Parser Attachment F1 Time
Unlabeled Labeled POS tag Parse Dep. extraction Total

Charniak T10 79.7 75.7 – 0:14 1:00 1:14
Charniak T50 89.5 86.7 – 2:06 1:03 3:09
CJ T10 80.1 76.1 – 1:18 0:59 2:17
CJ T50 90.4 87.6 – 2:31 1:01 3:32

Table 3: Unlabeled and labeled attachment F1 score (%) and time (min:seconds) to generate Stanford Dependencies with
different beams of the Charniak and Charniak-Johnson parsers.

decline in the German Stock Index of 203.56 points, or
12.8%, to 1385.72 was the Frankfurt market’s steepest fall
ever., all the constituent parsers misattach points to Index
with the relation prep of. For 1385.82 however, CJ and
Bikel do get the right phrase structure and correctly pro-
duce prep to(decline, 1385.82).
Decreasing the beam size for the CJ parser to T10 leads
to a greater number of such errors. Recall and precision
for the following dependencies especially suffer: adverbial
clauses (advcl), appositions (appos), indirect objects (iobj),
clausal and nominal subjects (csubj, csubjpass, nsubj, nsub-
jpass), relative clauses (rcmod, rel), prepositional phrases
as well as infinitival modifiers (infmod), participial modi-
fiers (partmod) and quantifier modifiers (quantmod). How-
ever, when only decreasing the beam size to T50, there are
no substantial differences in recall and precision for spe-
cific dependencies, except for the ones involving preposi-
tional phrases: the prepositions are wrongly attached more
often than when the default beam size (T210) is used. CJ
achieves substantially better precision and recall than the
other constituent parsers for infinitival modifiers (infmod)
and relative clauses (rcmod). Berkeley performs better for
the parataxis relation.
Nivre, Nivre Eager, and Covington often produce more lo-
cal attachments than both the constituent parsers and MST-
Parser (Eisner). For example, in (3) The bill would pre-
vent the Resolution Trust Corp. from raising temporary
working capital by having an RTC-owned bank or thrift
issue debt., we get prepc by(raising, having) instead of
prepc by(prevent, having) for Nivre, Nivre Eager and Cov-
ington, whereas MSTParser (Eisner) and Nivre Eager with
feature interactions get it right. Incorrect higher attach-
ments sometimes occur, probably due to a lexical pref-
erence: in example (1), Nivre Eager and Covington give
rcmod(assets-1, sold-1) instead of rcmod(thrifts, sold-1).
Nivre and MSTParser (Eisner) find the correct relation. A
systematic error can be seen in the treatment of copulas. In
most copular sentences, the Stanford Dependencies take the
complement of the copular verb as the root. However, the
Malt algorithms rarely give such output, presumably be-
cause locally the attachment to the copula appears to be
reasonable.
When comparing recall and precision for specific depen-
dencies between the Malt algorithms, the only noticeable
difference is that Covington produces better numbers for
infinitival modifiers (infmod), purpose clauses (purpcl) and
relative (rel). CJ T50 attains even better accuracy for these
relations, except for infmod for which it has better precision
(84% vs. 63%) but slightly worse recall (69% vs. 73%).
Most systematic errors made by the dependency parsers in-

cluded in the Malt package can be attributed to their de-
terministic nature: once they mistakenly attach a depen-
dent that looks good given the local context and the partial
intermediate parse, they cannot backtrack even if it forces
the parser to make unusual subsequent attachments. Lexi-
cal preference can then conspire with locality and introduce
parse errors.
Even though MSTParser (Eisner) is performing exact in-
ference over all possible parses, it still makes some errors
similar to those made by the deterministic parsers involving
inappropriate local attachment. In this case, these errors are
likely due to the feature set used by the MSTParser (Eis-
ner) which favors short distance dependencies. As a result
in sentence (2), all dependency parsers wrongly misattach
points to the neighbor Index with the relation prep of in-
stead of attaching it higher to decline.

5. Conclusion
For the Stanford Dependencies, constituent parsers appear
to systematically outperform algorithms designed specifi-
cally for dependency parsing. Notwithstanding the very
large amount of research that has gone into dependency
parsing algorithms in the last five years, our central conclu-
sion is that the quality of the Charniak, Charniak-Johnson
reranking, and Berkeley parsers is so high that, in the vast
majority of cases, dependency parse consumers are better
off using them, and then converting the output to typed de-
pendencies. For small scale tasks, the CJ reranking parser
is best due to its high level of accuracy. If parsing a larger
corpus, the best choice is to still use CJ but to reduce the
number of candidate parses explored by the algorithm. In-
terestingly enough, this option is both faster and more accu-
rate than some of the special purpose dependency parsers.
If parsing a massive corpus, and speed is crucial, our results
suggest that the best choice is to use any one of the parsers
included in the Malt package with a fast POS tagger.
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