
Extracting Surface Realisation Templates from Corpora

Thiago D. Tadeu, Eder M. de Novais, Ivandré Paraboni
School of Arts, Sciences and Humanities - University of São Paulo (USP / EACH)

Av. Arlindo Bettio, 1000 São Paulo Brazil

E-mail: { thiagoo, eder.novais, ivandre} @usp.br

Abstract

In Natural Language Generation (NLG), template-based surface realisation is an effective solution to the problem of producing surface
strings from a given semantic representation, but many applications may not be able to provide the input knowledge in the required
level of detail, which in turn may limit the use of the available NLG resources. However, if we know in advance what the most likely
output sentences are (e.g., because a corpus on the relevant application domain happens to be available), then corpus knowledge may
be used to quickly deploy a surface realisation engine for small-scale applications, for which it may be sufficient to select a sentence (in
natural language) that resembles the desired output, and then modify some or all of its constituents accordingly. In other words, the
application may simply 'point to' an existing sentence in the corpus and specify only the changes that need to take place to obtain the
desired surface string. In this paper we describe one such approach to surface realisation, in which we extract syntactically-structured
templates from a target corpus, and use these templates to produce existing and modified versions of the target sentences by a
combination of canned text and basic dependency-tree operations.

1. Introduction

The present work has been developed in the context of a

Q&A application under development, in which questions

sent by students enrolled in an undergraduate project

course will be answered semi-automatically by the system.

In this application, answers are selected from a large

database of standard replies (written by the professors in

charge of the undergraduate project) to the most

frequently asked questions made by the students and

tailored to each particular context.

Our focus in this paper is the surface realisation subtask in

Natural Language Generation (NLG) systems. Briefly,

surface realisation concerns the production of surface

strings from a given semantic representation, and it is

considered one of the final stages in the language

generation process in a standard NLG pipeline

architecture (Reiter, 2007.)

One possible way of implementing a surface realisation

engine is by making use of a grammar formalism, e.g., as

in Bateman (1997). The use of a grammar guarantees

robustness and wide coverage to surface realisation, but

the level of detail required as an input may make a wide

range of applications (namely, those that are not

linguistically- motivated) difficult to adapt, which in turn

limits the use of the NLG resources available.

The issue of input specification to the surface realisation

task is a well-known research problem in the NLG field

(e.g., Langkilde, 2000.) One possible way of simplifying

the input requirements is by making use of surface

realisation templates
1
. State-of-art template-based surface

realisation systems such as YAG (McRoy et. al., 2003)

rely on a relatively small number of template definitions

1
 For a comparison between template-based and other

approaches to NLG, see for instance van Deemter et. al.
(2005).

and a powerful description language to provide

fine-grained sentence specification. This enables more

sophisticated NLG applications (i.e., those that are

capable of providing detailed knowledge to fill in each

template adequately) to take full advantage of template

definitions and to have total control over the output text.

For simpler applications, the challenge of input

specification remains relatively unchanged.

There is however one particular case in which even

knowledge-poor applications may benefit from NLG,

namely, when we know in advance what the most likely

output sentences are (e.g., because a corpus on the

application domain happens to be available.) In these

cases, we will argue that the existing knowledge can be

used to quickly deploy a surface realisation component.

In what follows we describe one such approach to surface

realisation, in which we extract syntactically-structured

templates from a target corpus of standard answers to

students' questions, and use these templates to produce

existing and modified versions of the target sentences by a

combination of canned text and basic dependency-tree

operations. In doing so, we shall focus mainly on the

general concept of surface realisation from corpus

examples and the template hierarchy. The NLG approach

proper will be described elsewhere.

The general principle that we adopt in this work is that for

simpler applications it may be sufficient to select from

corpora a sentence that resembles the desired output, and

then modify some or all of its constituents accordingly. In

other words, rather than specifying the sentence semantics

in detail, the application may simply 'point to' an existing

sentence in the corpus and specify only the changes that

need to take place to obtain the desired surface string.

This should arguably be much simpler (and of course

much less flexible) than using a grammar-based surface

realisation engine (e.g., Bateman, 1997) or even

YAG-style templates (McRoy et. al., 1993.)

2392

For instance, the application may pick from corpora a

sentence such as “You may deliver your paper by Sunday”

and specify that, leaving all other sentence constituents

unchanged, the object to be realised in the sentence is “the

results”. This will have the effect of producing (after

certain agreement operations that need to take place in

inflected languages such as Portuguese) the output “You

may deliver the results by Sunday”. The overall effect is

similar to what could be obtained by instantiating an

appropriate template in systems such as YAG, but we

believe that simpler NLG applications may benefit from a

minimal input specification based on natural language

(i.e., combining canned text and template values.)

The following Fig.1 illustrates the interaction between

input semantic values (provided by the application),

examples of sentence structures taken from corpora, and

the output text produced by the surface realisation engine.

Figure 1: Surface realisation of an input semantic

specification making use of corpus examples.

The reminder of this paper is structured as follows.

Section 2 describes the kinds of template that we use in

our system and the knowledge acquisition task. Section 3

discusses how the template hierarchy is used to generate

text, and Section 4 presents our preliminary conclusions.

Finally, Section 5 describes our ongoing and future work.

2. Current Work

The starting point of our work was the development of a

database of surface realisation templates. Using a

collection of emails sent to students in reply to their

questions regarding an undergraduate project, we

collected 597 sentences in Brazilian Portuguese and

tagged/parsed using PALAVRAS (Bick, 2000). This

collection was subsequently recast in XML format and

constitutes our target corpus.

Each sentence in the target corpus is a template whose

slots (discussed later) can be partially or totally filled-in to

produce variations of the original sentence. However, due

to a significant number of parsing and tagging errors, we

notice that not all templates are actually functional for the

purpose of sentence generation.

In our current work all template definitions were left as

they are, that is, conveying the information provided by

the tagging and parsing tools and including their

occasional errors. We are however aware that since our

approach relies heavily on the quality of the available

templates, a real-world application will require these

errors to be corrected.

Sentence templates may have up to three kinds of variable

field: agent, patient and action. These constituents may be

modified or replaced by the application by combining

lower-order templates (e.g., for NPs and VPs) and

additional canned text. Although clearly insufficient for

wide-coverage, unrestricted text generation, in our

application this level of variation represents a fine balance

between ease of specification and flexibility of output

expression, a point that we shall return to later.

As in other works in the field (e.g., Gatt & Reiter, 2009),

we presently assume that the mappings from semantics to

surface strings are to be provided by the underlying

application. For testing purposes, however, we have

extracted 1,548 unique instances of concept-to-string

mappings from the target corpus, being 1,298 mappings

from agent/patient entities to descriptions, pronouns and

proper names, and 250 mappings from actions to VPs,

even though not all of them are directly relevant to our

application.

The following Figure 2 illustrates a sentence template

with its variable fields (agent, action and patient) and their

constituents represented as dependency-trees.

Figure 2: Sentence templates and variable fields.

The values provided by the application, if any, overwrite

the default values of the template and, if necessary, basic

agreement rules (e.g., between subject and object) are

performed to ensure grammaticality. In our work this is

accomplished with the aid of a database of inflections

(Muniz et. al., 2005) and a thesaurus for the Brazilian

Portuguese language.

Although based on a small set of examples, the

combination of sentence, NP and VP templates with the

ability to change individual template values may allow the

application to generate a range of sentences that is still

much wider than the target corpus. While this is by no

means comparable to the flexibility of large-scale NLG

systems, we believe that this may be sufficient for simple

text-generating applications, and that its limitations

2393

(namely, the need to generate a sentence that does not

resemble any other in the corpus) may be overcome by

simply typing it in the text using natural language (which

is arguably simpler than providing detailed instructions on

how to combine templates) or by specifying the new

sentence from scratch (in which case more input

knowledge will be required.)

3. Template-based Generation

In this section we will provide an overview of the text

generation task. Details about the current state of the NLG

system will be described elsewhere.

Using the template definitions described in the previous

section, we designed a simple corpus-based surface

realisation engine. Our surface realisation module can be

used in two ways: first, in our proposed template-based

approach based on corpus examples, the surface

realisation engine takes as an input a template id (i.e., a

sample structure with default values for the output

sentence) and, optionally, additional parameters

representing the alternative semantics of its agent, patient

and action constituents, including gender, number, tense,

mode, reference type (e.g., definite vs. indefinite etc.) etc.

Alternatively, our surface realisation engine also offers a

number of pre-defined templates for common sentence

structures (e.g., in the form NP VP NP.) These standard

templates are not based on corpus examples, and they are

implemented as a means to add flexibility to the system,

and to make it more usable. Although in principle

defeating the concept of generation from corpus examples,

we notice that standard sentence structures are numerous

in many applications, and using a standard template may

in some cases be simpler than selecting and modifying a

corpus sentence.

A complete example works as follows: in a full canned

text approach, the underlying application may simply

select the required template id to produce the desired

output verbatim as in (a); with some additional knowledge

available, the application may change some aspects of the

output sentence (e.g., the agent and patient fields) as in (b);

finally, with a nearly-full semantic specification as an

input (e.g., including new values for the action field), the

original structure may change even further as in (c), in

which case only the non-terminal nodes of the

dependency-tree were preserved. Thus, we have used the

template specification in (a) simply as an example to

produce an entirely different sentence as in (c).

(a) [You]agent [have not finished]action

[your thesis]patient

(b) [The students]agent [have not finished]action

[their homework]patient

(c) [The students]agent [will complete]action

[their homework]patient

Finally, we notice that not all dependency-tree

replacements are possible in practice, which bears a

number of consequences to the overall system behaviour.

For example, our application often produces imperative

statements that (in Portuguese) do not convey an explicit

subject, as in “Please do your homework”. In these cases,

it is not clear what it means for the NLG application to be

requested to insert an agent constituent where there is

none.

A similar situation may arise if an action that is

incompatible with the current template definition is

requested to replace the main verb in the structure. For

example, it is unclear whether the system should allow the

main verb in the template “You are very clever” to be

replaced by, e.g., “buy”, in which case a ungrammatical

sentences such as “#You buy very clever” would be

produced.

In our current work, a request of the first kind (i.e.,

inclusion of an agent in a sentence without a subject) is

simply ignored by the surface realisation module, and no

change in the original structure takes place. In the second

case (invalid verb replacement), however, the system does

proceed with the replacement of the verb tree, the

underlying assumption being that the application is

responsible for what is provided as an input. In either case,

however, remains the question of how far a

select-and-modify approach can go without undesirable

results. We presently assume that more research on this

issue is still required.

4. Conclusion

In this paper we have proposed a simple approach to

surface realisation based on the (re)use of

syntactically-structured templates acquired from corpora.

Although not nearly as flexible as a full NLG approach,

our system may represent a straightforward solution to the

problem of input specification, which in our case is

simply based on natural language. Our corpus-based

approach is able to generate single sentences from an

input conveying various degrees of semantic knowledge,

which may be suitable to a wide range of NLG

applications that are able to provide more or less detailed

linguistic knowledge as an input.

Although the present system is considerably less

sophisticated than, e.g., a full template-based approach as

YAG (McRoy et. al., 2003) or a grammar-based approach

as KPML (Bateman, 1997), we notice that the level of

knowledge representation used as an input seems

well-balanced for our particular application. In other

words, had the surface realisation engine required more

fine-grained input, it would probably be difficult to adapt

our application to it. On the other hand, had we defined an

even simpler input specification, the surface realisation

would amount to little more than canned text, which

would not be sufficiently flexible for our present needs.

2394

5. Future work

Our systems is currently functional at a prototype level

only, and a first assessment of the present approach is

underway. More specifically, we are building a reference

set of manually-written sentences derived from the

template collection, each of them conveying a number of

pre-defined modifications. For example, we take a

particular sentence template from the corpus, and replace

its agent constituent manually using another (also

pre-defined) content value. Once this task is finalised, the

same set of sentences will be generated by the system, and

both system and reference sets will be compared against

each other using standard evaluation metrics such as

edit-distance, and BLEU/NIST (Papineni et. al., 2002;

NIST 2002.)

Besides the evaluation work, the following improvements

are considered: first, we are currently expanding the

possible lexical choices by making use of a thesaurus and

a language model to select the most likely output as, e.g.,

in Langkilde (2000); second, the mappings from

semantic-concepts to surface strings still need to be

revised and adapted to our current domain (questions

about students’ undergraduate projects;) finally, we intend

to automatically acquire new sentences from the target

corpus without any off-line pre-processing (e.g., parsing

and template extraction.)

6. Acknowledgements

The authors acknowledge support by FAPESP and CNPq.

7. References

Bateman, J.A. (1997) Enabling technology for

multilingual natural language generation: the KPML

development environment. Natural Language

Engineering, 3(1):15–55.

Bick, E. (2000) The parsing system PALAVRAS:

automatic grammatical analysis of Portuguese in a

constraint grammar framework. PhD Thesis, Aarhus

University.

Gatt, A. and E. Reiter (2009) SimpleNLG: A realisation

engine for practical applications. Proceedings of

ENLG-2009, Athens, Greece.

Langkilde, Irene (2000) Forest-based statistical sentence

generation. 6
th

 Applied Natural Language Processing

Conference and 1
st
 Meeting of the North American

Chapter of the Association of Computational

Linguistics (ANLP-NAACL’00), pp. 170–177.

McRoy, S., S. Channarukul and S. S. Ali (2003) An

augmented template-based approach to text realization.

Natural Language Engineering 9 (4) pp. 381–420.

Cambridge University Press.

Muniz, M. C., Laporte, E., Nunes, M.G.V (2005)

UNITEX-PB, a set of flexible language resources for

Brazilian Portuguese. III Information and Language

Technology Workshop (TIL-2005).

NIST (2002) Automatic Evaluation of Machine

Translation Quality using n-gram Co-occurrence

Statistics”.www.nist.gov/speech/tests/mt/doc/ngram-st

udy.pdf

Papineni, S., T. Roukos, W. Ward, and W. Zhu (2002)

Bleu: a method for automatic evaluation of machine

translation. Proceedings of ACL-02, pp. 311–318.

Reiter, E. (2007) An Architecture for Data-to-Text

Systems. Proceedings of ENLG-2007, pp. 97-104.

van Deemter, K., Emiel Krahmer and Mariët Theune

(2005) Real versus template-based NLG: a false

op-position? Computational Linguistics 31(1).

2395

