
An open source process engine framework for realtime pattern recognition and
information fusion tasks

Volker Fritzsch, Stefan Scherer, Friedhelm Schwenker

Institute of Neural Information Processing
Ulm University

firstname.lastname@uni-ulm.de

Abstract
The process engine for pattern recognition and information fusion tasks, the pepr framework, aims to empower the researcher to develop
novel solutions in the field of pattern recognition and information fusion tasks in a timely manner, by supporting reuse and combination
of well tested and established components in an environment, that eases the wiring of distinct algorithms and description of the control
flow through graphical tooling. The framework, not only consisting of the runtime environment, comes with several highly useful
components that can be leveraged as a starting point in creating new solutions, as well as a graphical process builder that allows for easy
development of pattern recognition processes in a graphical, modeled manner. Additionally, numerous work has been invested in order
to keep the entry barrier with regards to extending the framework as low as possible, enabling developers to add additional functionality
to the framework in as less time as possible.

1. Introduction
We are happy to introduce a novel process engine for pat-
tern recognition and information fusion tasks, the pepr
framework. The process engine allows the development
of applications in an abstraction level above that of com-
mon programming languages, therefore reducing the time
to develop such solutions by allowing the reuse of estab-
lished and well tested components. The framework is de-
signed to be highly expandable in order to allow easy adap-
tion to unique challenges and comes with a user interface
that enables the creation of solutions in a graphical, mod-
eled, manner. The framework is now freely available on
the web1: www.pepr-framework.org, and is pub-
lished under the Apache open source license allowing ex-
pansion and usage to everybody. Furthermore, some first
applications have been published and demonstrated at a
few selected renowned conferences: (Scherer et al., 2009a;
Scherer et al., 2009b) showing only a few of the possibili-
ties of this framework in the context of conversation analy-
sis.
In short the main benefits of the engine can be summarized
as follows: First of all the framework is entirely devel-
oped in Java and currently provides installation instructions
for Mac OS X and Windows2. Therefore, it is as flexible
as possible and personalized components are easy to de-
velop. Further system specifications are described in Sec-
tion 2. Additionally, the pepr framework enables the devel-
oper to create classification processes and prototypes in a
timely manner due to the highly productive graphical pro-
cess builder, which will be introduced in Section 3. Further-
more, there is already a set of well tested and established
components available from previous work, comprising in-
terfaces to large scale libraries such as OpenCV, or libsvm
allowing access to even more established functionality in

1The page is currently under construction and tutorials as well
as video screen-casts on the usage of the framework will follow
shortly.

2Linux will follow shortly.

the area of computer vision and pattern recognition. Ad-
ditionally, basic starter activities enabling input from dif-
ferent modalities such as cameras, microphones, and text
files are already implemented to provide an easy entry to
the framework. In Section 4. one example application is
introduced in order to get a feeling of the basic capabili-
ties. And last but not least, one of the main novel features
of the framework is the possibility to scale processes over
each available core in one machine as well as over multiple
machines rendering the framework useful in large scale and
performance critical realtime applications.

2. System architecture
The conceptual context of the pepr framework is formed by
Processes, Process Instances, Context Tokens and Com-
ponents, such as Activities and Starters. While Activi-
ties and Starters are the building blocks that contain algo-
rithms and interfaces to external sensors and data, the Pro-
cess brings those components into a well defined order. It is
the blueprint for the interaction of the aforementioned com-
ponents. During runtime, whenever a Starter Component
signals the pepr framework available output, it instantiates
the Process (Process Instance) and creates a Context Token
(Figure 1).
This Context Token, which acts as a container for data gen-
erated by the Components that form the Process, is then
passed to the Process Instance and wanders from Compo-
nent to Component, until the specific Process Instance is
terminated when the Context Token leaves an Activity that
has no succeeding Component. Each Activity in its path
is activated by the incoming Context Token, assembles its
necessary input data based on the output attached to the To-
ken by preceding Activities and Starters, executes the en-
capsulated algorithms on this data and attaches the com-
puted output to the Token (Figure 2).
While a specific Process can consist of more than one
Starter, this does not lead to more than one Context Token
in the resulting Process Instance. Instead, several Process

880



Created

New Process Instance

Output 
Attached

Starter Output attached

Process Instance terminated

Activity Output attached

end

start

Figure 1: Process Instance and Context Token

Sensor Feature 
Extraction Classification Output

Sensor
Data

Sensor
Data

Sensor
Data

Features Features

Classification

Figure 2: Output attached to the Context Token

Instances are created by the engine and those instances, de-
scribed through their Context Token, are later merged by a
Fusion Activity (Figure 3). This Fusion Activity can merge
different Context Tokens based on, for example, the differ-
ence of the timestamp added to the Context Token during
its creation or on other aspects, like both originating from
the same Context Token, due to their creation being the re-
sult of a fork (Figure 4) in the control flow of the Process
Instance.

Process Instance

Classification OutputFusion

Process Instance

Feature 
Extraction

Process Instance

Feature 
ExtractionSensor

Sensor

Figure 3: Fusion of Context Tokens

Several design goals influenced this approach. While mod-

Starter Activity #1 Activity #2 Activity #4

Activity #3 Activity #5

Activity #6

Process Instance #3

Process Instance #1

Process Instance #2

Figure 4: Forking of Process Instances

ularity and scalability led to the architectural decision to
base the framework on the Actor Model / Message Passing
as described by (Agha, 1986), in order to hide the com-
plexity of concurrent programming from the developer of
novel components, the goal to keep the framework as open
as possible in regards to future enhancements and applica-
tions drove the decision to forgo a predefined data model
for information interchange by the involved Components.
Instead, a solution was chosen that allows the designer of a
Process to assemble the input for a given Component by
mapping parts of the output of preceding Activities and
Starters onto the input specified by this Component. This
Input Mapping (Figure 5) is scripted by the Process De-
signer with help of the Graphical Process Builder and exe-
cuted for each invocation of an Activity.

ActivityInput
MappingContext Token Context Token

Input Provisioning
Groovy Script

input.a = Context.A
input.b = Context.B
input.c = Context.C
input.d = Context.D
input.e = Context.E

...

Figure 5: Input Mapping

3. Development of processes
3.1. Developing activities
The pepr framework, based on the OSGi Framework, is a
highly expandable system. Even though there is already
a useful collection of Activities and Starters in place, if
choosing the pepr framework to solve a specific problem,
the need might arise to extend it and create new activities
and or starters to adapt it to a new problem.
It is now possible to create a new class that extends Activity
– the base class for all activities. Activity is a generic class
that takes three type parameters:

• InputType

• OutputType

881



• ConfigurationType

The InputType is an Object that is passed to the activity
on each invocation, its member variables holding the data
types necessary for the activities calculation.
The OutputType is the type of Object that the activity re-
turns after a successful invocation to the engine and which
is then added to the context.
The ConfigurationType contains information needed
for initialization of the new activity, e.g. pointers to external
resources like sockets, host names and other constants. It is
configured by the user during the process design phase with
the graphical process builder as described in Section 3.2.
With this classes implemented and added as generic type
parameters to the new Activity class, solely the following
method must be overwritten:

• public OutputType handleMes-
sage(InputType msg)

Additionally, if special initialization (and termination) of
the Activity is needed, the developer can choose to over-
write the following methods which are part of an Activities
life-cycle:

• public void onInitialisation()

• public void onTermination()

As the source code of the pepr framework is already avail-
able, developers of novel components are advised to refer
to the implementations of similar Activities and Starters for
examples and reference.

3.2. Building and running a process
In order to be able to run the process engine one has to
design a suitable process, this is enabled in the pepr frame-
work with a bundled graphical process builder rendering
the task easy to handle, and as transparent as possible. The
graphical process builder (Figure 6) is based on the Eclipse
Platform and the Graphical Editing Framework3. While

Figure 6: Screenshot of the Graphical Process Builder

Eclipse is probably most widely known for the Java Inte-
grated Development Environment (IDE) by the same name,

3www.eclipse.org/gef/

it provides a complete platform for Rich Client Applica-
tions with the Eclipse Java IDE being the most famous one.
During the development of the pepr framework, the need
for graphical aided process design arose quickly, as writing
process descriptions by hand was time consuming, difficult,
and error prone. By basing the Graphical Process Builder
on the Eclipse Platform, it was possible to achieve a native
look and feel on the three most important platforms today
(Windows, Mac OS X and Linux GTK) and cut the overall
development time down.
Using the bundled process builder the task to design a pro-
cess is basically reduced to dragging and dropping activi-
ties, resembled by boxes of different colors4 as shown in
Figure 6. After having setup the proper activities one needs
to combine their outputs and inputs using the so called tran-
sition tool resulting in visible arrows on the builder’s editor
frame. However, in order to enrich the possibilities of the
combination of the activities we decided to introduce pro-
grammable inputs for each of the activities. Each of the
activities can map the output of all the previous activities
using the functionality of Groovy script5 including all the
datatypes and some functionality of Java including lists,
or if- and for-clauses. In a last step the activities have to
be configured adjusting for example the location of source
files, boolean values, or other alphanumeric parameters.
Finally, the user interface allows the process developer to
execute the process in development without leaving the ap-
plication. Processes can be started either via the context
menu (run as pepr process) or by using the toolbar.
This bootstraps a new instance of the pepr framework,
which immediately loads and executes the process. Status
information and output are captured and redirected to the
console panel. The console panel also provides the ability
to stop running instances.

4. Use case: SFB Demonstration
In June 2009, pepr was shown at the opening ceremony of
the SFB/Transregio 62 - Eine Companion-Technologie fr
kognitive technische Systeme at Ulm University. The scope
of the SFB Demonstration was to show Sensor Fusion
and communication between multiple instances of the pepr
framework, running on different machines. The chosen set-
up consisted of two laptops, running both an instance of the
process shown in Figure 8. Albeit the same process, each
one was configured different to send and receive external
data from the other machine.
Input was taken solely from the machines built-in camera,
capturing the face and upper body of the user sitting in front
of it. These signals were evaluated on the local machine by
leveraging the OpenCV activity. The output was displayed
(Screenshot 9) and compared to the movement tracked in
earlier frames, therefore providing access to the movement
of the head as shown in the succeeding diagram in Screen-
shot 10.
As the described process was executed on two separate ma-
chines, features extracted from the camera were distributed

4Colors indicate different types of activities: starters, outputs,
joins, and generic activities. The differences and features of these
will be introduced in much more detail in the full paper.

5http://groovy.codehaus.org/

882



Figure 7: Photo of the pepr SFB Demo Booth

Camera

Receive from 
Network

Fusion

Correlated 
Graph Output

Receive from 
Network

Smile OutputHaar 
Detection

Sent to 
Network Video Output Movement 

Tracking

Sent to 
Network Graph Output

Figure 8: Simplified Diagram of the SFB Demo Process

over the network and could be used as additional input in
each process. Thus, enabling correlation of movement and
indication of emotions of the user in front of the other ma-
chine, e.g. a smiling user. In order to achieve this, two
distinct feature sets were distributed. First, a sole bit to in-
dicate if the process detected a smile in the users face and
second the current movement of the user sitting in front
of the local machine. The process running on the other
machine received this data and displayed a smiling- / non-
smiling icon based on the received features. Additionally, it

Figure 9: Screenshot of Face and Upper Body Tracking
Video Output

Figure 10: Screenshot of Graphical Plotters and Smiley

correlated the received movement data with the local com-
puted movement data to measure some kind of synchronous
movement of both users, which is an indication for engage-
ment of the participant in the conversation or for active
listening. In order for this to work, input of two differ-
ent starter nodes had to be merged. Therefore, time based
fusion was selected and proved to be more then accurate,
given the rather small network and the real-time environ-
ment.

5. Conclusions
The goal set for this work, to create a process engine frame-
work suitable for pattern recognition and information fu-
sion tasks has been reached, as the public demonstrations,
and feedback from test users have shown. The pepr frame-
work in combination with the graphical process builder
form a robust and expandable foundation that helps to solve
tasks in this field in a simple and timely manner. While
being easy to use, the engine scales well over multiple
cores and machines, thanks to the initial design. Therefore,
even computationally intensive tasks can be solved with the
framework.
The Graphical Process Builder, although not initially
planned to be part of this framework, helps to further cut
down process development time and is a great help to
demonstrate and explain processes, thanks to its graphical
modeling capabilities.
The flexibility in process design and adaption to differ-
ent scenarios has been proven in the use-cases and public
demonstrations. It is possible to adjust existing processes
to changed guidelines and environments within minutes.
Even the creation of working processes from scratch could
be demonstrated live in a timely manner.
Over the course of the last months we decided to open up
Activity development to other scientists and students from
the Institute of Neural Information Processing of Ulm Uni-
versity. The Activities they created, although not yet pub-
licly available, have reached a high quality and were fully
usable within days. This level of flexibility and openness
to new components is what sets the pepr framework apart
from the monolithic solutions in the field of pattern recog-
nition and information fusion tasks.

883



Acknowledgment
The presented work was developed within the Tran-
sregional Collaborative Research Centre SFB/TRR 62
“Companion-Technology for Cognitive Technical Sys-
tems” funded by the German Research Foundation (DFG).

6. References
Gul Agha. 1986. Actors: a model of concurrent computa-

tion in distributed systems. MIT Press, Cambridge, MA,
USA.

Stefan Scherer, Volker Fritzsch, and Friedhelm Schwenker.
2009a. Multimodal real-time conversation analysis us-
ing a novel process engine. In in Proceedings of Interna-
tional Conference on Affective Computing and Intelligent
Interaction 2009 (ACII ’09), pages 253–255.

Stefan Scherer, Volker Fritzsch, Friedhelm Schwenker, and
Nick Campbell. 2009b. Demonstrating laughter detec-
tion in natural discourses. In Interdisciplinary Work-
shop on Laughter and other Interactional Vocalisations
in Speech.

884


