
A high recall error identification tool for Hindi Treebank Validation

Bharat Ram Ambati, Mridul Gupta, Samar Husain, Dipti Misra Sharma
Language Technologies Research Centre, International Institute of Information Technology

Hyderabad, INDIA – 500032

E-mail: ambati@research.iiit.ac.in, mridulgupta@students.iiit.ac.in, {samar, dipti}@mail.iiit.ac.in

Abstract

This paper describes the development of a hybrid tool for a semi-automated process for validation of treebank annotation at various
levels. The tool is developed for error detection at the part-of-speech, chunk and dependency levels of a Hindi treebank, currently
under development. The tool aims to identify as many errors as possible at these levels to achieve consistency in the task of annotation.
Consistency in treebank annotation is a must for making data as error-free as possible and for providing quality assurance. The tool is
aimed at ensuring consistency and to make manual validation cost effective. We discuss a rule based and a hybrid approach (statistical
methods combined with rule-based methods) by which a high-recall system can be developed and used to identify errors in the
treebank. We report some results of using the tool on a sample of data extracted from the Hindi treebank. We also argue how the tool
can prove useful in improving the annotation guidelines which would in turn, better the quality of annotation in subsequent iterations.

1. Introduction

For effective processing of text, tools at different

conceptual levels, say from letter/syllable level to

discourse level are needed. Output of these tools can then

be used in different NLP applications beginning with spell

checkers to machine translation. These tools could be

completely rule-based, completely statistical or a

combination of both, i.e., hybrid systems. In quite a few

cases, manually annotated gold standard data is required

to build such tools. The annotated data, as one would

expect, should be error free. Hence, the importance of

validation of data and error correction cannot be

undermined. On the other hand, annotation in itself is a

time-consuming task. Thus, it is only desirable that the

task of validation of data is fast without compromising

quality. But doing validation of data completely manually

would again be time consuming, as the validators have to

look at each word in the annotated corpus. To make the

task of validation easy and cost effective, we need tools

that can supplement validators‟ task with a view of

making the overall task fast without compromising

reliability. With the help of such tools, validator can

directly go to error instances and correct them. Therefore

we need the tool to have high recall. It is easy to see that a

human validator can directly reject un-intuitive errors

(false positives) without much effort; one can therefore

compromise on precision.

The proposed tool has been used for validating the

dependency representation of a multi-layered and multi-

representational treebank for Hindi (Bhatt et al., 2009).

The tool identifies errors in the Hindi annotated data at

POS, chunk and dependency levels. Additionally, the

identification of errors can help resolve ambiguous cases

and thus improve the guidelines for annotation. Improved

guidelines will directly make the task of annotation more

consistent.

The paper is divided as follows. The first section is about

introducing the work. Section 2 gives a brief overview of

the Hindi dependency treebank. A survey of some of the

previous efforts on automated validation is done in

section 3. In section 4, we describe our approach in detail

with examples. Results are reported in section 5. General

discussion and directions for future work follow in section

6. We conclude our paper in section 7.

2. Hindi Dependency Treebank

A multi-layered and multi-representational treebank for

Hindi (Bhatt et al., 2009; Xia et al., 2009) is being

developed. The treebank will have dependency,

verb-argument (PropBank, Palmer et al., 2005) and

phrase structure (PS) representation. Automatic

conversion from dependency structure (DS) to phrase

structure (PS) is being worked out. Hence, it is important

to have a high quality version of the dependency treebank

to ensure efficient conversion from DS to PS

representation. The focus of the current paper is to

describe the methodology employed to detect errors in the

DS representation. The dependency treebank contains

information encoded at the morpho-syntactic

(morphological, part-of-speech and chunk information)

and syntactico-semantic (dependency) levels. Each

sentence is represented in SSF format (Bharati et al.,

2007). POS and chunk information is encoded following a

set of guidelines (Bharati et al., 2006). The guidelines for

the dependency framework (Bharati et al., 2009) have

been adapted from computational Paninian grammar

(CPG) (Bharati et al., 1995). For Indian languages, like

Hindi, Paninian dependency scheme has been shown to be

effective by Begum et al. (2008).

3. Related Work

Validation and correction tools are an important part for

making treebanks error-free and consistent. Significant

efforts have been made in this direction to develop such

tools. One such approach for treebank error detection was

employed by Dickinson and Meurers (2003; 2005) where

they find out „variations‟ in syntactic annotation. They use

certain statistical patterns (n-grams) derived from large

annotated corpora such as the Penn treebank (Marcus et

al., 1993) to detect anomalies in treebanks. Their work

includes anomaly detection in continuous and

682

discontinuous structural annotation. Adapting from a

generalized approach on discontinuous structural

annotation, this work was extended to detect errors at the

dependency level in treebanks (Boyd et al., 2008). Some

other earlier noteworthy methods employed for error

detection in syntactic annotation (mainly POS and chunk),

are by Eskin (2000) and van Halteren (2000). Other

examples of detection of annotation errors in treebanks

include (Kaljurand, 2004; Kordoni, 2003).

4. Approach

Our aim is to identify errors in POS, chunk and

dependency annotated data. To identify the errors at each

level of annotation we use both rules and statistics. We

take 40k words manually annotated and validated data as

development data. We used this development data to

frame rules as well as to take decisions based on statistics.

We followed a two-fold approach. The first part of

approach involves detection of errors purely by

rule-based methods. In the second part of the approach we

use frequency-based measure to determine the possible

errors and then prune out the false positives to improve

precision by using some rules.

4.1 Rule-Based approach

In this approach, we use generic rules to identify the

errors. Particular tags (POS/chunk/dependency) demand

some particular patterns and vice-versa. This is the main

idea in framing the generic rules. For example, if the

POS-tag is “SYM
1
” then the lexical item should not

contain any character in the unicode range of Hindi or

digits. Similarly, if the lexical item is a digit, then the

POS tag should be QC (POS tag for cardinals). Similar

rules can be framed at chunk and dependency levels also.

We used the annotation guidelines (Bharati et al., 2006,

2009) as an initial step to frame the rules. The guidelines,

apart from providing description of the tags, give many

pointers for annotators, in the form of linguistic cues to

identify the tags, exceptional cases, common confusing

and error-prone cases. More rules were later formulated

using the development data. Further, we extracted

mismatches in the annotated and validated sets of the

development data. These mismatches are basically errors

made by annotators which were corrected by validators.

Analysis of these mismatches helped in framing

additional rules. The nature of the rules varies for

different type of annotation, as the context required is

different for different types of annotation. For example,

POS tagging rules are based on current lexical item, POS

tags of previous words etc., whereas in case of

dependency tags, rules are framed on features of current

node, its parent, siblings, children and sometimes even a

complete tree/sub-tree.

Figure 1, shows a sample output of the tool identifying the

POS tag errors. In the example sentence depicted in the

figure, “Ram gave three books to Sita”, the rule that, a

1 SYM: POS tag for a punctuation marker, see Bharati et al.,

2006 for complete details.

number should have its POS tag either a „QC
2
‟, or a „QF

3
‟

(refer, Bharati et al., 2006) comes in handy while

detecting the error. Therefore, the word “3” which had

been erroneously tagged as a demonstrative (DEM) in the

sentence, is identified as an error which can be then

promptly corrected by the human validator.

Figure 1: Error detection by rule-based approach at POS

level. The erroneous case is shown by the pointer „◄◄‟

in the sentence above.

Error detection at the dependency level is illustrated with

the help of example sentence in Figure 2 below. The

sentence is “Ram is a good boy.”

“Ram is a good boy”

Figure 2: Error detection by rule-based approach at the

dependency level. The erroneous case is shown by the

pointer „◄◄‟ in the tree.

There are some dependency labels that are dependent on

the presence of particular labels in a sentence. Following

from this rule in the sentence above, a „k1s‟ should be

marked only when a „k1‟ is present in the same sentential

clause. Hence, an error is detected in the dependency tree.

The number of actual errors detected using such rules is

high on precision but low on recall value. In order to

detect a wider coverage of errors we need to employ other

techniques. These measures are described in the following

subsection.

2 QC: POS tag for words denoting a cardinal number
3 QF: POS tag for words denoting quantifiers

raama

‘Ram’ ERG

 hei

 ‘is’

ladakaa

‘boy’

 ►► k2 k1s

acchaa

‘boy’

nmod

Identification of Errors using Rules

1 raama „Ram‟ NNP

2 ne „ERG‟ PSP

3 sitaa „Sita‟ NNP

4 ko „DAT‟ PSP

5 3 ‘3’ DEM ◄◄

6 kitaabein „books‟ NN

7 diiM „gave‟ VM

“Ram gave three books to Sita.”

683

Figure 3: Error detection in inter-chunk dependencies by hybrid approach.

4.2 Hybrid Approach

Hybrid approach comprises of two modules. (1) the
statistical module and, (2) Rule-based post-processing
module. Statistical module tries to identify as many errors
as possible. The goal of the statistical module is to achieve
a high recall. Following this, we run a rule-based
post-processing module on the output of the statistical
module. The aim of this module is to increase precision of
the system. With this approach we intend to detect the
errors with high recall and reasonable precision.

4.2.1. Statistical Module
Statistically, low frequency is a sign of possible error. We
calculate the frequencies of pattern and tag pairs, where
tag can be either of POS or chunk or dependency. These
patterns are annotation specific. For POS, word level
patterns are considered. For chunks, lexical items and the
POS tags of the sequence of words within the chunk are
considered. For inter-chunk dependencies, chunk tag,
lexical item and POS tag sequence within the chunk of
child and parent are considered as the pattern. As both
label and attachment are important for dependency
analysis, our patterns contain child as well as parent
features.
Once we get the frequencies at each level, we keep some
threshold on the frequency and all the pairs less than that
threshold are considered as possible errors. This threshold
is decided after experiments with the development data
and it can vary with annotation level. For all the pairs
greater than the threshold, if a pattern has multiple tags,
then there might be a possibility of error. So, for such
pairs, if the frequency of a pair is less than certain
percentage of the total instances of that pattern, then it is
considered as a possible error.

The above approach is fine at POS level. But, when it

comes to chunk and dependency levels, sparsity creates

problems. Probability of occurrence of the same pattern is

very low due to which a lot of valid instances get

identified as errors. To resolve this, instead of original

patterns, we find similarity between patterns and merge

similar patterns. Again, the measure of similarity varies

with annotation type. On these merged patterns, we apply

the above approach to detect the errors.

4.2.2. Rule-based post-processing Module
The approach explained above about finding similarity
patterns reduces the instances of correct patterns being
identified as errors but not completely remove it. To
further reduce the negative effect of sparsity on these
merged patterns, we use certain robust rules to remove
correct patterns from the errors list. So, a robust rule is
capable of overriding a low frequency based pattern
induction and can remove such pattern from the final
selection.

4.2.3. Description of hybrid approach

Figure 3, shows the complete approach taking inter-chunk

dependency as an example.

There are 6 pairs (pattern + tag) where all the patterns are

different as shown in 3(a). As the frequency is low, all the

6 patterns are identified as errors. After finding similarity

between patterns and merging similar patterns, 6 pairs get

reduced to 3. This is shown in 3(b). The arrows

connecting the patterns in (a) with (b) show the merging

process. Similarity criterion used here is as follows:

For both child and parent chunks, consider POS type of

the head of the chunk and lexical item and POS tags of the

(a) (c)

(b)

684

functional words.

Out of 3 pairs in (b), 2 pairs are identified as errors based

on statistics. After applying the following rule,

If the child is an adverbial chunk (RBP) and the parent is

a verbal chunk (VGF), then the dependency label can be

“adv”.

the number of errors reduced from two to one.

5. Results and Analysis

We evaluated the performance of our system using a

65k-token (2694 sentences) manually annotated and

validated sample of data derived from the Hindi

dependency treebank. We divided the data into 40k, 10k

and 15k for training, development and testing respectively.

For the rule-based system, training and development data

was used to frame the rules. In the case of hybrid approach,

we used training data to train the models and development

data to tune the parameters like threshold values. Rules

meant for pruning false positives were also framed using

this data.

We ran the rule-based tool on the test data. Details of the

type and number of errors identified by the rule based

system are presented in Table 1. Using our rule-based

system we detected 75%, 62.5% and 25.86% of errors at

POS, chunk and dependency levels respectively.

Currently in the treebank, dependency annotation is done

at inter-chunk level only. So, dependency errors only

represent inter-chunk dependency errors.

Type of

Error

Total

instances

Total

Errors

Recall of the tool

POS

Errors
13922 16 12/16 = 75%

Chunk

Errors
7113 24 15/24 = 62.5%

Dependency

Errors
7113 843 218/843 = 25.86%

Table 1: Error Detection using rule-based system at

different levels.

At POS and chunk levels, as the number of errors is low

which can be identified based on some standard rules,

rule-based system performs quite well. We also tried the

hybrid approach, but the number of false positives is so

high that the hybrid approach is practically of no use at

POS and chunk levels.

But at dependency level, as more complex linguistic

information is being annotated, the chance of making

errors is more. As the number of errors is large we need

tools to detect the errors so that the validation process

becomes faster. With the rule based system we were able

to identify only 25.86% of the dependency errors. We then

tried out the hybrid based approach. Using this approach,

we were able to identify 18.74% of the dependency errors.

When we combined the outputs of both the rule-based and

hybrid approaches, we could identify 40.33% of the errors

at the dependency level. Results are shown in Table 2.

Approach Total

Errors

System

output

Correct

Errors

Recall

Rule Based

Approach

843 218 218 25.86%

Hybrid

Approach

843

2546 158 18.74%

Combining

both the

Approaches

843

2728 340 40.33%

Table 2: Recall of error detection using different

approaches.

6. Discussion and Future Work

One basic difference between our approach and the other

previous approaches is that we use a combination of a

rule-based system and a hybrid system to detect errors.

Most of the previous approaches work well with large

corpora in which the frequency of occurrence of words is

very high. Hence, none of them account for data sparsity.

Our work is focused on detecting errors during the

process of annotation. This means that the size that we

worked on is not very large and hence we need to take

care of the problems that accrue from sparsity. We employ

a combination of a rule-based approach with a hybrid

approach for error detection. Moreover, unlike earlier

efforts, our work focuses on reduction of validation time

and effort during treebank construction. So, our focus is

on high recall with reasonable precision.

The tool is constantly being improved. We are planning to

improve the rules of both the rule-based error detection

system and the rule-based post-processing module of the

hybrid approach. We also plan to experiment with

different similarity criteria to improve the recall.

One limitation of our hybrid approach is that we can't give

richer context due to the problem of sparsity. To find

whether the dependency label is correct or not, apart from

node and its parent information, sibling and child

information is also helpful. Current state-of-the-art

dependency parsers use these features for dependency

labeling (McDonald et al., 2006; Ambati et al., 2009).

Finding similarity between patterns and merging similar

patterns would not help when we wish to take a much

richer context. For this purpose, we also plan to explore a

probability based hybrid approach. Instead of counts, we

plan to use probabilities to detect the errors. We hope to

achieve much better recall with the probability based

hybrid approach.

This tool can also help in improving the guidelines which

subsequently improves the annotation. While correcting

the errors if the validator comes across some ambiguous

decisions or some common errors or comes up with new

decisions, guidelines can be modified accordingly to

reflect the changes. Data annotated based on new

guidelines will reduce the occurrence of these errors and

eventually the quality of annotation of individual as well

as entire data will improve. Figure 4, shows the complete

cycle of this process.

685

Figure 4: Cycle for improving guidelines for annotation.

7. Conclusion

In this paper, we proposed a new tool which uses both

rule-based and hybrid systems to detect errors during the

process of treebank annotation. We tested it on Hindi

dependency treebank and were able to detect 75%, 62.5%

and 40.33% of errors in POS, chunk and dependency

annotation respectively. For detecting POS and chunk

errors, we used the rule-based system. For dependency

errors, we used the combination of both rule-based and

hybrid systems. The proposed approach works reasonably

well for relatively smaller annotated datasets.

8. Acknowledgements

We would like to thank Rafiya Begum for helping us

during the validation process. The work reported in this

paper is supported by the NSF grant (Award Number:

CNS 0751202; CFDA Number: 47.070).

9. References

Ambati, B.R., Gadde, P., Jindal, K. (2009). Experiments

in Indian Language Dependency Parsing. In

Proceedings of the ICON09 NLP Tools Contest: Indian

Language Dependency Parsing, pp. 32-37.

Begum, R., Husain, S., Dhwaj, A., Sharma, D.M., Bai, L.,

Sangal. R. (2008). Dependency annotation scheme for

Indian languages. In Proceedings of IJCNLP-2008.

Bharati, A., Chaitanya, V., Sangal, R. (1995). Natural

Language Processing: A Paninian Perspective,

Prentice-Hall of India, New Delhi, pp. 65-106.

Bharati, A., Sangal, R., Sharma, D.M., Bai, L. (2006).

AnnCorra: Annotating Corpora Guidelines for POS

and Chunk Annotation for Indian Languages. Technical

Report (TR-LTRC-31), Language Technologies

Research Centre, IIIT-Hyderabad.

http://ltrc.iiit.ac.in/MachineTrans/publications/technic

alReports/tr031/posguidelines.pdf

Bharati, A., Sangal, R., Sharma, D.M., Bai, L. (2009).

AnnCorra: TreeBanks for Indian Languages,

Guidelines for Annotating Hindi TreeBank.

http://ltrc.iiit.ac.in/MachineTrans/research/tb/DS-guid

elines/DS-guidelines-ver2-28-05-09.pdf

Bharati, A., Sangal, R., Sharma, D.M. (2007). SSF: Shakti

Standard Format Guide. Technical Report,

TR-LTRC-33, Language Technologies Research

Centre, IIIT-Hyderabad, India.

http://ltrc.iiit.ac.in/MachineTrans/publications/technic

alReports/tr033/SSF.pdf

Bhatt, R., Narasimhan, B., Palmer, M., Rambow, O.,

Sharma, D.M., Xia, F. (2009). Multi-Representational

and Multi-Layered Treebank for Hindi/Urdu. In Proc.

of the Third Linguistic Annotation Workshop at 47
th

ACL and 4
th

 IJCNLP.

Boyd, A., Dickinson, M., Meurers, D. (2008). On

Detecting Errors in Dependency Treebanks. Research

on Language and Computation 6(2), pp. 113-137.

Dickinson, M., Meurers, W.D. (2003). Detecting

Inconsistencies in Treebank. In Proc. of the Second

Workshop on Treebanks and Linguistic Theories (TLT

2003).

Dickinson, M., Meurers, W.D. (2005). Detecting Errors in

Discontinuous Structural Annotation. In Proc. of the

43
rd

 Annual Meeting of the ACL, pp. 322–329.

Eskin, E. (2000). Automatic Corpus Correction with

Anomaly Detection. In Proceedings of the First

Conference of the North American Chapter of the

Association for Computational Linguistics

(NAACL-00). Seattle, Washington.

van Halteren, H. (2000). The Detection of Inconsistency

in Manually Tagged Text. In Proceedings of the 2
nd

Workshop on Linguistically Interpreted Corpora.

Luxembourg.

Kordoni, V. (2003). Strategies for annotation of large

corpora of multilingual spontaneous speech data. In

Proc. of Workshop on Multilingual Corpora: Linguistic

Requirements and Technical Perspectives held at

Corpus Linguistics 2003.

Kaljurand, K. (2004). Checking treebank consistency to

find annotation errors.

http://math.ut.ee/˜kaarel/NLP/Programs/Treebank/Consis

tencyChecking/.

Marcus, M.P., Marcinkiewicz, M.A., Santorini, B.

(1993). Building a large annotated corpus of English:

the Penn treebank. Computational Linguistics, Volume

19, Issue 2, pp. 313 – 330.

McDonald, R., Lerman, K., Pereira, F. (2006).

Multilingual dependency analysis with a two-stage

discriminative parser. In Proc. of the Tenth Conference

on Computational Natural Language Learning

(CoNLL-X), pp. 216–220.

Palmer, M., Gildea, D., Kingsbury, P. (2005). The

Proposition Bank: An Annotated Corpus of Semantic

Roles. Computational Linguistics, 31(1):71-106.

Xia, F., Rambow, O., Bhatt R., Palmer, M., Sharma, D.M.

(2009). Towards a Multi-Representational Treebank. In

Proc. of the 7
th

International Workshop on Treebanks

and Linguistic Theories (TLT 2009), Groningen,

Netherlands.

686

