
Building a generative lexicon for Romanian

Anca Dinu
University of Bucharest
anca_d_dinu@yahoo.com

Abstract

We present in this paper an on-going research: the construction and annotation of a Romanian Generative Lexicon (RoGL). Our system
follows the specifications of CLIPS project for Italian language. It contains a corpus, a type ontology, a graphical interface and a
database from which we generate data in XML format.

1. Motivation.

We present in this article a part of an ongoing project of

building a Romanian Generative Lexicon (RoGL), along

the lines of Pustejovsky (2006).

Currently, there are a number of „static‟ machine readable

dictionaries for Romanian, such as Romanian Lexical Data

Bases of Inflected and Syllabic Forms (Barbu, 2008),

G.E.R.L. (Gavrila & Vertan, 2005), MULTEXT, etc. Such

static approaches of lexical meaning are faced with two

problems when assuming a fixed number of "bounded”

word senses for lexical items:

 In the case of automated sense selection, the search

process becomes computationally undesirable,

particularly when it has to account for longer phrases

made up of individually ambiguous words.

 The assumption that an exhaustive listing can be

assigned to the different uses of a word lacks the

explanatory power necessary for making

generalizations and/or predictions about words used in

a novel way.

Generative Lexicon (Pustejovsky, 1995) is a type theory

with richer selectional mechanisms (see for instance

Proceedings of The first/second/third International

Workshop on Generative Approaches to the Lexicon

2001/2003/2005), which overcomes these drawbacks. The

structure of lexical items in language over the past ten

years has focused on the development of type structures

and typed feature structures (Levin and Rappaport, 2005;

Jackendoff, 2002). Generative Lexicon adds to this general

pattern the notion of predicate decomposition. Lexicons

built according to this approach contain a considerable

amount of information and provide a lexical representation

covering all aspects of meaning. In a generative lexicon, a

word sense is described according to four different levels

of semantic representation that capture the componential

aspect of its meaning, define the type of event it denotes,

describe its semantic context and positions it with respect

to other lexical meanings within the lexicon.

GLs had been already constructed for a number of natural

languages. Brandeis Semantic Ontology (BSO) is a large

generative lexicon ontology and lexical database for

English. PAROLE – SIMPLE – CLIPS lexicon is a large

Italian generative lexicon with phonological, syntactic

and semantic layers. The specification of the type system

used both in BSO and in CLIPS largely follows that

proposed by the SIMPLE specification (Busa et al., 2001),

which was adopted by the EU-sponsored SIMPLE project

(Lenci et al., 2000). Also, (Ruimy et al., 2005) proposed a

method for semi-automated construction of a generative

lexicon for French from Italian CLIPS, using a bilingual

dictionary and exploiting the French-Italian language

similarity.

Lexical resources, especially semantically annotated are

notoriously effort and time consuming; thus, we tried to

use as much already done work as possible in our effort to

build a Romanian Generative Lexicon.

The rest of this paper is structured as it follows: in section 2,

Generative Lexicon Theory is briefly outlined. Section 3

presents the motivation for choosing the CLIPS semantic

structure for RoGL. The architecture of RoGL and the

general methodology of construction and annotation is

presented in section 4. In section 5 we discuss further work

to be done.

2. Theoretical prerequisites: Generative
Lexicon Theory

A predicative expression (such as a verb) has both an

argument list and a body. Consider four possible strategies

for reconfiguring the arguments-body structure of a

predicate:

1. Atomic decomposition (do nothing – the predicate

selects only the syntactic arguments):

P(x1,…,xn)

2. Parametric decomposition (add arguments):

P(x1,…,xn) -> P(x1,…,xn, xn+1,…xm)

3. Predicative decomposition (split the predicate into

subpredicates):

 P(x1,…,xn) ->P1(x1,…,xn), P2(x1,…,xn) ,…

4. Full predicative decomposition (add arguments and

split the predicate):

P(x1,…,xn) -> P1(x1,…,xn, xn+1,…xm), P2(x1,…,xn,

xn+1,…xm),…
The theory uses the full predicative decomposition,

with an elegant way of transforming the subpredicates
into richer argument typing: Argument Typing as
Abstracting from the Predicate:

315

For example, possible types for the verb sleep are:

Approach Type Expression

Atomic e -> t λx[sleep(x)]

Predicatice e -> t λx[animate (x) ^ sleep(x)]

Enriched typing anim -> t λx : anim [sleep(x)]

Under such an interpretation, the expression makes

reference to a type lattice of expanded types (Copestake

and Briscoe, 1992;Pustejovsky and Boguraev, 1993).

Thus, generative Lexicon Theory employs the “Fail Early”

Strategy of Selection, where argument typing can be

viewed as pretest for performing the action in the

predicate. If the argument condition (i.e., its type) is not

satisfied, the predicate either: fails to be interpreted, or

coerces its argument according to a given set of strategies.

Composition is taken care of by means of typing and

selection mechanisms (compositional rules applied to

typed arguments).

Lexical Data Structures in GL:

1. Lexical typing structure: giving an explicit type for a

word positioned within a type system for the language;

2. Argument structure: specifying the number and nature

of the arguments to a predicate;

3. Event structure: defining the event type of the

expression and any subeventual structure;

4. Qualia structure: a structural differentiation of the

predicative force for a lexical item.

Argument and Body in GL:

where AS: Argument Structure, ES: Event Structure, Qi:

Qualia Structure, C: Constraints.

Qualia Structure:

1. Formal: the basic category which distinguishes it within

a larger domain;

2. Constitutive: the relation between an object and its

constituent parts;

3. Telic: its purpose and function, if any;

4. Agentive: factors involved in its origin or “bringing it

about”.

A prototypical lexical entry for GL is given in fig. 1.

The Type Composition Language of GL:

1. e is the type of entities; t is the type of truth values. (σ

and τ, range over simple types and subtypes from the

ontology of e.)

2. If σ and τ are types, then so is σ -> τ ;

3. If σ and τ are types, then so is σ • τ ;

4. If σ and τ are types, then so is σ ʘQ τ, for Q =

const(C), telic(T), or agentive(A).

Compositional Rules:

1. Type Selection: Exact match of the type.

2. Type Accommodation: The type is inherited.

3. Type Coercion: Type selected must be satisfied.

The domain of individuals (type e) is separated into three

distinct type levels:

Figure 1. Prototipical lexical entry in GL

1. Natural Types: atomic concepts of formal, constitutive

and agentive;

2. Artifactual Types: Adds concepts of telic;

3. Complex Types: Cartesian types formed from both

Natural and Artifactual types.

3. Why choosing CLIPS architecture for
RoGL

Creating a generative lexicon from scratch for any

language is a challenging task, due to complex semantic

information structure, multidimensional type ontology,

time consuming annotation etc. Thus, in our effort to build

a Romanian Generative Lexicon along the above theoretic

lines, we made use of previous work both on Romanian

static lexicon, such as (Barbu, 2008) and on existing

generative lexicons for other languages such as Italian

CLIPS or English BSO.

Our system follows closely the specifications of CLIPS

project for Italian language. The reason for doing so is

that we envision the possibility to semi-automatically

populate RoGL using the massive Italian generative

lexicon CLIPS and a quality bilingual dictionary.

The idea is not original: such a research exists for French,

exploiting the French-Italian language similarity, with

encouraging results (Ruimy et al, 2005). The authors

proposed a method based on two complementary

strategies (cognate suffixes and sense indicators) for

relating French word senses to the corresponding CLIPS

semantic units. The cognate strategy proposed is guided

by the following two hypotheses:

 morphologically constructed words usually have sense(s)

that are largely predictable from their structure;

 Italian suffixed items have one (or more) equivalent(s) –

constructed with the corresponding French suffix – that

cover(s) all the senses of the Italian word.

If an Italian CLIPS word has, in the bilingual dictionary,

the same translation for all its senses, this unique French

316

equivalent will share with the Italian word all the

SIMPLE-CLIPS semantic entries.

 We may employ the same strategy to obtain Romanian

semantically annotated units from their Italian counterpart.

The fact that Romanian is in the same group of romance

languages creates the morpho-syntactic premises to obtain

similar results.

The cognates approach is rather easy to implement (and

yields expected higher recall then sense indicator
method), based, for example, on cognateness of suffixes

from Romanian and Italian (such as –ie, -zione; -te, -tà).

For the other words and for those constructed words that

have more than one translation, the cognate method results

inadequate and the sense indicator method takes over. The

sense indicator method is more demanding, but has a

higher precision. A specific algorithm for Romanian -

Italian needs to be design and implemented.

4. Architecture and Implementation

Our system contains a corpus, an ontology of semantic

types, a graphical interface and a database from which we

generate data in XML format (figure 2).

We used the RORIC-LING Romanian corpus (Hristea &

Popescu, 2003) to feed the annotation graphical interface

with lexical items in their context (phrase they appear in).

The corpus is rather small (98 newspaper texts), but it has

the advantage that is already syntactically annotated in

XML. We proceed with the annotation of lexical units in

their frequency order.

The type ontology we choose is very similar with the

CLIPS ontology. It has a top node, with types Telic,

Agentive, Constitutive and Entity, as daughters. The types

Telic, Agentive and Constitutive are intended to be

assigned as types only for lexical units that can be

exclusively characterized by one of them. Type Entity has

as subtypes Concrete_entity, Abstract_entity, Property,

Representation, and Event. In all, the ontology has 144

types and can be further refined in a subsequent phase of

RoGL, if the annotation process supplies evidences for

such a necessity.

Figure 2. Architecture of RoGL.

The first task the annotator has to deal with is to choose one

of the meanings of the lexical unit. The annotator sees a

phrase with the target word highlighted. To help the

annotator, a gloss comprising the possible meanings from

an electronic dictionary pops up. Here we are interested in

regular polysemy (such as bank: institution or chair), not

the different meaning levels of the same lexeme (such as

book: the physical object or the information), aspect which

is to be described later by specifying the semantic type of

the lexical item as complex. We will record in the data base

different entries for different senses of a polysemantic

lexical entry.

The semantic type of the lexical unit is first chosen from a

list of 17 types. Only if the annotator cannot find the right

type to assign to the lexical unit, he may consult the

complete ontology. Thus, the complexity of annotation task

remains tractable: the annotator does not have to bother

with the inheritance structure or with over 100 types to

choose from. The 17 initial types are the ones in Brandeis

Shallow Ontology (table 1), a shallow hierarchy of types

selected for their prevalence in manually identified

selection context patterns. They were slightly modified to

mach our ontology and we expect to modify them again to

fit our Romanian data, once we have our own annotations

statistics. It is important to notice that the same lexical unit

is presented several times to the annotator in a different

context (phrase). For the same disambiguated meaning, the

annotator may enhance the existing annotation, adding for

example another type for the lexical unit (see the dot

operator for complex types in chapter 2).

Top Types Abstract Entity

Subtypes

abstract entity attitude

human emotion

animate property

organization obligation

physical object rule

artifact

event

proposition

information

sensation

location

time period

Table 1: Type System for Annotation

The part of speech is automatically taken from the corpus.

The annotator has to refine it further into one of the

following pos tags, which are not present in the corpus,

such as: intransitive verb, transitive verb, ditranzitive

verb, unpredicative noun, predicative noun and adjective.

Depending on the particular pos selected for a lexical unit,

it‟s predicative structure modifies. Accordingly, once one

of the pos tags was selected, our graphical interface

automatically creates a template matching argument

structure with no arguments, with Arg0, with Arg0 and

Arg1, or with Arg0, Arg1 and Arg2.

The event type is selected from a drop down list

comprising process, state and activity.

The Qualia Structure in RoGL follows the CLIPS

extended qualia structure (figure 3): each of the four

qualia relations has a list of extended relations which the

Syntactically
Annotated Corpus

Graphical Interface
for Semantic
Annotation

Data Base

XML GeneratorType Ontology

317

annotator has to choose from. The choice may be

obligatory, optional or multiple.

As to the Predicative Representation, it describes the

semantic scenario the word sense considered is involved in

and characterizes its participants in terms of thematic roles

and semantic constraints.

Figure 3. Extended qualia relations from CLIPS

The annotator has to choose the lexical predicate the

semantic unit relates to and the type of link between them

(master, event, process or state nominalization, adjective

nominalization, agent nominalization, patient

nominalization, instrument nominalization, other

nominalization). In the data base, we store the predicates

separately from the semantic units.
For example, the predicate a construi (to build) is linked
to USem constructie (construction - building) by a patient
nominalization link, to USem construire (construction -
process) by a process nominalization link, to USem
constructor (constructor) by an agent nominalization link
and to USem construi (to build) by a master link.

Figure 4. Semantic frame for the predicate a construi.

The argument structure annotation consists of choosing

for each argument its type from the ontology (the

semantic constraints of the semantic unit) and their

thematic roles from the thematic roles list: Protoagent

(arg0 of kill), Protopatient (arg1 of kill),

SecondParticipant (arg2 of give), StateOfAffair (arg2 of

ask), location (arg2 of put), Direction (arg2 of move),

Origin (arg1 of move), Kinship (arg0 of father),

HeadQuantified (arg0 of bottle).

Figure 4 depicts a fragment of the annotation process for a

noun (carte - book):

Figure 4. A fragment of annotation process.

To implement the generative structure and the composition

rules, we chose a functional programming language of the

Lisp family, namely Haskell. The choice of functional

programming is not accidental. With Haskell, the step from

formal definition to program is particularly easy. Most

current work on computational semantics uses Prolog, a

language based on predicate logic and designed for

knowledge engineering. Unlike the logic programming

paradigm, the functional programming paradigm allows

for logical purity. Functional programming can yield

implementations that are remarkably faithful to formal

definitions. In fact, Haskell is so faithful to its origins that it

is purely functional, i.e. functions in Haskell do not have

any side effects. (However, there is a way to perform

computations with side effects, like change of state, in a

purely functional fashion).

Our choice was also determined by the fact that reducing

expressions in lambda calculus (obviously needed in a GL

implementation), evaluating a program (i.e. function) in

Haskell, and composing the meaning of a natural

language sentence are, in a way, all the same thing.

The Haskell homepage http://www.haskell.org was very

useful. The definitive reference for the language is (Peyton

Jones2003). Textbooks on functional programming in

Haskell are (Bird, 1998) and (Hutton, 2007).

5. Further work

As we said, this is an ongoing project. Most importantly,

we need to annotate more lexical entries. The manual

annotation, although standardized and mediated by the

Pred_construi

construire

(process
nomionalizatoin)

constructor (agent
nominalization)

construi (master)

constructie

(pacient
nominalization)

318

graphical interface is notoriously time consuming

especially for complex information such as those required

by a generative lexicon. We plan automate the process to

some extent, taking advantage of the existing work for

Italian. Thus, the CLIPS large and complex generative

lexicon may be used in an attempt to automatically

populate a Romanian GL. A feasibility study is necessary

to assess the potential coverage of such a method.

However, the final annotation, we believe, is to be done

manually.

6. Acknowledgements

This work was supported by CNCSIS –UEFISCSU,

project number PNII – IDEI 228/2007.

7. References

Barbu, A. M. "Romanian Lexical Data Bases: Inflected

and Syllabic Forms Dictionaries", LREC 2008, May,

28-30, Marrakech, Marocco, 2008.

Bird, R. Introduction to Functional Programming Using

Haskell. Prentice Hall,1998.

Busa, F., Calzolari, N., Lenci, A.: Generative Lexicon and

the SIMPLE Model; Developing Semantic Resources

for NLP, in Bouillon P. and Busa F. (eds.), The

Language of Word Meaning, Cambridge University

Press, pp. 333-349, 2001.

Copestake, A. and T. Briscoe “Lexical Operations in a

Unificationbased Framework,” in J.Pustejovsky and S.

Bergler, eds., Lexical Semantics and Knowledge

Reperesentation, Springer Verlag, Berlin, 1992.

Hristea, F., M. Popescu A Dependency Grammar

Approach to Syntactic Analysis with Special Reference

to Romanian, in: Building Awareness in Language

Technology (editori Florentina Hristea si Marius

Popescu). Bucuresti, Editura Universitatii din

Bucuresti, p. 9-34, 2003.

Hutton, G. Programming in Haskell. Cambridge

University Press, 2007.

Jackendoff, R. Foundations of language: Brain, meaning,

grammar, evolution. Oxford, UK: Oxford University

Press, 2002.

Lenci A., Bel N., Busa F., Calzolari N., Gola E.,

Monachini M., Ogonowsky A., Peters I., Peters W.,

Ruimy N., Villegas M., Zampolli A. “SIMPLE: A

General Framework for the Development of

Multilingual Lexicons”, International Journal of

Lexicography, XIII (4): 249-263, 2000.

Levin, B. and M. Rappaport Hovav. Argument

Realization, Cambridge University Press, Cambridge,

UK., 2005

Peyton Jones S., editor. Haskell 98 Language and

Libraries. Cambridge, University Press, 2003.

Pustejovsky, J. The Generative Lexicon, Cambridge, MA:

MIT Press, 1995.

Pustejovsky, J. 2007. Type Theory and Lexical

Decomposition. In P. Bouillon and C. Lee, editors,

Trends in Generative Lexicon Theory. Kluwer

Publishers, 2007.

Pustejovsky, J., A. Rumshisky, J. Moszkowicz, and O.

Batiukova. GLML: Annotating argument selection and

coercion. IWCS-8: Eighth International Conference on

Computational Semantics, 2009.

Ruimy,N., P. Bouillon and B. Cartoni. Inferring a

semantically annotated generative French lexicon from

an Italian lexical resource. In: Third International

Workshop on Generative Approaches to the Lexicon :

May 19-21, 2005, Geneva, Switzerland. 218-226,

2005.

Semi-automatic Derivation of a French Lexicon from

CLIPS, Ruimy N., Bouillon P. and Cartoni B., in:

Proceedings of LREC04, Lisbon, 2004.

Vertan, C. von Hahn. and Monica Gavrila. Designing a

parole/simple german-english-romanian lexicon. In

Language and Speech Infrastructure for Information

Access in the Balkan Countries Workshop Proceedings

- RANLP 2005, Borovets, Bulgaria, September 2005.

319

http://www.issco.unige.ch/pub/paper_LREC_2004.pdf
http://www.issco.unige.ch/pub/paper_LREC_2004.pdf

