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Abstract 

This paper describes how we built a dependency Treebank for questions. The questions for the Treebank were drawn from questions 

from the TREC 10 QA task and from Yahoo! Answers. Among the uses for the corpus is to train a dependency parser achieving good 

accuracy on parsing questions without hurting its overall accuracy. We also explore active learning techniques to determine the suitable 

size for a corpus of questions in order to achieve adequate accuracy while minimizing the annotation efforts. 

 
 

1 Introduction 

Treebanks for training dependency parsers are becoming 

popular through the activities of the CoNLL Shared tasks 

(CoNLL). However most of these corpora are obtained 

from newspaper articles or web pages. These sources 

rarely contain question sentences and therefore the 

parsers trained on these corpora have poor accuracy in 

analyzing questions. Question analysis is required though 

in many applications, most noticeably in Question 

Answering (Surdeanu, Ciaramita & Saragoza, 2008) or 

Frequently Asked Questions (FAQ) retrieval. 

 The TREC Question Answering task involves analyzing 

questions and many systems perform a grammatical 

analysis of questions, but annotated questions are not 

generally available. Hermjakob (Hermjakob, 2001) 

created his own resource annotating the questions in Penn 

Treebank style with constituent parse trees. The Childes 

Corpus (CHILDES) contains questions annotated with 

dependencies, but the questions are of a type hardly 

comparable to the ones that a user would post to a 

Question Answering system. 

Yahoo! Answers is a popular service, which provides a 

meeting place where users can look for advice from 

experts, who can be just other users. Yahoo! has collected 

several million of questions in many languages and makes 

part of this collection freely available on request for 

research purposes through the Yahoo! Webscope program. 

Linguistic analysis of these sentences would be quite 

useful for building applications that exploit the rich 

knowledge that questions and associated answers provide. 

A naïve attempt at parsing questions with a parser trained 

on the CoNLL 2007 training corpus achieves an accuracy 

of approximately 86% Labelled Attachment Score (LAS) 

measured on our question test. This result is quite 

disappointing when compared to the 89% LAS accuracy 

that can be achieved with the same corpus in parsing 

regular sentences. One reason for the lower accuracy is 

that the Penn Treebank contains few questions (we 

counted just 3,553 questions, about 0.75% of the 

sentences in the corpus), sometimes not even consistently 

annotated. For instance, while “how” is usually connected 

to the main verb in expressions such as “how do subj 

main-verb …”, producing a non-projective dependency, 

in the sentence “… how did a senator like this end up 

approving …” the token “how” is connected to “did”. 

Moreover the annotation of similar expressions such as 

“how much”,  “how many”, “how soon” … is not 

coherent in the corpus: usually, but not always, “much”, 

“many”, “soon” are annotated as dependents of  “how” 

(and labelled AMOD); for a different style of annotation 

see for example the question “How much are these 

benefits worth?”. 

Thus in order to improve the parser accuracy, a suitable 

corpus of questions, annotated with dependency relations, 

is needed. In this work we address these questions: how 

big a corpus of questions should be in order to achieve 

adequate accuracy? Is a single corpus adequate to analyze 

both questions and non-questions?  

We address these questions by means of active learning. 

Active learning is a supervised machine learning 

technique in which the learner is allowed to choose the 

data from which it learns. An active learner generates 

queries for an oracle (e.g. a human annotator) to obtain 

labels for data instances selected from a larger set of 

unlabeled data. Active learning has been successfully 

applied in many modern machine learning problems 

where unlabeled data are abundant and easily obtained, 

but labelling is difficult, time-consuming, or expensive 

(Settles, 2010). In particular there is a growing interest in 

applying this technique to nearly all language technology 

tasks, as reported in a literature survey by Olsson (Olsson, 

2009) and testified by the NAACL HLT 2009 Workshop 

on Active Learning for NLP (Ringger, Hertel & Tomanek, 

2009). 

The active learning process aims at reducing the human 

annotation effort, only asking for advice when the utility 

of the query is high. The primary question is therefore 

query formulation: how to choose which example (or 

examples) to try next.  

There are many heuristics for choosing the examples: 

choosing examples where we don´t have data (Whitehead, 

1991), where we perform poorly (Linden & Weber, 1993), 

where we have low confidence (Thrun & Möller, 1992; 

Donmez & Carbonell, 2008), where we expect it to 
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change our model (Cohn et al., 1990), and where we 

previously found data that resulted in learning 

(Schmidhuber & Storck, 1993).  

Multi-classifier approaches use measures of disagreement 

among a committee of classifiers, obtained in different 

ways, as a measure of uncertainty (Freund et al., 1997).  

A separate issue, which influences the speed and 

performance of the active learning process, is whether the 

learner should process a single instance or a batch of 

instances at each iteration. Adding one instance at a time 

slows the overall learning process down. If, on the other 

hand, a batch of instances is added, the learning 

progresses faster, but it becomes more difficult to find 

strategies for selecting a good batch. Metrics combining 

in various ways informativeness (inversely related to 

uncertainty), representativeness (related to density, 

computed with clustering techniques) and diversity 

(reducing repetitions) have been proposed to address this 

issue (Olsson, 2009). For example, in the context of 

statistical parsing, Tang et al. propose to cluster parsed 

sentences, represented as a series of parsing events, 

according to a similarity measure based on the Hamming 

distance
1
. A representativeness measure, based on the 

density of clusters, is then combined with a measure of 

uncertainty to form a selection criterion for sampling 

(Tang, Ruo & Roukos, 2002). 

The optimal size of the batch is also a critical parameter, 

which needs to be tuned on the basis of the specific 

application. 

Most of the empirical results in the published literature 

suggest that active learning works in practice, and 

selective sampling methods outperform random sampling 

(as typical in passive learning) in most learning task. This 

is often true even for simple query strategies, such as 

uncertainty sampling.  

2 Question Corpus Construction 

We collected unannotated questions
2
 from the TREC QA 

main task (TREC QA) where systems are required to 
answer 500 short, fact-based questions, as improving the 
parsing of this kind of factual question could have a direct 
impact on the current NLP applications. 
In order to cover a wider spectrum of general questions 
we also selected a random sample of about 800 sentences 
from the Yahoo! Answers Collection (Yahoo! Answers) 
(which includes 4,483,032 questions and their 
corresponding answers).  

As in many web corpora, often in Yahoo! answers the 

questions posted by the users are not grammatically 

correct or contain forms of expressions like abbreviation, 

slang or emoticons. We decided to automatically filter the 

sentences with spelling mistakes or those whose parse 

trees had multiple roots. The resulting set was first parsed 

using Desr (Attardi 2006) trained on the CoNLL 2007 

training corpus; then we corrected the PoS, parsed again 

with the correct Part of Speech and finally we manually 

                                                           
1 The Hamming distance measures the number of substitutions 

required to turn a sequence into another. 
2 http://l2r.cs.uiuc.edu/~cogcomp/Data/QA/QC/ 

revised the resulting dependency labels. 

 

 Sentences  
Avg. sent. 

Length  
Tokens  

Yahoo! Answers 

Corpus 
800 11.35 9,080 

TREC Corpus 500 7.5 3,750 

Question Corpus 1,352 9.50 12,830 

Table 1: Question Corpus statistics 
 
Table 1 reports some statistics of the question corpus 
built. 
Questions in English present verb-noun order inversion 
and non-projective dependencies are quite common, in 
part as a consequence of this inversion. Differences 
between the Penn Treebank and the question corpora in 
the dependency labels distributions can also explain the 
specificity of the task. 

3 Approach 

We addressed the questions stated in the introduction by 
means of active learning. Active learning is an iterative 
process where a learner is trained using an initial training 
set and then, by means of a suitable selection criterion, it 
chooses “interesting” examples from a non-annotated 
collection, so that it can be manually annotated and added 
to the training corpus for the next iteration. After labeling 
every pattern we re-compute interestedness of unlabeled 
points, choose the one with highest, label it, re-train, etc. 
If the selection criterion is effective, a much smaller 
number of examples need to be provided to achieve the 
same level of accuracy than using normal supervised 
learning.  
In classic AL the optimal size of data to add at each step is 
a single pattern.  Adding more than one pattern at a time 
incurs in some loss of information, and as we add more 
and more in a batch we loose more and more information. 
In the extreme, if we add all the data at once, we did not 
do any active learning. 
For practical reasons we may want to add more than one 
pattern at a time, when, for example, re-training takes a 
long time and we do not want human annotators to wait. 
In this case, there is a trade-off between how long it takes 
to re-train and re-compute interestedness, how much can 
the annotators wait, and how much AL power we are 
willing to “loose”. In practice, labeling several points at a 
time in small batches is a good practice. 
In our case we decided that a batch of 100 questions at a 
time is a quite conservative addition to a comparatively 
much larger training corpus.   

4 Testing selection criteria  

The first series of experiments aimed at observing the 
effect of different selection criteria, compared to random 
sampling. In doing so, we expect to gain insights on the 
amount of data that it is necessary to achieve a satisfying 
performance.   
Our experiments involved using a portion of the Penn 
Treebank (a random sample of sentences from the CoNLL 
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2007 English corpus, without questions, containing 
250,805 tokens) as initial corpus of non question 
sentences (henceforth base corpus), the question corpus 
described above, and a further portion of the Yahoo! 
Answers as a source of unlabeled data. 
Since we aim for a parser able to perform well on both 
questions and non-questions, we decided to monitor the 
accuracy of intermediate parsers in their ability to parse 
normal sentences, so as to ensure no significant decrease 
in overall performance while adapting to parse questions.  
For this reason the base corpus was randomly split 
between a base training and base test: the base training 
corpus contains 240,859 tokens, 9,946 sentences; the base 
test set 6,493 tokens, corresponding to 267 sentences. 
The question corpus was randomly divided in 9,960 
tokens (1,048 questions) for training and 2,539 tokens 
(252 questions) for test.  

4.1 Random choice  

The first selection criterion we tested is random choice. 
The experiments show the accuracy obtained by adding, 
to the base training corpus extracted from the CoNLL 
2007 corpus, increasingly bigger subsets of randomly 
selected questions from the question training set.  These 
subsets of increasing size were selected each time from 
the same pool using a different random seed.  At each step 
the accuracy of the parser was measured on the base test 
set and on question test set. Accuracy is measured in 
terms of Labeled Attachment Score (LAS, the percentage 
of correctly attached and labeled tokens) and Unlabeled 
Attachment Score (UAS, the percentage of correctly 
attached tokens). With this experiment we meant to 
observe the effect of adding to the training set, batches of 
questions of variable size, with no specific selection 
criterion.  
We repeated the experiment 5 times, using different seeds, 
in order to mitigate the effect of contingencies. 
 

 base 100 200 300 400 

quest LAS 77.20% 81.99% 83.54% 84.59% 85.22% 

base LAS 84.69% 85.73% 84.88% 85.26% 85.34% 

 

500  600 700 800  900 1000 

85.10% 85.23% 85.92% 85.77% 85.81% 86.01% 

85.56% 85.43% 85.32% 85.15% 85.49% 85.63% 

 
Table 2: Results for the random choice selection 

 
Table 2 shows the average LAS scores for both the base 

and question (quest) test sets. The first column is the 
accuracy using just the base corpus with no questions at 
all, for training. The other columns report the results from 
adding to the base corpus 100 parsed questions each time 
(about 10%) from the question training set. The LAS 
reported is the average of the LAS obtained in the five 
repetitions of the experiment. 
The baseline is a score of 77.20% LAS for the question 
test and 84.69% LAS for the non-question (base) test.  
These results were obtained with the DeSR parser (Attardi 
2006). Other state-of-the-art parsers, such as the Malt 
parser (Nivre&Scholz, 2004), give similar results with 
these corpora

3
. This baseline accuracy is relatively low 

because in these experiments, for speeding up the runs, 
we traded up parsing accuracy for efficiency: in fact we 
used only about half of the CoNLL 2007 corpus for 
training, and reduced the number of iterations in building 
the model.  
The results in Figure 1 show, on the average, a big boost in 
accuracy on the question test set with the addition of the 
first 10%, and then a small increase with the subsequent 
additions, while the accuracy on the base test set remains 
almost unaffected. Adding only 600 questions the 
performance on the question test set gets even better than 
the performance on regular sentences. Figure 1 shows a 
plot of this experiment.  The last step adds the residual 48 
questions. 
Even if this result is already very good, the following 
experiments aim at discovering better strategies for 
selective sampling, in order to see whether we can further 
reduce the effort needed to adapt the parser to questions. 

4.2 Likelihood Estimates 

We tested more sophisticated criteria to drive active 
learning based on likelihood estimates of a sentence parse. 
DesR is a transition-based parser (Attardi 2006), which 
uses a classifier to decide which action to perform to carry 
out parsing. The classifier computes a probability 
distribution for the possible actions to perform at each 
step. Given a parsed sentence, the probability of each 
parsing step is therefore available to compute different 
metrics by which to estimate the confidence of the parser 
in its own output. For example: 
a. Likelihood of a parse tree, computed as the product 

of the probabilities of all the steps used in building 
the tree; 

b. Average probability of the parsing steps in building 
the tree; 

In our experiments we selected sentences according to 
three different ordering criteria:  
1. Lowest likelihood of sentence parse tree (LLK): aims 

at preferring sentences that were judged more 
difficult, by considering the likelihood of the parse 
tree; 

2. Highest likelihood of sentence parse tree (HLK): 
prefers sentences that were judged easier by the 
parser, by considering the likelihood of the parse tree; 

3. Lowest average probability (LAP): selects sentences 
that were judged more difficult by computing the 
average probability of each parsing step; 

4. Lowest normalized likelihood (LNL): takes into 

                                                           
3
 Using the Malt parser with the default configuration we 

obtained a LAS score of 73.45% in parsing the question test set. 

Figure 1: Random choice 
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account the length of the parsed sentences by 
introducing a normalization factor (likelihood/log(n), 
where n is the number of tokens in the sentence). 

The sentences in the question training corpus were parsed 
and then ordered a priori with these criteria. Increasing 
amounts (in 10% increments as before) of questions 
according to this order were added to the training corpus 
at each step and the performance of the parser evaluated 
on the base test and question test. 
 

 base 100 200 300 400 

RAND 77.20% 81.99% 83.54% 84.59% 85.22% 

LLK 77.20% 82.87% 85.39% 85.19% 84.99% 

HLK 77.20% 76.84% 77.79% 78.69% 80.19% 

LAP 77.20% 82.71% 83.85% 84.80% 84.60% 

LNL 77.20% 82.20% 85.47% 85.35% 84.17% 

 

500 600 700 800 900 1000 

85.10% 85.23% 85.92% 85.77% 85.81% 86.01% 

85.58% 84.80% 85.58% 86.18% 87.12% 85.74% 

82.99% 85.66% 84.29% 84.84% 84.48% 86.14% 

86.10% 86.29% 86.33% 85.78% 86.10% 85.70% 

85.66% 86.14% 85.19% 85.66% 85.98% 86.92% 

Table 3: Results of evaluating criteria 

 
Table 3 summarizes the results of parsing the question test 
set in terms of LAS, for all the criteria we tested: random 
choice (RAND) and three of the ordering criteria 
described above.  Figure 2 (reported at the end of the 
paper) provides a direct comparison of the different 
selective sampling strategies. 
As typical in many active learning scenarios, random 
choice turned out not so easy to beat. Choosing sentences 
with the lowest likelihood (LLK) was the best performing 
among the ordering criteria. Selecting new training 
examples according to their difficulty (estimated by the 
likelihood of the parse tree) helps the parser to learn faster 
than choosing sentences randomly. The normalized 
version of the likelihood measure (LNL) performs about 
the same as the non normalized version (and it is not 
reported in the figure), reflecting the fact that questions do 
not have a significant difference in length.  
Moreover, adding only 200 questions to the training set, 
the accuracy on the question test set raises of more than 
8% as opposed to 6% obtained by random sampling. 
Using the highest likelihood to select questions proves to 
be the worst choice, consistently with the assumption that 
the parser already knew how to handle easy cases. This 
also is an indication that the parser’s estimates were 
indeed correct. 
These results seems to indicate that it is quite easy to 
adapt a parser to handle questions, and that an active 
learning process needs only a few steps to produce a 
model with the desired accuracy. In our case, the accuracy 
in parsing questions easily outperforms that in parsing 
normal sentences. 

5 Active Learning Test 

Once we figured out the best criterion for selecting 
questions for training, we tested its effectiveness by 
iterating the process according to the Active Learning 
paradigm. In fact the experiment is only an approximation 

of a true Active Learning process, since we are using the 
same, relatively small, set of questions from which to 
draw new examples, rather than a brand new set at each 
iteration. 
At each step, a new parser is trained on the corpus 
produced in the previous iteration. So after step 1, the 
question training corpus is re-parsed with the new model 
and re-ordered, according to lowest likelihood in this case, 
before selecting the batch of sentences to add to the 
training corpus for the next active learning step. Figure 3 
shows the learning curve obtained in ten active learning 
steps in comparison with random sampling, typical of 
passive learning. 

 
As expected, the parser improves very quickly: after four 
steps its accuracy reaches about 86.30% LAS on 
questions (less than 86% LAS on base); using the full 
question corpus the accuracy goes to 86.49% LAS. In fact 
it learns very little after the first four iterations, showing 
that indeed it learned most of what it could learn from the 
given set. 

 
As a further experiment we wanted to observe whether 
smaller increments to the training corpus would have an 
effect on the learning curve: we tried with batches of 20 
questions, instead of 100.  
The results in Figure 4, show that, in this case, there is not 
much to be gained in retraining after small additions to the 
corpus.  

6 Conclusions and Future Work 

The experiments show than with a relatively small corpus 
(about 1000 questions) quite good accuracy can be 
obtained in parsing questions without hurting the 
performance on normal sentences. The availability of the 
resource we have built could be helpful to the NLP 

 

Figure 3: Comparison of active and passive learning 

Figure 4: Active learning with different batch sizes 
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community not just for improving the accuracy of parsers 
but also in other high level natural language tasks which 
involve analyzing questions (e.g. question answering, 
Frequently Asked Questions retrieval, dialog systems, 
etc). 
We have also shown that different active learning 
strategies, albeit very simple, can prove effective in 
reducing the cost in building a question corpus, e.g. 
developing such a corpus for other languages. In fact, we 
did build a similar corpus for Italian and the experience 
and outcomes were about the same. 
We will further investigate the use of more elaborate 
active learning techniques, with the aim of building a 
larger and more complete corpus. We will especially 
consider the strategies that can be explored in order to 
build a corpus of questions in a semi-supervised way from 
unannotated texts. 
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