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Abstract
We describe a process for converting the Penn Arabic Treebank into theCCG formalism. Previous efforts have yielded CCGbanks in
English, German, and Turkish, thus opening these languages to the sophisticated computational tools developed for CCG and enabling
further cross-linguistic development. Conversion from a context freegrammar treebank to a CCGbank is a four stage process: head
finding, argument classification, binarization, and category conversion. In the process of implementing a basic CCGbank conversion
algorithm, we reveal properties of Arabic grammar that interfere with conversion, such as subject topicalization, genitive constructions,
relative clauses, and optional pronominal subjects. All of these problematic phenomena can be resolved in a variety of ways - we discuss
advantages and disadvantages of each in their respective sections. Wedetail these and describe our categorial analysis of each of these
Arabic grammatical phenomena in depth, as well as technical details on their integration into the conversion algorithm.

1. Introduction
In recent years, Arabic has become an increasingly im-
portant language for natural language processing. Ap-
plications like machine translation, information retrieval,
and semantic processing are in high demand, but are tech-
nically difficult because Arabic has many properties that
make it resistant to traditional statistical and finite-state ap-
proaches. A highly expressive formalism like CCG can
capture many grammatical phenomena, like long-range de-
pendencies, that simpler formalisms cannot. Furthermore,
a wide variety of high-quality NLP tools exist for CCG, and
an Arabic CCGbank would make this technology available
to Arabic for the first time. In this paper, we describe the
process of automatically creating an Arabic CCGbank from
the Penn Arabic Treebank (Maamouri et al., 2004a) by fol-
lowing the process for constructing the English CCGbank
(Hockenmaier and Steedman, 2007) from the English Penn
Treebank (Marcus et al., 1993).
Section 2 describes related efforts to construct CCGbanks
in other languages. Section 3 gives a brief overview of
Combinatory Categorial Grammar (CCG) and details some
of its advantages over a context-free grammar style formal-
ism like that in the Penn Arabic Treebank. Section 4 de-
scribes the basic conversion algorithm, based heavily on
the one used for the English CCGbank (Hockenmaier and
Steedman, 2007), and section 5 describes some of the gram-
matical phenomena in the treebank that are handled inade-
quately by the basic algorithm and require special attention.
Finally, we conclude in section 6 with the ongoing efforts
to produce a complete Arabic CCGbank.

2. Related Work
Converting treebanks into other grammatical formalisms
has been a topic of much research interest in recent years.
Work has been done on converting treebanks in other lan-
guages into CCG, including Turkish (Çakıcı, 2005) and
German (Hockenmaier, 2006). With regard to Arabic, the
Penn Arabic Treebank (Maamouri et al., 2004b) has already
been the subject of much conversion work, including the
extraction of a Tree Adjoining Grammar treebank (Habash

and Rambow, 2004) and an LFG Treebank (Tounsi et al.,
2009). This work has been augmented by efforts to im-
prove the Arabic treebank itself (Maamouri et al., 2008;
Maamouri et al., 2009; Smrž et al., 2008). The present
work is, to the best of our knowledge, the first attempt to
convert the Penn Arabic Treebank into CCG.

3. Combinatory Categorial Grammar
Combinatory Categorial Grammar (Steedman, 2000) is a
syntactic framework that describes words and phrases in
terms of their combinatory potential. For example, words
like “the” are of the category np/n, or “the kind of word
that would make a noun phrase if it could combine with a
noun to the right”, The left side of the category represents
the result, the right side represents the argument, and the
direction of the slash represents where the argument must
be with respect to the word in question (i.e., to the left or
the right). Categories can be nested inside of each other
to an arbitrary depth: verbs used transitively like “ate” are
given the syntactic category (s\np)/np, or, “the category
that would represent a sentence if it could combine with
a noun phrase to its right and then a noun phrase to its left”.
The categories then combine with each other to form larger
constituents (shown in figure 1).
CCG also features a transparent way to resolve local and
long-range dependencies. The dependency graph ofthe
man ate the steak is shown in figure 2. This analysis
uses only local dependencies. In other cases, however, like
the English relative clause, the relationship between words
must be handled by an intermediary category. CCG can
represent these constructions in a manner that reflects their
relationship with their corresponding declarative sentence.
Consider the phrasethe man who ate the steak. In this sen-
tence,the man has the same semantic relationship with the
verb ate as it does in the sentence from figure 1. Using
argument coindexation, CCG allowsthe man to have the
same syntactic relation as well (figures 3 and 4).
CCG encodes several properties of language that are absent
from the Penn Arabic Treebank. First, CCG requires that
the lexical heads of each span be made explicit. The Penn
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The man ate the steak

np/n n (s\np)/np np/n n
> >

np np
>

s\np
<

s

Figure 1: A simple CCG derivation, showing how CCG
categories combine to make a sentence.

Category Argument From To
np/n 1 the steak
np/n 1 the man

(s\np)/np 1 ate man
(s\np)/np 2 ate steak

Figure 2: A dependency graph ofthe man ate the steak,
implicit in the derivation in figure 1.

Arabic Treebank, however, does not include this informa-
tion. Second, CCG makes a sharp distinction between syn-
tactic arguments and adjuncts. PATB makes some effort
with regard to this (through the use of the -CLR “closely re-
lated” tag), but most constituents are left unmarked. Third,
CCG requires a binary branching structure, while PATB an-
notators are free to include an arbitrarily large number of
daughters for each parent node. All three of these differ-
ences must be resolved before we assign CCG categories to
constituents on PATB trees.

4. The General Treebank Conversion
Algorithm

The English CCGbank was created automatically from the
Penn Treebank. The algorithm used to convert the treebank
to CCG (which we adapt to the Penn Arabic Treebank here)
consists of four cascading steps: head identification, argu-
ment/adjunct distinguishing, binarization, and mapping to
CCG categories. In this section, we will examine each in
turn.
Please note that the syntax trees in the following sections
are intended to be read from left to right, not from right to
left (as with normal Arabic script). The script on the indi-
vidual nodes can be read from right to left as normal. All
example sentences and fragments are taken from the Penn
Arabic Treebank, with some simplifications for reasons of
space. English glosses are provided for the benefit of non-

the man who ate the steak

np (np1\np1)/(s\np1) (s\np)/np np

>

s\np

>

np1\np1

<
np

Figure 3: CCG’s treatment of relative clauses. The coin-
dexation on the relativizer category allows the verb’s sub-
ject dependency to resolve tothe man.

category arg from to
(np\np)/(s\np) 2 who ate
(np\np)/(s\np) 1 who man

(s\np)/np 1 ate man
(s\np)/np 2 ate steak

Figure 4: A dependency graph forthe man who ate the
steak, shown in figure 3. Notice that the subject dependency
of ate is resolved toman, reflecting their semantic relation.

Arabic speakers.

4.1. Head Identification

The first step in converting the Penn Arabic Treebank into
CCG is to identify the head (or heads) of each constituent.
First, we devise a simple set of baseline heuristics to iden-
tify the heads of the most common constituents. An ex-
haustive list of these heuristics is given in figure 5. Using
these heuristics, we can tag 97.99% of the constituents in
the treebank and achieve 100% coverage on 52.7% of the
trees in the treebank. An example of a head-tagged con-
stituent is given in figure 6.
There remain, after this initial pass, a number of problem-
atic cases that are not covered by our heuristics. Although
these cases are diverse in nature, many involve the anno-
tation of gerunds. A gerund is a verb that functions like a
noun, and is therefore annotated as a noun for the purposes
of the Penn Arabic Treebank. Consider the case shown in
figure 7. It is clear thatsustaining is the head of its con-
stituent, but it would be inelegant and potentially harmful
to propose a heuristic in which a noun could act as the head
of a VP when this role is generally played by a verb.
To account for these exceptional cases, we use the baseline
head-finding heuristics to extract features for a Maximum-
Entropy classifier that could predict the heads of phrases
that are not covered by the heuristics. The features used are
as follows:

• Grammatical Category. The grammatical category
(NN, NP, VB, etc) of each candidate daughter node,
and the parent node.

• Predicate. A binary indicator feature showing
whether the candidate daughter node is identified with
the PRED tag by the treebank annotators – a strong
predictor of headship for VP and S nodes.

• Location. A feature indicating whether the candi-
date daughter node is the first or last node in the con-
stituent.

After training this classifier, we perform a second pass over
the constituents that were not tagged the first time and iden-
tify the most likely head node.

4.2. Distinguishing Arguments from Adjuncts

The second step in the pipeline is to sort the remaining
daughter nodes of each constituent into arguments and ad-
juncts. This is crucial to the conversion process, as CCG
requires a sharp argument-adjunct distinction. To achieve

1882



Parent Category Category of Head
ADJP JJ

NP NN, NNP, NNS, NP
PP IN
S VP, -PRD, S

VP VBD, VBP, VBN, VB
QP CD

SBAR WHNP, WHADVP, IN
CONJP CC

Figure 5: Heuristics used to identify the headwords of con-
stituents. Using only this short list of heuristics, we can tag
97.99% of the constituents in the treebank.
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Figure 6: The verb is correctly identified as the head of the
VP.

this, we apply a similar technique to that used in section
4.1: we first enumerate a list of heuristics to identify likely
arguments and adjuncts, then handle the exceptional cases
with a Maximum Entropy model trained over the the cases
predicted by the heuristics. A selection of the heuristics
used can be found in figure 9. These heuristics can ac-
count for 95.06% of the constituents in the corpus. The rest
are predicted by another Maximum Entropy classifier. The
features for the argument-adjunct classifier are identicalto
those of the head finder. The output of this step is shown in
figure 8.
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Figure 7: A fragment of ANN20020115.0001.10, mean-
ing the possibility of their sustaining casualties. While this
annotation is grammatically insightful, this leads us to the
uncomfortable decision of identifying an NN category as
the head of VP.
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Figure 8: The non-head constituents are labeled as argu-
ments or adjuncts.
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Figure 10: The phrase is binarized, starting from the head.

4.3. Binarization

The third step in the pipeline is to binarize the trees in the
treebank. To accomplish this, we first attach each node to
the left of the head in turn, then each node to the right, in
a manner analogous to the English CCGbank. An example
of this process is shown in figure 10. Notice that some of
the nodes do not have grammatical categories – this is be-
cause they correspond to spans that are not annotated in the
Penn Arabic Treebank. In the next step, these nodes will be
assigned CCG categories along with all the others.

4.4. Conversion to CCG categories

The final step in the conversion process is to turn each node
in the tree from a traditional grammatical category into a
CCG category. To achieve this, we will assign a starting
category to the root node of each sentence (usually S). We
will then walk down the tree, undoing forward and back-
ward applications on each node, informed by their relative
position to their head and the nature of the daughter (argu-
ment or adjunct). We recursively walk down the tree until
we reach the terminal nodes. An example of this process
over a single constituent is shown in figure 11.

5. Arabic-Specific Challenges
Arabic, like English, is not so simple that the general al-
gorithm is completely sufficient to maintain faithfulness to
linguistic reality. Therefore, we must give special treatment
to some exceptional cases.

5.1. Subject Topicalization

The standard word order for Arabic is VSO. In many cases,
however, the subject is fronted to provide extra emphasis.
Because of this, the basic algorithm will predict two cate-
gories for each verb: one for VSO sentences, and one for
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Parent Category Argument Categories Adjunct Categories
ADJP JJ PP

VP NP-SBJ NP-OBJ NP-CLR -PRD -ADV -TMP
NP DT JJ PP
S NP-SBJ NP-TPC PP -TMP
PP NP

Figure 9: A sample of the heuristics used to sort arguments from adjuncts.
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will participate about 1200 Philippine soldiers in the training

(s/pp)/np np pp/np np
> >

s/pp pp
>

s

Figure 12: The prediction of the basic algorithm over a simple sentence in the basic VSO word order of Arabic meaning
“about 1200 Philippine soldiers will participate in the training”. Note the category forwill participate, which subcategorizes
for an np subject and a pp object.
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Figure 11: Starting with an s category, we recursively walk
down the tree assigning CCG categories.

SVO (figures 12 and 14), even though intuition tells us that
these verbs have similar distribution. Multiplying the cate-
gories of every verb in the corpus could cause serious data
sparsity issues. Compounding this problem is the unusual
case of VOS word order (figure 17), which usually occurs
when the pronominal object is attached to the verb.
Our solution is to introduce a unary rule that allows us
to topicalize the subject, applied whenever the PATB indi-
cates a subject trace. The rule would convert categories like
(s/np1)/np2 into categories like (s\np2)/np1. This analysis
is shown in figure 15. Modifying the category in this way
(as opposed to generating a different category at the lexical
level) handles the combinatorics of subject topicalization,
preserves the constituent bracketing of the PATB, and elim-
inates the data sparsity issue by generating dependencies
over the VSO word order (see the dependency graph in fig-
ure 16).

5.2. Noun Constructs

Noun constructs, orid. aafa structures, are similar to geni-
tive constructions in other languages. They are used to de-

category arg from to
(s/pp)/np 2 ¼PA ���
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PY
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Figure 13: The dependency graph generated by the analysis
in figure 12.
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Figure 16: The dependency graph for an SVO sentence us-
ing a unary rule on the verb. The full analysis is shown in
figure 15. Notice the similarities between this dependency
graph and the dependency graph generated by the VSO sen-
tence in figure 14.

scribe a variety of noun-noun relations, including identity
(the city of Jerusalem), partitivity (the best conditions), pos-
session (the father of Hasan) and agency (the crowing of the
rooster) (Ryding, 2005). The second word of a two-word
noun construct is always in the genitive case and, syntacti-
cally, behaves like a nominal modifier. The basic algorithm
correctly captures this linguistic intuition.
Noun constructs can even appear recursively. Consider the
phrase meaning “the knowledge of the cause of the acci-
dent” (shown in figure 18). The unlabeled dependencies
yielded by this derivation are correct (accident modifies
cause rather thanknowledge), but we are in the somewhat
awkward position of modeling the same phenomenon two
different ways (one as a noun modifier, and the other as
a noun modifier modifier). While this may be acceptable
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Figure 14: The prediction of the basic algorithm over a sentence meaning “about 650 American soldiers will join with the
Philippine army”. Notice that the verbal category, like thesentence in figure 14, subcategorizes for an np subject and pp
object, but the two verbal categories are not identical.
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Figure 15: Incorporating a unary rule to account for SVO wordorder enables us to maintain consistent labeled dependencies
across verbs in SVO and VSO sentences.
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Figure 17: The prediction of the basic algorithm on the
somewhat exceptional case of VOS word order, where the
object is generally a pronominal suffix. The sentence means
the Philippine army carried it out.

with three-part constructs, these constructions can grow to
an arbitrary size: consider “the celebration of the planting
of a cedar tree” (four parts) or “the application of all of
the resolutions of the Security Council” (five parts) (Ryd-
ing, 2005). The problem of modifier category proliferation
could quickly becomes an issue. For now, because four and
five part constructs are relatively uncommon, we will allow
the basic algorithm to predict larger categories, and revisit
this decision before the final release if the modifier category
proliferation becomes unmanageable.

5.3. Relative Clauses

One appealing feature of CCG in English is its ability to
resolve the gaps in relative clauses to their correspond-
ing nouns. In the relative clause example given earlier in
figure 3, the subject dependency ofate is resolved tothe
man because the relativizer selects for an incomplete sen-
tence s\np. This unfilled dependency in the relative clause
can then be passed up tothe man through a clever coin-
dexation scheme. This dependency is important to us be-

�
é
	
Q̄ªÓ I. �.�

�HXAmÌ'�

knowledge cause accident

np np\np (np\np)\(np\np)
<

np\np
<

np

Figure 18: A nested construct phrase meaning “the knowl-
edge of the cause of the accident”. Notice thataccident
modifiesreason, notknowledge The Penn Arabic Treebank
correctly represents this in the constituency of the phrase,
and we must take care to represent it in the dependencies.

cause the nouns that relative clauses modify almost always
bear semantic roles, and our English semantic role labeler
(Boxwell et al., 2009) relies heavily on these syntactic de-
pendencies.
The handling of relative clauses in Arabic is complicated by
resumptive pronouns. Consider the derivation of the sen-
tence meaning “The group that Osama bin Laden leads”
(figure 19). In English, the relativizer would be of the cat-
egory (np\np)/(s\np), enabling it to pass the object depen-
dency up togroup. In Arabic, however, the resumptive
pronoun appears instead of a gap, causing there to be no
unfilled dependency to pass along. This is further compli-
cated by the fact that subject pronouns are usually dropped,
including resumptive ones.

This presents us with a dilemma: do we allow the basic
algorithm to draw a dependency between the verb and
the resumptive pronoun (figure 19), or do we treat the
resumptive pronoun as semantically and syntactically null
and force the dependency up to the noun that the relative
clause modifies (figure 20)?
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Figure 20: Another possible analysis of Arabic relative clauses. This is appealing because it enables a dependency to be
drawn fromleads to network, preserving a key feature of CCG.
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Figure 19: The prediction of the basic algorithm for an Ara-
bic relative clause. Notice that the presence of the resump-
tive pronoun blocks the construction of a syntactic depen-
dency betweenleads andnetwork, as the subordinate clause
has no gap.

The first option (ignoring the noun that the relative clause
modifies) is certainly simpler. That simplicity, however,
comes at the cost of one of CCG’s most appealing features,
making it unacceptable for our purposes. While it may
make sense for the resumptive pronoun to be linked to the
proper slot on the verb (as it is essentially a grammatical
placeholder), that particular dependency may not be
useful for NLP applications – certainly less useful than a
dependency between the verb and the noun that the relative
clause modifies.
The second option, which we choose, is treating the re-
sumptive pronoun as a syntactic adjunct. This is appealing
because it allows us to reserve a dependency for the noun
that the relative clause modifies. It does, however, require
us to hypothesize a rather unusual category for a pronoun.
Claiming that this is a valid category for a pronoun could
compound parsing problems caused by incorrect verbal
tags. We feel, however, that the presence of a relativizer
provides a sufficiently strong predictive mechanism for
supertagging purposes, and the benefit of the useful
dependency outweighs the cost of the special category.

5.4. Optional Pronominal Subjects

Like many languages, Arabic exhibits strong tendencies
towards optional pronominal subjects, or “pro-drop”. In
cases where the the subject of the verb is obvious from con-
text or verbal agreement features, the subject pronoun is
usually dropped. This is potentially problematic for CCG,

which requires verbs to explicitly state their combinatorics
on their lexical category. Consider the examples in figures
21 and 22. If we allow the basic algorithm to predict the
lexical categories without interference, the two instances
of the same verb will have slightly different syntactic cate-
gories, even though intuition tells us that the verbs are iden-
tical and that their subcategorization frames are the same.
Treating them as having different categories misses an ob-
vious generalization and could lead to data sparsity errors
downstream.
Another solution is to introduce a unary rule to remove a
single argument from verbal categories, which could be ap-
plied optionally. This would allow us to use the same ver-
bal category in both contexts, which is appealing because
it would facilitate the automatic assignment of CCG cat-
egories for parsing. It would also keep our dependencies
consistent, effectively addressing the issue of data sparsity
for parsing applications that rely on CCG dependencies.
A potential weakness of this approach is the possibility of
repeated application of the rule. At parse time, the pro-
drop rule could essentially discharge the outermost argu-
ment for free (say, with (s/np)/np going to s/np). There is
nothing, however, stopping the rule from applying again
(since a pro-dropped transitive verb looks like a non-pro-
dropped intransitive verb). This could cause grievous dam-
age to parser accuracy and efficiency.
To block this, it is necessary to explicitly mark case on our
pro-drop rule. For example, a transitive verb would have a
category (s/np[acc])/np[nom], and the pro-drop rule would
only remove an outermost nominative np. Although case is
not always explicitly marked in written text, it is provided
by the treebank annotators, which is enough to accurately
predict verbal categories and constrain parsing, even if the
case of specific nouns is at first uncertain at parse time.

6. Conclusions and Future Work

At the time of writing, only a handful of sentences fail to re-
solve into well-formed CCG derivations, usually as a result
of exceptional annotation of argument cluster coordination
or ambiguous PP attachments to coordinated phrases. On-
going work involves resolving these cases and incorporat-
ing crossing-composition combinators to combat modifier
category proliferation.
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Figure 21: A fragment of an Arabic sentence meaning “we took into consideration the possibility of their suffering damage”.
Because the pronominal subject is redundant given the verbal inflection, the subject is dropped. This sentence is based on
ANN20020115.0001.10.
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Figure 22: An Arabic sentence equivalent in meaning to the one in figure 21, but with the subject explicit (which adds
emphasis). Notice that the verbs in the two sentences have different categories.
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(we) took into consideration the possibility

((s/np2)/pp1)/np pp/np np np
>

(s/np2)/pp1 pp
>

s/np
>

s

Figure 23: Introducing a unary rule allows us to use the same verbal category for both instances of a verb.
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