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Abstract
Graph and tree transducers have been applied in many NLB-asgaong them, machine translation, summarization, paraind text
generation. In particular, the successful use of tree tigriransducers for the introduction of syntactic struesuin statistical machine
translation contributed to their popularity. However, fhatential of such transducers is limited because they ddantlle graphs
and because they "consume” the source structure in thatrévayte it instead of leaving it intact for intermediate consubbag. In
this paper, we describe an open source tree and graph tcanddterpreter, which combines the advantages of grapisdrecers and
two-tapeFinite State Transducerand surpasses the limitations of state-of-the-art tregitiegy transducers. Along with the transducer,
we present a graph grammar development environment thpoesghe compilation and maintenance of graph transduegnmatical
and lexical resources. Such an environment is indispeagabhny effort to create consistent large coverage NLBuegs by human
experts.

1. Introduction Section 3., we then present our graph transformation for-

. i . malism and a set of examples. In Section 4, we sketch its

From an abstract formal viewpoint, nearly any NLP appli-jmnjementation. Section 5. contains a short outline of the

cation can be interpreted as the transformation of & sourcgeyelopment environment that supports the development of
representation into a target representation. The most geRagqrces for this formalism. Section 6. describes thei-appl
eral representation, we can think of is a graph. GrapRation of the graph transformation formalism to text gener-
transformation emerged in theoretical computer SCiencgsion  Section 7. gives a brief overview of related work,

as an extension of classical string rewriting known frombefore in Section 8. some conclusions are drawn and the
Chomsky grammars (Chomsky, 1956). Over the last threg, jine of our future work in this area is given.

decades, it has become a major research field of its own
(Rozenberg, 1997). In NLP, graph transformation has been 2. Theoretical Background

rarely used so far; most applications are restricted t0 tregraph and tree transducers use rules to describe the trans-
transformation (otree rewriting. However, the potential formation of an input grapl® to a target grapt, which

of tree rewriting is limited because it does not handle gsaphmight be the input to the next transformation step. A graph
(while, e.g., in text generation, the input structures tendyansformation rule : L — R consists of a pair of graphs

to be (semantic or conceptual) graphs rather than trees), and R. L denotes the left-hand side graph which de-
and because it "consumes” the source structure in that fnes the application conditions pfand R is the result of

changes it step by step into the target structure (while itis, The transformation process usually consists of at least
often convenient to be able to access the source structufgree steps (with = 1, . .., n):

at any time during the transformation—which presupposes .
that it is kept intact). 1. Search for rulep; that are applicable t&,

Two-tape graph transducers (or, more precisglsaph 2. Creation of the images of the right-hand sidegof
transducer interpreteds which combine the advantages of (i.e.,R;)in H;

graph transducers and two-tape finite state transducers, ar
in this sense more adequate in that they create the targetrep
resentation without destroying the source representation '

The disadvantage that remains is that, as graph transforo embed the images dt;, i.e., the created graph frag-
mation in general, two-tape graph transducers that are inments, into the target grapt, two alternative techniques
tended to provide a large coverage require extensive trangre known from Computer Science, both are to be speci-
formation rule sets. These rule sets are difficult to writé an fied within the rules. Thus, the rules can either (1) indicate
maintain manually without the support of an elaborate envia correspondence links nodes from the image ofRan
vironmentthat provides editing, debugging and consistencand nodes from the already partially built target graph
control aids. that should be glued together; or (2) graspHparts and

In what follows, we present a two-tape graph transducer apconnect these parts with the image of Anby a disjoint
proach and a corresponding graph transformation develoption. The two techniques are the main discriminatory fea-
ment environment. The next section contains a brief outture of the two most common approaches to graph rewrit-
line of the theoretical background of our transducer. Iningin Computer Science: ttegebraic(or double-pushouyt

3. Embedding of the images of the right-hand siften
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DPO) approach (Ehrig et al., 1973) and tiadle-label con-  the representation of graph structures, we use hieratchica
trolled (NLC) approach (Janssens and Rozenberg, 1980yraphs in which nodes can contain other nodes (Busatto,
In the DPO-approach, a new graph is formed by gluing,2002). Hierarchical graphs are useful to superimpose addi-
while in the NLC-approach it is formed by connecting. tional information on graphs—for instance, the informatio
Gluing is most useful when the rules are applied simultanestructure, or to indicate that a set of words belongs to a dis-
ously since the graph transducer can create the right-hartthct sentence, paragraph, constituent or topological.fiel
sides in parallel and connect the created subgraphs in tHEhe syntax for representing graphs is simple:
same stage. Connecting is useful when rules have to be AR, oh-Part  Definition

lied in sequence. This procedure is comparable to Finit p. . ,
gtate Transducers (FSTs), which are applied left to right ' . nOde_nam-e Lid] [ node-body 3]

’ node-body: { edge| attribute| node }*

and to tree transducers, which are applied top down. Howgqge: edge-name-node
ever, in the case of FSTs the sequence originates from th@per-edge:  edge-name-{ node" }
processing technique and is not required for many tree- angktribute: attribute-name = value
graph-based applications. As other modern graph transfograph: node*

mation approaches, we provide both techniques to embe@taph-def:  'structure’ name typg"graph '}’
subgraphs, gluing and connecting.

Consider an example that shows a graph that represents

Xy ===~ X X, ==== X, a dependency tree and the order of the words (a graph-
l l lT ical representation of the tree is shown in Figure 3); the
. attribute-value structures associated with each nodeadre n
det before mod before .
displayed.
l o T l T structure g1 deg
Xl Xl Xl ==== Xl is {
o1 o1 pos=VBZ
SBJ->> quality {
X pos=NN
\ NMOD-> The{ pos=DT}
/\ NMOD-> air{ pos=NN}
det mod X_ =P before _>X2 }
! . PRD-> good{ pos=JJ}
/ 7
I, a” 1 }
X]‘~~_ Xij' """ ] The {b->air{b->quality {b->is {b->good}}} }
-- )
NMOD
Figure 1: Three Tree Transducer Rules l NMOD SBJ PRD
Figure 1 shows three sample graph transducer rules. Th b ¢ b l ¢ b H b ¢

nodes in the left-hand side of each rule are connected witt " g < g >lis »>1good

their corresponding nodes in the right-hand side of the rule _ .
via correspondence linkimdicated in the figure by dashed Figure 3: Graphical representation of a dependency tree

lines. Figgre 2 iIIustra@es _the application of these threerpe |eft-handl, and the right-hand sides of the rules are
rules. The input graplyr is displayed on the left. The rule gefined in terms of hierarchical graphs which can contain
interpreter matches the left-hand sidég)(of the ruleswith  oqe attribute, attribute value and edge label variafles.

G and creates for each of the matched rules an image of thesme of a variable starts with a question mark instead of
corresponding right-hand sidé?(). The middle (framed) 5 jetter. For instancel, of the first rule below contains
part of Figure 2 displays the result of the creation. Correp, edge variable ‘?r', which matches all edges of the input
sp(_)nden(_:e links connect_nodes in the isomorphic images ‘eraph, except those that are labeled by“tParts of both
Liin G with nodes of the images df; All nodes thathave  the |eft-hand side and right-hand side graphs can be marked
a correspondence link to the same nod&iare candidates 55 context. The correspondence links are defined using the
for being glued together. In the example, the graph trans-__ sign.

ducer QLUES)togethef the nodes with same the ldlos¥€r,  The rule syntax further foresees the following operators:
nice, andthe).

On the left of Figure 2, the target gragh after gluing is exists: ,,,?X'rsgs'hgraph

shown. H is a topological graph that orders the nodes and, . Qrgphp’&’ graph

thus the words of a sentence. The graph represents the CQope: '’ graph )

rect order of the nodeshe nice flower lexicon-access: lex-name ":{'( var’y " }*(var)

3. Graph Formalism and Rule Language

As already mentioned above, our graph transformation for-  *This condition implies that the application of this ruleults
malism is based on a two-tape graph transducer. For thie an unordered dependency tree.
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Figure 2: Graph Transducer Rules Using CorrespondenceLink

For illustration, consider the specification of two rules inrightside = [
our formalism. The first rule matches all nodes for which ?Xr { <=>7?XI// create a node and a correspondence link

at least one outgoing edge that is not labeled by ‘b’ exists,

shj->?Yr{<=>7?YI} // create an edge label with SBJ

such that the target node of the ‘b’ -edge has an outgoin
edge labelled by ‘MATR’. The second rule maps a node t
the target graph, if this node has an entry in the resource

called "semanticon”, and this entry has an attribute ‘type’DSynt<=>Syntsbj: rule

but no attribute ‘lex’. The node itself must not have an
attribute ‘anaphora’ with the value ‘elision’ or ‘pronoun’

Con<=>Sem examplel
leftside=|
?XI { exists (?r >?Y {?I=?m})
&! (b->?C{ MATR->?MI } )
name=?name
}
]
rightside=|
?Xr{ <=>2XI

leftside = [
?XI
]
rightside = [
rc:?Xr { <=>?XI// match a node with a correspondence link
rc:shj=>rc:?Yr{ // match an edge labeled with SBJ
case=nominativé // create an attribute

4. Sketch of the Implementation

/ create nodes and correspondence links

sem=?name // create the attribute sem with the value of ?ngﬁ’l'éthe implementation of finite state transducers, usually

}
]

Senx=>Synt lexstandard : rule
leftside = [
?Xs{ sem="s;
& semanticon::(?s).(type)
& ! semanticon::(?s).(lex)
& ! ?Xs { anaphora=elisiohanaphora=pronoukh

]
rightside = [

?Xds{ <=>?Xs
sem=?s
}

]

finite state machines (FSMs) are used. We developed a sim-
ilar technique for graph and tree transducers. In contrast
to FSMs, we separate the left-hand side of the finite state
machine from the right-hand side. Figure 4 shows a net-
work which is built from the rules of Figure 1. As any rule,
the network contains two sides—one for matching (the left-
hand side) and one for creating of graphs (the right-hand
side). The subnetworks of both sides consist of the same
elements and can be applied bidirectionally.

In the top down direction, the network describes the steps
that are to be taken to match the left-hand sides of a given
rule set, while in the bottom up direction, the network de-
fines the steps needed to generate the right-hand sides of the
rule set. The numbers represent the states of the automaton.
The edges are labelled by the actions that are to be taken in

The rules above use gluing to combine parts of the newlyhe next step. Depending on the application direction, the
created graph. The following two rules illustrat the con-matching starts with state 1 in the network on the left or on
necting approach. The first rule maps the first argument ofig ¢,

a predicate to a edge labeled with subject. The second rule, jjysration, let us assume that we have to match the
matches in the target graph an edge labeled with 'SBJ’ angl, s in the source graph of Figure 2. In the first st&p,

adds an attribute ‘case = nominative’.

DSynt<=>Synt sbj : rule
leftside = [
?XI { dlex=?s 1>>?Y1// match the first argument
& semanticon::?s.gp..SBJ
}

]

is matched. This causes the transition from state 1 to state
2. X, can match all nodes in the source graph because
there are no further restrictions as yet. In the next step, th
automaton goes either into state 3 or state 7. If the matching
procedure finds an edge labeleddst it continues with 3.
From state 3, the automaton can go to state 4 and match
a node with any label. State 4 is a finale state and thus
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Figure 4: Rule Automaton

indicated by a double circle. It belongs to rule 1 (si¢and — MATE
means that rule 1 is applicable.
- . . | 2
The creation of the right-hand side of rule 1 starts at state E Y N M
:‘ If 53 concepticon 53 lexicon™ £3 semanticon 53 language_info £3

7. Inthis case, the rule interpreter has to go up and perforn ;== === = { -
the listed steps to build the right-hand side of the rule. The|- 2 | ¢ - 1

correspondence links are drawn as dashed lines and labelle - Y E‘} ;E”“;“m‘

by the name of the rule to which they belong. s o e cemplotive

This realization easily accommodates for the integration o o /f no determiner on actant 1
the the Kleene Star (*), the ‘plus’ operator, the ‘not’ oper- o Do

ator and the ‘or’ operator. As in FSTs, the operators are Tatiniteess < N
allowed only as context. The *’ operator and the ‘plus’ ! ) P
operator are just cycles; the ‘not’ operator leads away from Jit - in 17 e found mems in = concentration of
an already found state; and the ‘or’ operator is realized by e T hhes 74 ,the concentration (of ozone) is 100 ]
alternative paths in the network. Ioihpory J resih V) vimone will roien a concemrration ot i

i
rid had
L] »

5. Development Environment

The manual development and maintenance of large gram- _ _ _
mars is feasible only if appropriate tools are available to Figure 6: Lexicon Editor

support the developer. Therefore, we developed such agyeated graphs. More specifically, the graph editor pro-
environment for the above formalism. The environmentijes drawing support and layout algorithms for semantic
(called MATE: Meaning-Text Development Environment graphs, syntactic dependency trees, phrase structurs, an
contains editors for graph construction, rule and Iexiconwpok)giC graphs. Graphs can be saved (as attributed la-
writing, a debugger, as well as a tool for regression tests. peled hierarchical graphs), loaded into new editor windows
and exported in several formats—among them the graph
Fie Ean Tools Graph o markup language (graphml) format, CoNLL (2009) format,
Dad PN & scalable vector graphics (SVG) format, GIF and JPG. Fur-
|| concol.auw™ & | 00008~ ¥ | T Gnited™ 5 | thermore, the graph editor provides facilities to imponmtco
— ' = s ‘ pora in specific formats such as the CoNLL-format. Fig-
i ure 7 shows a screenshot of the import tool.
‘*/ E The lexicon editor provides the functionality for entry
apvenny” a N search, control of entry duplication, syntax check, etc.
g x = AR The most important functionality of the rule editor inclsde
Dy w‘m the syntax check, the possibility to group rules, and to in-
L dlempeastort) teractively apply a subset or all rules to a selected graph.

[ 'ug/m*
e o The debugger gives answers to questions sucWhih
conpilation completed in 0.08 secands rules have been applied and to which parts of the input
graph Which part of the result graph was created by which
Figure 5: Graph Editor rule, etc. Consider Figure 8 for a snapshot of the debug-
ger window. The snapshot shows the state after the second
The graph editor (cf. Figure 5) allows for an interactive round of the application of a rule. Therefore, the structure

drawing of graphs and for a quick inspection of alreadyin the middle is incomplete. The window on the left shows

Compilation completed in 0.08 seconds

| SIS
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D.g & E] |} W N JL’J Import dependency structures from a file in one word per line format (cf. CONLL-07 and CONLL-08)
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Rule updated: new rule 1

Figure 7: Import of Corpora in CoNLL-Format

the rule execution phase. The next window shows the set donceptualizationin the first step, we map the document
rules that have been applied in the current execution phagdan to a conceptual graph configuration that serves as input
in parallel. The window in the middle shows two graphs,to the "linguistic generator”. The nodes in a conceptual
the source graph and the target (or result) graph. The sourggaph are concepts and the arcs between them conceptual
graph is a dependency tree; the target graph is a topologielations in the sense of (Sowa, 2000).

cal graph that represents the linear order within a sentenc&emanticisation In the next step, the graph transducer
Different colors mark the source graph, the target graph anchaps the conceptual graph configurations to semantic
the parts to which the selected rules apply. graph configurations. A semantic graph is a hierarchical
The regression test tool applies selected grammars tofsets graph which consists of a predicate-argument structure on
predefined graphs and compares the result with referenaghich the information structure (focus, background, give-
graphs. If the regression tool finds any differences, themess, theme/rheme, etc.) is superimposed.

they are reported. Deep syntaxicisatian The deep syntactic representation
L ) (cf. Figure 5) is a tree which contains "deep” lexical units
6. Application in Text Generation connected by universal syntactic relations: the actarsial
The graph transducer formalism and the development enviations (1, Il, 11l ...), attributive relation (ATTR), apgs-

ronment presented above have already been used in seveitile relation (APOS), and the coordination relation (CO-
large scale projects for the development of text generatio®RD). The set of deep LUs of a language L contains all
and summarization resources—among them, the Europeahls of L—with some specific additions and exclusions.
scale projects MARQUIS (EDC-11258), PATExpert (FP6-Added are two types of artificial LUs: (i) symbols of lexical
ICT-028116), and PESCaDO (FP7-ICT-248594). Thefunctions (LFs), which are used to encode lexico-semantic
global objective of the MARQUIS was to develop an ad-derivation and lexical co-occurrence (Mel'cuk, 1996)) (ii
vanced European information service for generation ofictitious lexemes, which represent idiosyncratic syri¢act
multilingual user tailored air quality information; cf. @u-  constructions of L. Excluded are: (i) structural words) (ii
ner et al., 2007b). One of the objectives of PATExpert wassubstitute pronouns and values of LFs.

the multilingual summarization of patent claims (Wanner etThe graph transducer maps the semantic graph configura-
al., 2007a). The just started PESCaDO targets the discoyion to a deep-syntactic tree configuration using a relbtive
ery and configuration of web-based environmental servicesmall set of about 120 rules. The rules use additional in-
and delivery of user-tailored multilingual environmental ~ formation from a lexicon represented as a graph. The key
formation. words of the lexicon entries are stored in a hash table and
For illustration of the use of the formalism, we focus on point to the nodes in the lexicon graph to provide a fast ac-
the generation process as implemented in MARQUIS andess to the entries. The lexicon contains information of the
PESCaDO. Figure 10 shows an overview of this process. words and their combination. It defines the details of the
The input to the text generator is a document plan whichmapping for building the syntax tree.

contains the content that has to be rendered into a text. L&urface syntaxicisationThe surface-syntactic structure is
us briefly discuss each of the major steps until linearimatio a tree which contains all words of a sentence. The edges
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are labelled with grammatical functions suctsabject di- 7. Reated Work

rect object determiner etc. In this step, the grammar thus

has to add structural words and values of LFs and label thth NLP, so far also mainly tree rewriting approaches (called
edges with grammatical functions. Again, information for tree transducernshave been used. Cf., for instance, Knight
the mapping is retrieved from the lexicon. and Al-Onaizan (1998), Alshawi et al. (2000), Kumar and
Linearization During the linearization step, the surface- BY™Me (2003), Gildea (2003), Eisner (2003), and Echihabi
syntactic tree is mapped onto a topological graph whictnd Marcu (2003) in machine translation, Wu (1997) in
defines the word order. To represent word order, we usBasing and Lavoie and Rambow (1997), Bangalore and
hierarchical graphs that consist of word order domains anff@mbow (2000), Bohnet and Wanner (2001), and Corston-
precedence relations. Each word order domain is a bag ¢f!iver et al.  (2002) in text generation. Top down tree
words or domains that are grouped together in a sentendgAnsducers have been independently introduced by Rounds
as a constituent. The precedence relation is realized as(4970) and Thatcher (1970) as extensions of finite state
directed edge between words and/or domains. The actufj@nsducers. Tree transducers traverse the input trees fro
word order is derived by a topological-sort algorithm. the root to the leaves. Rules are applied in parallel to the

. L . branches such that they rewrite the tree in a top down man-
The result of the generation are mid-size texts. For inganc ner. There are many extensions and types of tree trans-
each of the generated bulletins in MARQUIS contains upy ce among them R-transducers with finite look ahead
to fifteen sentences, depending on the current air qualit onte>2t) or regular-look ahead, Frontier-to-root tr |
situation and the user profile. The bulletins are generate ’ For a good

a sample bulletin: (Tsurgeon) that can operate on arbitrary tree data strestur

The air quality index is 4, which means that the air quality
is poor. This is due to the high nitrogen dioxide concen-
tration. The PM10 and ozone concentration do not have
influence on the index. The nitrogen dioxide concentra-
tion (156 ug/m?®) is high. The high concentration is due
to inversion. Therefore, an increase of reversible short
term effects to human health (e.g. beginning irritation of
the respiratory tract) is likely with sensitive people.

Relevant to our work are also Finite State Transducers
(FSTs). Aho and Ullman (1972) distinquishes between
generative schemaand transducers while a generative
schema uses one tape, a transducer users two. However,
this distinction got blurred in the course of the years. As a
consequence, tree transducers are called "transducers” al
though they do not share the properties of FSTs that we
describe in what follows. FSTs are standard tools in com-
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