
Open Source Graph Transducer Interpreter and Grammar Development
Environment

Bernd Bohnet1 , Leo Wanner1,2

1Department of Information and Communication Technologies, Pompeu Fabra University
2Institució Catalana de Recerca i Estudis Avançats (ICREA)

C/ Roc Boronat, 138
08018 Barcelona, Spain

{bernd.bohnet|leo.wanner}@upf.edu

Abstract
Graph and tree transducers have been applied in many NLP areas—among them, machine translation, summarization, parsing, and text
generation. In particular, the successful use of tree rewriting transducers for the introduction of syntactic structures in statistical machine
translation contributed to their popularity. However, thepotential of such transducers is limited because they do nothandle graphs
and because they ”consume” the source structure in that theyrewrite it instead of leaving it intact for intermediate consultations. In
this paper, we describe an open source tree and graph transducer interpreter, which combines the advantages of graph transducers and
two-tapeFinite State Transducersand surpasses the limitations of state-of-the-art tree rewriting transducers. Along with the transducer,
we present a graph grammar development environment that supports the compilation and maintenance of graph transducer grammatical
and lexical resources. Such an environment is indispensable for any effort to create consistent large coverage NLP-resources by human
experts.

1. Introduction

From an abstract formal viewpoint, nearly any NLP appli-
cation can be interpreted as the transformation of a source
representation into a target representation. The most gen-
eral representation, we can think of is a graph. Graph
transformation emerged in theoretical computer science
as an extension of classical string rewriting known from
Chomsky grammars (Chomsky, 1956). Over the last three
decades, it has become a major research field of its own
(Rozenberg, 1997). In NLP, graph transformation has been
rarely used so far; most applications are restricted to tree
transformation (ortree rewriting). However, the potential
of tree rewriting is limited because it does not handle graphs
(while, e.g., in text generation, the input structures tend
to be (semantic or conceptual) graphs rather than trees),
and because it ”consumes” the source structure in that it
changes it step by step into the target structure (while it is
often convenient to be able to access the source structure
at any time during the transformation—which presupposes
that it is kept intact).
Two-tape graph transducers (or, more precisely,graph
transducer interpreters), which combine the advantages of
graph transducers and two-tape finite state transducers, are
in this sense more adequate in that they create the target rep-
resentation without destroying the source representation.
The disadvantage that remains is that, as graph transfor-
mation in general, two-tape graph transducers that are in-
tended to provide a large coverage require extensive trans-
formation rule sets. These rule sets are difficult to write and
maintain manually without the support of an elaborate en-
vironment that provides editing, debugging and consistency
control aids.
In what follows, we present a two-tape graph transducer ap-
proach and a corresponding graph transformation develop-
ment environment. The next section contains a brief out-
line of the theoretical background of our transducer. In

Section 3., we then present our graph transformation for-
malism and a set of examples. In Section 4, we sketch its
implementation. Section 5. contains a short outline of the
development environment that supports the development of
resources for this formalism. Section 6. describes the appli-
cation of the graph transformation formalism to text gener-
ation. Section 7. gives a brief overview of related work,
before in Section 8. some conclusions are drawn and the
outline of our future work in this area is given.

2. Theoretical Background
Graph and tree transducers use rules to describe the trans-
formation of an input graphG to a target graphH , which
might be the input to the next transformation step. A graph
transformation rulep : L → R consists of a pair of graphs
L and R. L denotes the left-hand side graph which de-
fines the application conditions ofp andR is the result of
p. The transformation process usually consists of at least
three steps (withi = 1, . . . , n):

1. Search for rulespi that are applicable toG;

2. Creation of the images of the right-hand sides ofpi

(i.e.,Ri) in H ;

3. Embedding of the images of the right-hand sidesRi in
H ;

To embed the images ofRi, i.e., the created graph frag-
ments, into the target graphH , two alternative techniques
are known from Computer Science, both are to be speci-
fied within the rules. Thus, the rules can either (1) indicate
via correspondence links nodes from the image of anRi

and nodes from the already partially built target graphH

that should be glued together; or (2) grasp inH parts and
connect these parts with the image of anRi by a disjoint
union. The two techniques are the main discriminatory fea-
ture of the two most common approaches to graph rewrit-
ing in Computer Science: thealgebraic(ordouble-pushout,

211

DPO) approach (Ehrig et al., 1973) and thenode-label con-
trolled (NLC) approach (Janssens and Rozenberg, 1980).
In the DPO-approach, a new graph is formed by gluing,
while in the NLC-approach it is formed by connecting.
Gluing is most useful when the rules are applied simultane-
ously since the graph transducer can create the right-hand
sides in parallel and connect the created subgraphs in the
same stage. Connecting is useful when rules have to be ap-
plied in sequence. This procedure is comparable to Finite
State Transducers (FSTs), which are applied left to right,
and to tree transducers, which are applied top down. How-
ever, in the case of FSTs the sequence originates from the
processing technique and is not required for many tree- and
graph-based applications. As other modern graph transfor-
mation approaches, we provide both techniques to embed
subgraphs, gluing and connecting.

X
0

det

X
1

X
0

1

before

X
1

01

X
0

mod

X
1

X
0

1

before

X
1

01

X
0

det

X
1

X
0

det

X
1

X
0

1

before

X
1

01

X
0

mod

X
1

X
0

mod

X
1

X
0

1

before

X
1

01

X
0

det

X
1

mod

X
2

1

X
1

X
2

1

before

Figure 1: Three Tree Transducer Rules

Figure 1 shows three sample graph transducer rules. The
nodes in the left-hand side of each rule are connected with
their corresponding nodes in the right-hand side of the rule
via correspondence linksindicated in the figure by dashed
lines. Figure 2 illustrates the application of these three
rules. The input graphG is displayed on the left. The rule
interpreter matches the left-hand sides (Li) of the rules with
G and creates for each of the matched rules an image of the
corresponding right-hand side (Ri). The middle (framed)
part of Figure 2 displays the result of the creation. Corre-
spondence links connect nodes in the isomorphic images of
Li in G with nodes of the images ofRi All nodes that have
a correspondence link to the same node inG are candidates
for being glued together. In the example, the graph trans-
ducer glues together the nodes with same the label (flower,
nice, andthe).
On the left of Figure 2, the target graphH after gluing is
shown.H is a topological graph that orders the nodes and
thus the words of a sentence. The graph represents the cor-
rect order of the nodes:the nice flower.

3. Graph Formalism and Rule Language
As already mentioned above, our graph transformation for-
malism is based on a two-tape graph transducer. For the

the representation of graph structures, we use hierarchical
graphs in which nodes can contain other nodes (Busatto,
2002). Hierarchical graphs are useful to superimpose addi-
tional information on graphs—for instance, the information
structure, or to indicate that a set of words belongs to a dis-
tinct sentence, paragraph, constituent or topological field.
The syntax for representing graphs is simple:

Graph-Part Definition
node: node-name [:id] [’{’ node-body ’}’]
node-body: { edge| attribute| node}*
edge: edge-name-> node
hyper-edge: edge-name-> { node+ }
attribute: attribute-name = value
graph: node*
graph-def: ’structure’ name type ’{’ graph ’}’

Consider an example that shows a graph that represents
a dependency tree and the order of the words (a graph-
ical representation of the tree is shown in Figure 3); the
attribute-value structures associated with each node are not
displayed.

structure g1 dep{
is {

pos=VBZ
SBJ-> quality{

pos=NN
NMOD-> The{ pos=DT}
NMOD-> air{ pos=NN}

}
PRD-> good{ pos=JJ}

}
The{b->air{b->quality{b->is {b->good}}}}

}

is goodqualityThe air
bbb b

NMOD

NMOD

SBJ PRD

Figure 3: Graphical representation of a dependency tree

The left-handL and the right-handR sides of the rules are
defined in terms of hierarchical graphs which can contain
node, attribute, attribute value and edge label variables.The
name of a variable starts with a question mark instead of
a letter. For instance,L of the first rule below contains
an edge variable ‘?r’, which matches all edges of the input
graph, except those that are labeled by ‘b’.1 Parts of both
the left-hand side and right-hand side graphs can be marked
as context. The correspondence links are defined using the
‘<=>’ sign.
The rule syntax further foresees the following operators:

exists: ’exists’ graph
not: ’!’ graph
and: graph ’&’ graph
scope: ’(’ graph ’)’
lexicon-access: lex-name ’::’{ ’(’ var ’)’ ’.’ }* (var)

1This condition implies that the application of this rule results
in an unordered dependency tree.

212

flower

det mod

the nice

flower before the

before

nice

before

flower before the

flower

nice

before

the

before

nice

Figure 2: Graph Transducer Rules Using Correspondence Links

For illustration, consider the specification of two rules in
our formalism. The first rule matches all nodes for which
at least one outgoing edge that is not labeled by ‘b’ exists,
such that the target node of the ‘b’ -edge has an outgoing
edge labelled by ‘MATR’. The second rule maps a node to
the target graph, if this node has an entry in the resource
called ”semanticon”, and this entry has an attribute ‘type’
but no attribute ‘lex’. The node itself must not have an
attribute ‘anaphora’ with the value ‘elision’ or ‘pronoun’.

Con<=>Sem example1
leftside=[

?Xl { exists (?r ->?Y {?l=?m})
& ! (b->?C{ MATR->?Ml })
name=?name

}
]
rightside=[

?Xr { <=>?Xl // create nodes and correspondence links
sem=?name // create the attribute sem with the value of ?name

}
]

Sem<=>Synt lexstandard : rule
leftside = [

?Xs{ sem=?s}
& semanticon::(?s).(type)
& ! semanticon::(?s).(lex)
& ! ?Xs { anaphora=elision| anaphora=pronoun}

]
rightside = [

?Xds{ <=>?Xs
sem=?s

}
]

The rules above use gluing to combine parts of the newly
created graph. The following two rules illustrat the con-
necting approach. The first rule maps the first argument of
a predicate to a edge labeled with subject. The second rule
matches in the target graph an edge labeled with ’SBJ’ and
adds an attribute ‘case = nominative’.

DSynt<=>Synt sbj : rule
leftside = [

?Xl { dlex=?s I->?Yl // match the first argument
& semanticon::?s.gp.I.SBJ

}
]

rightside = [
?Xr { <=>?Xl // create a node and a correspondence link

sbj->?Yr{<=>?Yl} // create an edge label with SBJ
}

]

DSynt<=>Synt sbj : rule
leftside = [

?Xl
]
rightside = [

rc:?Xr{ <=>?Xl // match a node with a correspondence link
rc:sbj->rc:?Yr{ // match an edge labeled with SBJ

case=nominative} // create an attribute
}

]

4. Sketch of the Implementation

For the implementation of finite state transducers, usually
finite state machines (FSMs) are used. We developed a sim-
ilar technique for graph and tree transducers. In contrast
to FSMs, we separate the left-hand side of the finite state
machine from the right-hand side. Figure 4 shows a net-
work which is built from the rules of Figure 1. As any rule,
the network contains two sides—one for matching (the left-
hand side) and one for creating of graphs (the right-hand
side). The subnetworks of both sides consist of the same
elements and can be applied bidirectionally.
In the top down direction, the network describes the steps
that are to be taken to match the left-hand sides of a given
rule set, while in the bottom up direction, the network de-
fines the steps needed to generate the right-hand sides of the
rule set. The numbers represent the states of the automaton.
The edges are labelled by the actions that are to be taken in
the next step. Depending on the application direction, the
matching starts with state 1 in the network on the left or on
right.
For illustration, let us assume that we have to match the
rules in the source graph of Figure 2. In the first step,X0

is matched. This causes the transition from state 1 to state
2. X0 can match all nodes in the source graph because
there are no further restrictions as yet. In the next step, the
automaton goes either into state 3 or state 7. If the matching
procedure finds an edge labeled bydet, it continues with 3.
From state 3, the automaton can go to state 4 and match
a node with any label. State 4 is a finale state and thus

213

1

2

X0

3

4

X0→ det

det→ X1

5
X0→ mod

6
mod→X2

7

X0→ mod

8

mod→X2

1

2

3

4

X0

X0→ before

before→X1

5

6

X1→ pos

pos→DT

7 8

pos→JJ

9

X0→ pos pos→DT

R1

R2

R3
R1

R2

R3

R3

R3

R2

R1, R2
R1

Figure 4: Rule Automaton

indicated by a double circle. It belongs to rule 1 (detv) and
means that rule 1 is applicable.
The creation of the right-hand side of rule 1 starts at state
7. In this case, the rule interpreter has to go up and perform
the listed steps to build the right-hand side of the rule. The
correspondence links are drawn as dashed lines and labelled
by the name of the rule to which they belong.
This realization easily accommodates for the integration of
the the Kleene Star (*), the ‘plus’ operator, the ‘not’ oper-
ator and the ‘or’ operator. As in FSTs, the operators are
allowed only as context. The ‘*’ operator and the ‘plus’
operator are just cycles; the ‘not’ operator leads away from
an already found state; and the ‘or’ operator is realized by
alternative paths in the network.

5. Development Environment
The manual development and maintenance of large gram-
mars is feasible only if appropriate tools are available to
support the developer. Therefore, we developed such an
environment for the above formalism. The environment
(called MATE: Meaning-Text Development Environment)
contains editors for graph construction, rule and lexicon
writing, a debugger, as well as a tool for regression tests.

Figure 5: Graph Editor

The graph editor (cf. Figure 5) allows for an interactive
drawing of graphs and for a quick inspection of already

Figure 6: Lexicon Editor

created graphs. More specifically, the graph editor pro-
vides drawing support and layout algorithms for semantic
graphs, syntactic dependency trees, phrase structures, and
topologic graphs. Graphs can be saved (as attributed la-
beled hierarchical graphs), loaded into new editor windows,
and exported in several formats—among them the graph
markup language (graphml) format, CoNLL (2009) format,
scalable vector graphics (SVG) format, GIF and JPG. Fur-
thermore, the graph editor provides facilities to import cor-
pora in specific formats such as the CoNLL-format. Fig-
ure 7 shows a screenshot of the import tool.
The lexicon editor provides the functionality for entry
search, control of entry duplication, syntax check, etc.
The most important functionality of the rule editor includes
the syntax check, the possibility to group rules, and to in-
teractively apply a subset or all rules to a selected graph.
The debugger gives answers to questions such asWhich
rules have been applied and to which parts of the input
graph, Which part of the result graph was created by which
rule, etc. Consider Figure 8 for a snapshot of the debug-
ger window. The snapshot shows the state after the second
round of the application of a rule. Therefore, the structure
in the middle is incomplete. The window on the left shows

214

Figure 7: Import of Corpora in CoNLL-Format

the rule execution phase. The next window shows the set of
rules that have been applied in the current execution phase
in parallel. The window in the middle shows two graphs,
the source graph and the target (or result) graph. The source
graph is a dependency tree; the target graph is a topologi-
cal graph that represents the linear order within a sentence.
Different colors mark the source graph, the target graph and
the parts to which the selected rules apply.
The regression test tool applies selected grammars to sets of
predefined graphs and compares the result with reference
graphs. If the regression tool finds any differences, then
they are reported.

6. Application in Text Generation
The graph transducer formalism and the development envi-
ronment presented above have already been used in several
large scale projects for the development of text generation
and summarization resources—among them, the European-
scale projects MARQUIS (EDC-11258), PATExpert (FP6-
ICT-028116), and PESCaDO (FP7-ICT-248594). The
global objective of the MARQUIS was to develop an ad-
vanced European information service for generation of
multilingual user tailored air quality information; cf. (Wan-
ner et al., 2007b). One of the objectives of PATExpert was
the multilingual summarization of patent claims (Wanner et
al., 2007a). The just started PESCaDO targets the discov-
ery and configuration of web-based environmental services
and delivery of user-tailored multilingual environmentalin-
formation.
For illustration of the use of the formalism, we focus on
the generation process as implemented in MARQUIS and
PESCaDO. Figure 10 shows an overview of this process.
The input to the text generator is a document plan which
contains the content that has to be rendered into a text. Let
us briefly discuss each of the major steps until linearization.

Conceptualization. In the first step, we map the document
plan to a conceptual graph configuration that serves as input
to the ”linguistic generator”. The nodes in a conceptual
graph are concepts and the arcs between them conceptual
relations in the sense of (Sowa, 2000).
Semanticisation. In the next step, the graph transducer
maps the conceptual graph configurations to semantic
graph configurations. A semantic graph is a hierarchical
graph which consists of a predicate-argument structure on
which the information structure (focus, background, give-
ness, theme/rheme, etc.) is superimposed.
Deep syntaxicisation. The deep syntactic representation
(cf. Figure 5) is a tree which contains ”deep” lexical units
connected by universal syntactic relations: the actantialre-
lations (I, II, III, . . .), attributive relation (ATTR), appos-
itive relation (APOS), and the coordination relation (CO-
ORD). The set of deep LUs of a language L contains all
LUs of L—with some specific additions and exclusions.
Added are two types of artificial LUs: (i) symbols of lexical
functions (LFs), which are used to encode lexico-semantic
derivation and lexical co-occurrence (Mel’cuk, 1996); (ii)
fictitious lexemes, which represent idiosyncratic syntactic
constructions of L. Excluded are: (i) structural words, (ii)
substitute pronouns and values of LFs.
The graph transducer maps the semantic graph configura-
tion to a deep-syntactic tree configuration using a relatively
small set of about 120 rules. The rules use additional in-
formation from a lexicon represented as a graph. The key
words of the lexicon entries are stored in a hash table and
point to the nodes in the lexicon graph to provide a fast ac-
cess to the entries. The lexicon contains information of the
words and their combination. It defines the details of the
mapping for building the syntax tree.
Surface syntaxicisation. The surface-syntactic structure is
a tree which contains all words of a sentence. The edges

215

Figure 8: Debugger

are labelled with grammatical functions such assubject, di-
rect object, determiner, etc. In this step, the grammar thus
has to add structural words and values of LFs and label the
edges with grammatical functions. Again, information for
the mapping is retrieved from the lexicon.

Linearization. During the linearization step, the surface-
syntactic tree is mapped onto a topological graph which
defines the word order. To represent word order, we use
hierarchical graphs that consist of word order domains and
precedence relations. Each word order domain is a bag of
words or domains that are grouped together in a sentence
as a constituent. The precedence relation is realized as a
directed edge between words and/or domains. The actual
word order is derived by a topological-sort algorithm.

The result of the generation are mid-size texts. For instance,
each of the generated bulletins in MARQUIS contains up
to fifteen sentences, depending on the current air quality
situation and the user profile. The bulletins are generated
on demand. For most of the input content, the system is
able to generate several alternative sentences, such that the
texts look not the same and do not become boring. Consider
a sample bulletin:

The air quality index is 4, which means that the air quality
is poor. This is due to the high nitrogen dioxide concen-
tration. The PM10 and ozone concentration do not have
influence on the index. The nitrogen dioxide concentra-
tion (156 ug/m3) is high. The high concentration is due
to inversion. Therefore, an increase of reversible short
term effects to human health (e.g. beginning irritation of
the respiratory tract) is likely with sensitive people.

7. Related Work

In NLP, so far also mainly tree rewriting approaches (called
tree transducers) have been used. Cf., for instance, Knight
and Al-Onaizan (1998), Alshawi et al. (2000), Kumar and
Byrne (2003), Gildea (2003), Eisner (2003), and Echihabi
and Marcu (2003) in machine translation, Wu (1997) in
parsing and Lavoie and Rambow (1997), Bangalore and
Rambow (2000), Bohnet and Wanner (2001), and Corston-
Oliver et al. (2002) in text generation. Top down tree
transducers have been independently introduced by Rounds
(1970) and Thatcher (1970) as extensions of finite state
transducers. Tree transducers traverse the input trees from
the root to the leaves. Rules are applied in parallel to the
branches such that they rewrite the tree in a top down man-
ner. There are many extensions and types of tree trans-
ducers, among them R-transducers with finite look ahead
(context) or regular-look ahead, Frontier-to-root transduc-
ers, which process a tree bottom up, etc. For a good
overview of probabilistic tree transducers, see Knight and
Graehl (2005). Levy and Andrew (2006) provide a com-
bined engine for tree querying (Tregex) and manipulation
(Tsurgeon) that can operate on arbitrary tree data structures.

Relevant to our work are also Finite State Transducers
(FSTs). Aho and Ullman (1972) distinquishes between
generative schemasand transducers: while a generative
schema uses one tape, a transducer users two. However,
this distinction got blurred in the course of the years. As a
consequence, tree transducers are called ”transducers” al-
though they do not share the properties of FSTs that we
describe in what follows. FSTs are standard tools in com-

216

