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Abstract
Automatically detecting discourse segments is an important preliminary step towards full discourse parsing. Pre-
vious research on discourse segmentation have relied on the assumption that elementary discourse units (EDUs)
in a document always form a linear sequence (i.e., they can never be nested). Unfortunately, this assumption
turns out to be too strong, for some theories of discourse like SDRT allows for nested discourse units. In this
paper, we present a simple approach to discourse segmentation that is able to produce nested EDUs. Our ap-
proach builds on standard multi-class classification techniques combined with a simple repairing heuristic that
enforces global coherence. Our system was developed and evaluated on the first round of annotations provided
by the French Annodis project (an ongoing effort to create a discourse bank for French). Cross-validated on only
47 documents (1, 445 EDUs), our system achieves encouraging performance results with an F-score of 73% for
finding EDUs.

1. Introduction
Discourse parsing is the analysis of a text from a
global, structural perspective: how parts of a dis-
course contribute to its global interpretation, ac-
counting for semantic and pragmatic effects be-
yond simple sentence concatenation. This task
consists in two main steps: (i) finding the ele-
mentary discourse units (henceforth EDUs), and
(ii) organizing them in a way that make explicit
their functional (aka rhetorical) relations. Popu-
lar theories of discourse include Rhetorical Struc-
ture Theory (RST) (Mann and Thompson, 1987),
Discourse Lexicalized Tree-Adjoining Grammar
(DLTAG) (Webber, 2004), Segmented Discourse
Representation Theory (SDRT) (Asher, 1993).
Each of these theoretical frameworks has been at
the center of important corpus building efforts,
see (Carlson et al., 2003; Prasad et al., 2004;
Baldridge et al., 2007) respectively. In the present
work, we focus on the first step, namely segment-
ing a discourse into EDUs, within a larger project
aiming at building an SDRT discourse corpus of

French texts.

In addition to being a necessary step in discourse
parsing, discourse segmentation, could also be
useful as a stand-alone application for a variety
of other tasks where EDUs could provide sim-
pler input than sentences. Examples of such tasks
are: automatic summarization and sentence com-
pression, bitext alignment, translation, chunk-
ing/syntactic parsing.

The first discourse segmentation system dates
back to the rule-based work of (Ejerhed, 1996),
which was a component in the RST-based parser
of (Marcu, 2000). More recently, (Tofiloski et
al., 2009) tested a rule-based segmenter on top of
a syntactic parser, achieving F-score of 80-85%
in segment boundary identification on a slightly
modified RST corpus. Machine learning based
segmentation systems have also been proposed,
notably by (Soricut and Marcu, 2003), (Sporleder
and Lapata, 2005) and (Fisher and Roark, 2007).
The latter report F-score of 90.5% in boundary
detection (and 85.3% in correct bracketing) on
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the RST corpus.
Discourse segmentation is to large extent theory
dependent, for different theories make different
assumptions on what EDUs can be. Carried out
on the RST corpus, previous work on discourse
segmentation has exploited an important particu-
larity of this corpus: namely, the fact that it does
not have any embedded EDUs. These approaches
have been able to recast discourse segmentation
as a binary classification problem: that is, each
text position (token or token separator) is either a
segment boundary or not. By contrast to RST,
other theories like SDRT allows for embedded
EDUs: embedding is used to encode modifying
clauses like non restrictive relatives (including re-
duced relatives) and appositions. As will be dis-
cussed in Section 2., our SDRT-based corpus does
contain close to 10% of nested EDUs.
Predicting nested structures introduces additional
difficulties, in particular that of outputting a co-
herent, balanced bracketing. This characteristic
renders discourse segmentation akin to syntac-
tic clause boundary identification (CBI), a task
which has received some attention from the CL
community. The main approach to CBI is to clas-
sify tokens into three classes for clause start, end,
or inside. The best results obtained during the
CoNLL-2001 campaign were 89-90% for bound-
ary detection and 81.73% for correct clause iden-
tification (correct guessing of start and end), with
boosted decision trees (Carreras and Màrquez,
2001).
We have adapted this general setting to the prob-
lem of discourse segmentation, with possible em-
bedded segments, and applied it to a corpus of
French discourses, part of an on-going corpus
building project.

2. Data and Evaluation
2.1. Corpus
The corpus we use has been developed as part of
the Annodis project1, an on-going effort to anno-
tate French discourses from various genres with
both top-level, typographic structures and local
coherence relations. About 100-150 texts are
being segmented and annotated with coherence
relations. These documents are drawn mainly

1http://w3.erss.univ-tlse2.fr/
textes/pagespersos/annodis/

for wikipedia articles and from L’est républicain
newspaper 2. Text length varies from 300 to 900
tokens. Annotations are performed by pairs of
human annotators in a two-step process: (i) in-
dividual annotations, and (ii) adjudication. The
present work considers the 47 texts that have un-
dergone validation. The average number of EDUs
per document in this set is 33.
Segments typically correspond to verbal clauses,
but also other syntactic units describing eventu-
alities (such as prepositional phrases), adjuncts
such as appositions or cleft constructions with
discursive long-range effects such as frame ad-
verbials. A particularity of the discourse units in
Annodis is that they can be embedded in one an-
other, as in example in figure 1 (brackets mark
segmentation).
In this example, the EDUs π1 mondialement con-
nues, and π2 donc difficilement écoulables, are
nested within the the main, discontinuous EDU
π0 Ces pièces avaient été repérées chez un riche
amateur nippon.

2.2. Evaluation

Discourse segmentation evaluation is typically
performed in terms of precision, recall, and
F-score for segment boundaries (Soricut and
Marcu, 2003; Fisher and Roark, 2007; Sporleder
and Lapata, 2005). Previous work differ as to
whether they include sentence boundaries (e.g.,
(Soricut and Marcu, 2003) are only interested
in sentence-internal segmentation) and whether
they additionally require labeling of the segments
(Sporleder and Lapata, 2005).
Since the type of segmentation we produce in-
cludes nested EDUs, we have to resort to an-
other type of evaluation. For this paper, we use
the three metrics commonly used for evaluating
clause detection: (i) precision, recall, and F-score
for segment start position, (ii) precision, recall,
and F-score for segment end position, and (iii)
precision, recall, and F-score for complete seg-
ments. These metrics correspond to three tasks
included in the CoNLL 2001 shared task.

2http://www.cnrtl.fr/corpus/
estrepublicain/
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[Ces pièces, [mondialement connues,]π1 [donc difficilement écoulables,]π2 avaient été
repérées chez un riche amateur nippon]π0

[The pieces, [worldwide famous,]π1 [thus hard to resell,]π2 had been located at a rich japanese art
lover’s]π0

Figure 1: A discourse segmentation from the Annodis corpus.

3. Approach
3.1. Classification Model
Like previous approaches to discourse segmen-
tation and CBI, we cast the task of EDU iden-
tification as a classification problem. Specifi-
cally, we built a four-class classifier that maps
each token wi in a discourse w1, . . . , wn to
one of the following boundary types B =
{left,right,both,nothing}. These cor-
respond to the different bracketing configurations
found in our corpus, respectively (i) wi opens
a segment, (ii) wi ends a segment, (iii) wi is a
single-token segment, and (iv) none of the above.
If we take the beginning of the example in 2.1.,
[Ces pièces, [mondialement connues,] Ces and
mondialement would be classified as left, the
last comma as right, and all other tokens as
nothing.
For our classifier, we used a regularized maxi-
mum entropy (MaxEnt, for short) model (Berger
et al., 1996). In MaxEnt, the parameters of an
exponential model of the following form are esti-
mated:

P (b|t) =
1

Z(b)
exp

(
m∑
i=1

wifi(t, b)

)
where t represents the current token and b the out-
come (i.e., the type of boundary). Each token t
is encoded as a vector of m indicator features fi.
There is one weight/parameterwi for each feature
fi that predicts its classification behavior. Finally,
Z(b) is a normalization factor over the different
class labels (in this case, the 4 boundary types),
which guarantees that the model outputs proba-
bilities.
In MaxEnt, the values for the different parameters
ŵ are obtained by maximizing the log-likelihood
of the training data T with respect to the model
(Berger et al., 1996):

ŵ = argmax
w

T∑
i

logP (b(i)|t(i))

Various algorithms have been proposed for
performing parameter estimation (see (Malouf,
2002) for a comparison). Here, we used the Lim-
ited Memory Variable Metric Algorithm imple-
mented in the MegaM package.3 We used the de-
fault regularization prior that is used in MegaM.

3.2. Feature Set
Our feature set relies on two main sources of in-
formation. The first source is a list of lexical
markers, containing discourse connectives and a
few indirect speech report verbs that are likely to
introduce discourse units. Specifically, we cre-
ated boolean features that check whether the to-
ken is part of connectives (resp. verbs) in our list
of markers.
The other information source is (morpho-
)syntactic, drawn from the automatic analysis
provided by the Macaon chunker (Nasr and
Volanschi, 2006) and the SYNTEX dependency
parser (Bourigault et al., 2005). Using these two
analyzers, we extract for each token: its lemma,
its part-of-speech (POS) tag, its chunk tag, its
dependency path to the root element (as well as
“sub-paths” of length 1-3), and its inbound de-
pendencies. In addition, we also capture the lin-
ear position of the word in a sentence (we used
quantized values ranging from 1-100). These fea-
ture templates were also applied to the surround-
ing words in a window of 3 words to the left and
right.
Two more feature families were added. The first
concerns the outward chunk sequence for each to-
ken; that is, given that a token is embedded in
a sequence of chunks, we start from the inner-
most chunk tag and we go out all the way to the
outermost. These features exploit the fact that
Macaon provides some level of embedding in its
chunks. The second feature family concerns all

3Available from http://www.cs.utah.
edu/~hal/megam/.
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the n-gramms 1 < n ≤ 6 for which the token
is included and their span does not exceed the
boundaries of the current sentence. A synoptic
table with the entire feature set we used is shown
in table 1.

3.3. Resampling
The distribution of boundary types is heavily
skewed towards nothing (about 12.000 in-
stances against about 1400 for each left and
right), which suggests that resampling our data
toward a more uniform distribution might lead to
better classification accuracy, and in turn to better
EDU segmentation.
The resampling method we used directly exploits
the syntactic chunk boundaries as found by the
Macaon chunker. It is based on the observation
that EDU boundaries in a large majority of cases
coincide with chunk boundaries. The output of
Macaon was used in the following ways. First,
we decided to replace the decisions on sentence
boundary tokens with the decisions that Macaon
provides. In other words, sentence boundary to-
kens, as given by Macaon, were ignored during
training; they were tagged as left and right
respectively during test. Second, we also re-
moved from training tokens that were strictly in-
side chunks (that is, tokens that are inside a chunk
but doesn’t correspond to its beginning or end).
At test, these tokens were assigned the nothing
class. All remaining tokens were used for training
and follow the classification decoding at test. Af-
ter those modifications, the class distribution was
around 9200 instances for the class nothing,
while the rest of the classes had around 1400 in-
stances.

3.4. Enforcing coherence
Casting segmentation as a series of local classifi-
cations has two major drawbacks. First, the seg-
mentation decision at a token is highly dependent
from the decisions on neighboring tokens. Sec-
ondly, unrelated local decisions do not guaran-
tee the well-formedness of the segmentation of a
sentence, since we allow for embedded segments.
For instance, the number of beginning of embed-
ded segments must obviously match the number
of endings.
A straightforward way to capture Markovian de-
pendencies between segmentation labels is to en-

code previous labels as features of the model,
in combination with a Viterbi decoding. Un-
fortunately, we found during development that
this strategy degrades segmentation performance,
probably due to the sparsity of the boundary la-
bels.4

To tackle the problem of ensuring a coherent
bracketing, we propose a specific post-processing
on the outputs of the classifier. In particular, we
apply heuristic repair techniques (adding/deleting
boundaries) to yield a well-formed sentence seg-
mentation. A simple technique proved efficient
enough: we scanned sentences token by token
from beginning to end, while keeping track of the
depth of the current EDU embedding. If the depth
is 0 before the end of a sentence, it means we
found a stranded token, that is then reclassified
as left; this rebalances the number of left
and right. Dually, we reversed the sequences
to reclassify remaining out-of-segment tokens as
right. This heuristic is illustrated in figure 2.
In the future we plan to apply local optimization
techniques under well-formedness constraints, to
repair segmentations while better preserving the
probability on each decision.

4. Experiments and Results
We present two sets of scores, one without post-
processing and one with post-processing. We did
a 10-fold cross-validation on the sentences con-
tained in the 47 documents of the corpus. We
used the three metrics for segmentation evalua-
tion discussed in section 2.; we also report preci-
sion, recall, and F-score for the both boundary
class.
Table 2 (resp. table 3) reports the perfor-
mance scores of the “classifier-only” system
(resp. “classifier+post-processing” system) for
the first series of experiments. In terms of overall
classification performance, both systems perform
similarly, but the second system improves on the
three boundary classes {left,right,both}.
The main source of improvement comes from re-
call, which suggests that our heuristics recover
boundaries that were missed by the classifier.
Before post-processing, the proportion of not
well-formed segmentations on the (recognized)

4Similar findings are reported by (Fisher and
Roark, 2007).
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Feature Description

Lemma the token’s lemma (Syntex)
POS Part of speech (Macaon)
Grammatical category the main grammatical category of the token: V, N, P, etc. (Syntex)
start of a discourse marker boolean, indicating whether the tokens starts a discourse marker
indirect speech report verb boolean, indicating whether the token belongs to a predefined

list of verbs.
dependency path the dependency path from the word towards the root, limited

to distance 3 (Syntex)
inbound dependencies the inbound dependency relations for each token (Syntex)
syntactic projections the number of times that the token is at the start, end or middle

of an NP, VP, PP projection (Syntex)
distance from sentence boundaries the relative distance from each of the sentence boundaries
context 3-grams the lemma and POS 3-grams before and after the

token (Syntex & Macaon)
chunk start/end boolean features; token coincides with a chunk start/end (Macaon)
outward chunk tag sequence the sequence of chunk tags from the innermost to the

outermost chunk (Macaon)
context n-gramms all the n-gramms (1 < n ≤ 6) that include the token and do

not exceed the limits of the sentence. The n-grams include
Lemmas (Syntex), POS tags (Macaon) and Chunk tags (Macaon)

Table 1: Features used for the second approach (including chunks).

Input from classifier:
[The pieces,] worldwide famous,] thus hard to resell,] had been located [at a rich japanese art
lover’s]

First pass left-to-right:
[The pieces,] [worldwide famous,] [thus hard to resell,] [had been located [at a rich japanese art
lover’s]

First pass right-to-left: [The pieces,] [worldwide famous,] [thus hard to resell,] [had been located]
[at a rich japanese art lover’s]

Figure 2: Example repairing of a not well-formed segmentation with additions underlined. The sen-
tence can now be compared to the reference, cf figure 1.

sentences is 35%, our post-processing heuristics
yield 98% well-formed segmentations. The im-
pact on precision/recall is shown in table 3.

The overall bad performance on both is due
to the lack of data for this class: there are less
than 20 examples in the entire corpus. When it
comes to the segment evaluation, again the best
results were achieved by the second approach
which managed to correctly identify 73% of the
manually annotated segments. These results are
slightly less, but close to, the best results obtained

by systems on the CBI task. Of course, the main
reason post-processing boosts the EDU score is
that a third more of the sentences are now evalu-
ated, since they are well-formed. But the decline
in precision is much less than the gain in recall.

4.1. Learning Curve

For their RST EDU segmentation experiments,
Fisher and Roark (2007) have been using the
RST-DT corpus which consists of a total of
385 documents (176, 000 tokens). Carreras and

3582



Class Recall Precision F-measure

Left 0.845 0.891 0.868
Right 0.881 0.925 0.902
Both 0.684 0.812 0.742

EDUs 0.427 0.880 0.575

Table 2: Evaluation without post-processing.

Class Recall Precision F-measure

Left 0.876 0.880 0.878
Right 0.885 0.889 0.888
Both 0.684 1.0 0.812

EDUs 0.719 0.748 0.733

Table 3: Evaluation with post-processing.

Màrquez (2001) have used the CoNLL 2001 cor-
pus for the task of clause boundaries identifica-
tion: this corpus includes sections 15− 18 of the
Penn Treebank for training (211, 727 tokens) and
section 20 for test (47, 377 tokens). In contrast to
those approaches we have worked, as mentioned
in section 2. we have been working with 47 val-
idated documents (14384 tokens) from the Ann-
odis project. Given that the number of documents
that we have been working with is limited, at least
in comparison with other approaches, we have
calculated the learning curve for this number of
documents in order to understand how the learn-
ing procedure will be influenced once we have
the totality of our documents annotated. As men-
tioned in section 2. the total number of documents
expected will be in the range of 100 to 150.
In order to calculate our learning curve, we di-
vided our corpus into 9 different learning sets,
starting from 5 random documents and incremen-
tally adding 5 random documents into each learn-
ing set. For each such set we performed a ten-fold
cross-validation, in the same way as described in
section 4., using the feature set shown in table 1.
The learning curve is shown in figure 3. As it
can be seen from this figure, the curves for both
classes (left and right) grow regularly be-
tween sets 5 to 30 while it seems to plateau be-
tween sets 30 and 40 only to start going up again
during the last set of documents. In general, it
seems that the addition of more documents will
only slightly increase the performance of our ap-

proach.

5. Conclusions and Future Work
Discourse segmentation is a crucial preprocess-
ing stage for discourse analysis, and the global
reliability of discourse parsing is heavily deter-
mined by success at this level. We have proposed
a simple approach combining a 3-class classifier
with a post-processing heuristics that achieve rea-
sonable results, although the data available at the
moment is limited. We need to see how this gen-
eralizes to the whole corpus, and to check how
dependent it is on the nature of the corpus (news-
paper articles and encyclopedia article). Another
angle we plan to investigate is the usefulness of a
non-perfect segmentation to help annotators start
discourse annotation. Given the cost of human
annotation of discourse, saving time on the seg-
mentation would be a boost to annotators pro-
ductivity, provided we verify that time spent is
roughly proportional to the number of errors in
the automated preprocessing; that hypothesis is
not necessarily true, and there might be a thresh-
old on the precision of the processing that is ac-
ceptable. Mainly, the ideal trade-off between pre-
cision and recall remains to be investigated.
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