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Abstract
The modeling of human behavior becomes more and more important due to the increasing popularity of context-aware computing and
people-centric applications. Inspired by the principle of action-as-language, we propose that human ambulation behavior share similar
properties as natural languages. In this paper, we use a Life Logger system to build the behavior language corpus. The behavior
corpus shows Zipf’s distribution over the frequency of vocabularies which is aligned with our “Behavior as Language” assumption.
Our preliminary results of using smoothed n-gram language model for activity recognition achieved an average accuracy rate of 94% in
distinguishing among basic behaviors including walking, running, and cycling. This behavior-as-language corpus will enable researchers
to study higher level human behavior based on the syntactic and semantic analysis of the data.

1. Introduction
The advancement of sensor technology makes context-
aware and people-centric computing more promising
than ever before (Campbell et al., 2008). However, to
effectively extract user-behavior context from the generally
equipped sensors of normal mobile devices (e.g. mobile
phones) still poses challenges for researchers and industry
professionals. Behavior models can typically be used to
recognize anomalous behavior as well as deviation from
routine, or skipped steps for elders with onset dementia
(Wilson and Atkeson, 2005). The state-of-the-art approach
in behavior modeling uses the Hidden Markov Model
(HMM) to recognize sensed activities as one of the pre-
defined activities. HMM assumes the first order Markov
chain in the state space and usually does not consider
the inherent “grammar” or “structure” of the ambulatory
behavior. The activities that can be recognized by the
HMM are limited to those pre-defined in the training data
which also limits the application of behavior modeling in
people-centric computing.

In this paper, we present anl approach to modeling
human behavior as language and describe our works in
building the “behavior language corpus”. We begin the pa-
per by introducing the principle of “behavior-as-language”.
We then present our Life Logger system1 which is used
to collect the data to build the corpus and the evaluation
tool for behavior recognition task. Then we present our
preliminary results on activity recognition using our initial
behavior-language data. Finally, we present our findings
and discuss future research in behavior language modeling.

2. Behavior as Language
The similarity between human behavior and language
had been articulated by Burke (1966) and Wertsh (1998).
Based on the “principle of language as action”, natural
language and human action are really the same thing. They
are both “mediational means” or tools by which we achieve
our ends. They exhibit structure and satisfy “grammars”.

1http://www.lifelogger.info

Table 1 illustrates that ambulatory behavior shares a
lot in common with natural languages at all levels. The
anatomy of human bodies allows us to perform certain
atomic movements such as “turn upper body left” where as
“jump up at 10g acceleration” is not possible. Such atomic
movements form the vocabulary of the behavior language.
A sequence of atomic movements performed in meaningful
order creates a movement such as an action of “standing
up”. Actions such as “climbing up stairs” are created by
performing actions in a right order similar to create a
“sentence”. A sequence of actions builds up an activity.
Higher level behavioral concept event is composed of a
series of activities in a similar way as a document.

In this paper, we focus mainly on the ambulatory be-
havior such as “walking” and “climbing upstairs and
walking into my office.” We use 3-axis accelerometers
to record users’ motion. The accelerometer measures the
acceleration at the X, Y, Z direction at the time of sampling.
For the built-in accelerometers used in our experiments,
the raw readings for each axis ranges from -360 to 360
which translates into 373,248,000 different (ax, ay, az)
combinations. Based on our assumption that we can only
make certain atomic movements due to the anatomy, we
quantize the raw accelerometer reading into V groups
using K-Means clustering algorithm. Once the K-means
clustering algorithm converges, it results in V cluster
centroids and we give each cluster a label such as “D”,
“GC” and “DFR”. We can then convert all the training and
testing accelerometer data to their nearest cluster’s label
and thus convert the ambulatory behavior into “behavior
text” (Figure 1). Figure 2 shows the process of modeling
the ambulatory behavior as language.

To empirically evaluate the similarity between the
ambulatory behavior and natural languages, we check if
the behavior language corpus follows the Zipf’s law. Zipf’s
law states that given some corpus of natural language
utterances, the frequency of any word is inversely propor-
tional to its rank in the frequency table. In other words,
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Natural Language Behavior Language Example
Word Atomic Movement Turn upper body left
Phrase Movement Stand up
Sentence Action Climb up stairs
Paragraph Activity Enter building, climb up stairs

and walk into office
Document Event Left home and ride bicycle to campus

arrived at my office at 2nd floor

Table 1: Behavior as language at different levels.

[31,271,37] [37,281,42] [37,276,47] [42,271,47] [42,266,53] [58,271,47] [53,271,47] [74,271,42] . . .
⇓

CZ DG GI FK C BI CS DC HQ BX FI FI BX FI O . . .

Figure 1: An example of converting accelerometer readings to behavior language.
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Figure 3: log(freq) vs. rank of frequency of word types in
behavior language corpus.

the logarithm of a word’s frequency is linear to its rank in
a natural language corpus. Figure 3 plots the logarithm
frequency of word types in the behavior language corpus
for word type ranked 1, 2, 3, etc. Though not exactly
linear, it does plot a line similar to Zipf’s distribution.

3. Building Behavior Language Corpus
Recording accelerometer data from a user’s activity is
trivial. The challenge is to annotate the accelerometer data
for follow-up applications. Traditional experiment designs
either require the presence of observers who annotate
user’s activity on the side or ask volunteers to annotate the
collected data by themselves. The former has a drawback
of higher man-cost whereas the latter faces the risks of
inaccurate annotations.

To address these issues, we developed a Life Logger
system which eliminates the observer role and helps users
better annotate their collected data. The main idea behind
this system is that we record as many types of sensory
data as possible including GPS coordinates for outdoor
locations, gyroscope for rotation, microphone for sound,
camera view finder for pictures, and WiFi signal strength

Nokia N95 Smart
Phone

Figure 4: Sensor helmet for collecting behavior data.

for indoor locations. These sensory data are all recorded
with their corresponding timestamps.

We mount a Nokia N95 mobile phone on a helmet (Fig-
ure 4) to collect and transmit sensory data to the Life
Logger server. When displayed, all sensory data is aligned
according to their timestamps. Only data comes from
accelerometers and gyroscopes would be used to build the
behavior language models and all the other sensory data
serve as complimentary information which helps volunteer
recall what he / she was doing in the past and therefore
increases the accuracy of annotation.

The Life Logger server is responsible for storing, prepro-
cessing, and providing user interface for annotating the
collected data. Figure 5 shows the architecture of the Life
Logger server. The server was implemented as a Ruby
on Rails web application. The user can access the Life
Logger system easily through their web browsers without
the hassle of installing additional desktop applications.
To help volunteers recall their past activities, we fit three
types of sensory data - images, audio, and GPS locations
- into one screen (Figure 6) to let users easily combine
these memory clues. Moreover, since all sensory data
is associated with synchronized timestamps, users can
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Figure 2: Generating behavior language data.

Figure 5: Life Logging system architecture.

Figure 6: Annotation interface of behavior corpus.

navigate through the data set by simply drag-n-drop the
timeline at the left-bottom corner and all the three types of
data would be updated simultaneously. Finally, volunteers
annotate the data by selecting a range on the timeline and
provide a text description.

We have collected 10 hours of data from two volunteers by
the time of this paper submission. We will keep improving
the volume and quality of the behavior language corpus by
collecting more data using our specialized sensor helmet.

4. Behavior Recognition by Language
Modeling

With the collected and annotated behavior language data,
we validate the assumption that behavior can be modeled
as language through the behavior recognition experiments.
Most of the gesture and activity modeling methods we see
today are based on Hidden Markov Models (HMM). HMM
classifies the input sensing information into one of the pre-
defined activities such as walking, running, and standing.
HMM approaches are limited to recognizing predefined ac-
tivities using first-order Markov models. In our approach,
we view the labeled data for each activity ai as the training
corpus and train a smoothed n-gram language model over
the converted behavior language text. For each testing data
t, we use each language model to calculate the probability

Configuration Value
Activity Type Walking, jogging, cycling
Phone position Head, waist, both
Vocabulary size 100, 150, 200
Max. Sent. Length 5, 15, 25
n-gram order 2, 3, 4, 5, 6
Smoothing Good Turing, Witten Bell

Table 2: Configuration of the experiments.

Predicted Activity
walking running cycling

walking 94% 3% 3%
running 6% 92% 2%
cycling 8% 0% 92%

Table 3: Classification accuracy on corpus with vocabu-
lary=100.

of t being generated by activity ai and predicts the activity
of the testing data to be i∗ such that

i∗ = argmax
i

P (t|ai) (1)

The pit-fall of using language model for activity recogni-
tion is that language model probabilities are not directly
comparable if their training data has different vocabulary
size. To by-pass this problem, each training data is
augmented with the vocabulary list from all training data.
Thus, all language models have the same vocabulary size
and the probabilities are comparable.

The experiments were conducted using various configu-
rations to better understand the strengths and weaknesses
of our approach. Table 2 lists configuration of different
features used in experiments.

We built the behavior language models for each possible
combination of these settings to answer the following ques-
tions:

• How much does the phone position affect the quality
of training data?

• Is there a significant difference in recognition accuracy
between general or user-specific language models?

• What is the set of parameters that generate language
models with the highest recognition accuracy?

Table 3 and 4 compare the recognition accuracy of
language models trained over a corpus of vocabulary
size 100 vs. the one with 200 word types. With larger
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Predicted Activity
walking running cycling

walking 95% 1% 4%
running 4% 94% 2%
cycling 2% 0% 98%

Table 4: Classification accuracy on corpus with vocabu-
lary=200.

Figure 7: Recognition accuracy vs. n-gram order.

vocabulary size, i.e., more atomic movement types, the
behavior language text has more discriminative power to
differentiate activities.

Figure 7 shows the average activity recognition accuracy
vs. the order of n in language model training. Overall, for
this simple activity recognition task, the order of history
does not play a significant role here.

5. Related Work
Several approaches had been used to distinguish basic
human behavior. They can be categorized into two flavors:
heuristic threshold-based classifiers and pattern recognition
techniques such as decision trees, nearest neighbor, Naive
Bayes, support vector machines (SVM), neural networks,
and Gaussian mixture models (Nguyen et al., 2007). For
distinguishing high-level human behavior, several attempts
had been made in (Aipperspach et al., 2006; Patterson et
al., 2003).

The MyLifeBits system (Gemmell et al., 2002) is de-
signed to store and manage a lifetime’s worth of everything
that can be digitized. MyLifeBits supports capture, storage,
management and retrieval of many media types, and logs
as much usage data as possible. The missing technology in
MyLifeBits work is content analysis. The system can only
search text information that has been added by users. For
other media types such as video and audio, MyLifeBits
does not know how to represent the “meaning” of the
video and audio data. As discussed in this paper, such
representation is key for content analysis.

6. Conclusion and Future Work
In this paper, we present an approach of modeling ambula-
tory behavior as language. We verify the similarity between
behavior and language by demonstrating Zipf’s distribu-
tion over our behavior language corpus. The experimental

results presented in Section 4. demonstrate high accuracy
of using language models for human behavior recognition.
Unlike the traditional HMM approach which is limited to
behavior recognition task, modeling behavior as language
enables many other applications such as behavior cluster-
ing, daily events summarizing, and behavior semantic anal-
ysis. Our future work includes 1) continuing extending our
behavior language corpus database, 2) using our approach
to recognizing high-level human behavior, and 3) finding
more evidence on the similarity between behavior and lan-
guage including unsupervised grammar induction from the
behavior language.
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