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Abstract
Many contemporary language technology systems are characterized by long pipelines of tools with complex dependencies. Too often,
these workflows are implemented by ad hoc scripts; or, worse, tools are run manually, making experiments difficult to reproduce.
These practices are difficult to maintain in the face of rapidly evolving workflows while they also fail to expose and record important
details about intermediate data. Further complicating these systems are hyperparameters, which often cannot be directly optimized by
conventional methods, requiring users to determine which combination of values is best via trial and error. We describe LoonyBin, an
open-source tool that addresses these issues by providing: 1) a visual interface for the user to create and modify workflows; 2) a well-
defined mechanism for tracking metadata and provenance; 3) a script generator that compiles visual workflows into shell scripts; and 4)
a new workflow representation we call a HyperWorkflow, which intuitively and succinctly encodes small experimental variations within
a larger workflow.

1. Introduction
Empirical research in natural language processing – and
compiling resources to this end – have become complex
multi-stage processes. Data preparation alone can require
tokenization, text normalization, re-encoding, cleaning of
noisy data, etc. Experiments on this data often involve
training and tuning of multiple models, testing on a held-
out test set, and evaluation of the result – all of which
are conducted under multiple experimental conditions (i.e.
with different corpora and different sets of hyperparame-
ters).
For example, in syntactic statistical machine translation, a
typical experiment consists of over 20 tools with a com-
plex network of dependencies spanning multiple machines
or even clusters of machines. Parsing and phrase extraction
might be run on a large cluster of hundreds of low-memory
machines, preprocessing and word alignment might be run
on a local server where software installation is easier, while
tuning and decoding might be done on a small cluster of
large-memory machines.
The management of such workflows presents a real chal-
lenge in terms of keeping results organized, analyzing re-
sults at every stage, and automating the workflows. Some
find this task so frustrating that they forgo automation al-
together, both making experiments difficult to reproduce
and wasting CPU cycles when tasks finish while the user
is asleep or otherwise away from a terminal. Those who
automate their tasks often use ad hoc scripts that are brittle
to workflow changes, perform sanity checking in an incon-
sistent way (if at all), and keep log files in disparate formats.
Even special-purpose workflow management systems (see
Section 5.) are awkward at best for running experiments
under multiple conditions.
LoonyBin was designed to handle medium-scale1 arbitrary
scientific workflows keeping the needs of natural language

1By medium-scale, we mean workflows having hundreds of
vertices. Mega-scale workflows have been identified by Deelman
as those having hundreds of thousands of vertices.

processing in mind. Specifically, it accommodates work-
flows that:

• span various machines, clusters, and schedulers

• involve many separate tools, which can be invoked by
arbitrary UNIX commands

• have components that are run multiple times under
multiple conditions

• evolve quickly with tools frequently being added, re-
moved, and swapped

LoonyBin accomplishes this by providing the following ad-
vantages over current common practices:

• associating sanity checks and logging directly with
tools, separating these from ad hoc wrappers and au-
tomation scripts

• maintaining a cleanly organized directory structure for
each step and each condition under which a step is run

• providing a resume-on-failure mechanism for every
stage in the pipeline

• making it easy for those without a detailed knowledge
of each tool’s internals to run the system by providing
textual descriptions of each parameter, input file, and
output file in a graphical workflow designer

• automatically copying required files between ma-
chines or clusters via SSH

• compiling workflows into shell scripts, a medium al-
ready in widespread use by NLP researchers

2. Workflow Creation
2.1. Workflow Semantics
We now discuss the representation of workflows in Loony-
Bin. In their most basic form, LoonyBin represents work-
flows as Directed Acyclic Graphs (DAGs) as shown in Fig-
ure 1. In this form, each vertex represents a TOOL, which
produces output files given input files and parameters, and
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Figure 1: A simple workflow represented as a Directed Acyclic Graph (DAG) as described in Section 2.1.
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Figure 2: A HyperWorkflow with multiple REALIZATIONS, represented as a Semantic DAG as described in Section 2.2.
Hyperedges are visually represented as edges originating from triangular vertices.

directed edges indicate relative temporal ordering of tools
and information flow (files or parameters) by mapping the
outputs of one tool to the inputs of the next. A TOOL DE-
SCRIPTOR defines the commands necessary to run a tool
given inputs, outputs, and parameter. Custom tool descrip-
tors can be implemented via simple user-defined Python
scripts that generate shell commands. These tool descrip-
tors contain PRE-ANALYZERS to check the sanity of the in-
puts and to log information and POST-ANALYZERS to check
the sanity of the output files, log information about the out-
puts, and extract log data from any third-party log file for-
mats.

2.2. HyperWorkflow Semantics

LoonyBin also represents the running of workflows under
multiple experimental conditions (i.e. with different input
files or parameters). We call this a HYPERWORKFLOW.
A HyperWorkflow contains REALIZATION VARIABLES,
which introduce variations into a shared workflow. Each
realization variable can take on a REALIZATION VALUE,
which is a set of files and parameters. For instance the real-
ization variable “language model file and order” could take
on the realization value {english.txt, 4}. Finally, a REAL-
IZATION INSTANCE is a regular workflow unpacked from a
HyperWorkflow; it is a configuration of a HyperWorkflow
such that all realization variables have been assigned a par-
ticular realization value. Note that some realization vari-
ables might take on a null value if they are irrelevant for a
given instance (see Figure 8 in the appendix). HyperWork-
flows are useful for performing exploration of hyperparam-
eters, ablation studies, variation of input corpora, and so
forth.

To meet this requirement, we use a new data structure based
on directed hypergraphs2. A hypergraph is a straightfor-
ward generalization of a graph in which each endpoint of
an edge can connect multiple vertices (Gallo et al., 1993).
For HyperWorkflows, we use a HYPERDAG3, the hyper-
graph formulation of a DAG, shown in Figure 2. Since this
data structure is difficult to draw in a visual interface, we
present it to the user by giving shaped vertices special se-
mantics; we call this representation the SEMANTIC DAG
format. In LoonyBin, a DIRECTED HYPEREDGE originates
as an edge entering a PACKING VERTEX (displayed as a tri-
angle in Figure 2). A packing vertex corresponds exactly
to a realization variable. Each hyperedge must have a name
and each hyperedge introduces a realization value of the re-
alization variable. A hyperedge has multiple sources when
multiple edges with the same name enter the packing ver-
tex, and it has multiple destinations when multiple edges
exit the packing vertex. A packing vertex acts like a switch
to select one of its realization values. Thus, each unique
named edge entering a packing vertex creates a new real-
ization instance in the workflow.
These realization variables are then propagated through
the remainder of the workflow. Where multiple realiza-
tion variables meet, LoonyBin produces the cross product
between their realization values. A HyperWorkflow is a
packed representation of multiple workflow DAGs, and a

2Hypergraphs are already used in NLP both in parsing (Klein
and Manning, 2002) and syntactic machine translation (Zollmann
and Venugopal, 2006).

3In practice, we use a MetaHyperDAG, which generalizes a
HyperDAG by allowing meta-edges to take hyperedges as inputs.
See the appendix for details.
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realization instance is a particular unpacked instance of a
workflow. Put another way, a realization instance is an ex-
perimental condition (with regard to input files and param-
eters) under which a workflow is run. For example, in Fig-
ure 2 edges a and b enter a packing vertex and then propa-
gate realizations a and b. Notice that at the final “Evaluate
on Test Questions” vertex, the realizations combine with
each other to form a full cross product of experimental con-
ditions.
By representing workflows in this way, we can also exploit
the inherent shared substructure in these workflows in a dy-
namic programming fashion (Huang, 2008). We can both
cleanly represent all of the steps required to reproduce the
experiments while not rerunning any steps having the same
set of experimental conditions.

2.3. Designing
LoonyBin provides a visual editor, which lists all tools (see
Figure 4) in browsable tree. Tools can simply be dragged
and dropped into the workflow as vertices and edges can
be drawn by dragging arrows between these vertices. The
only requirement on the design machine is a recent version
of Java (Python scripts are executed via Jython). Loony-
Bin also allows for automatic generation of simple docu-
mentation for tools by using documentation strings that are
required for every input, output, and parameter as a part of
every tool descriptor.

2.4. Deploying
Once a workflow has been designed, LoonyBin can then
compile it into an executable shell script. Thus, the only
requirement on the machine that executes the workflow is
bash. Before any tools are ever executed, the generated
script checks that all input files and all directories contain-
ing required tools exist. Because LoonyBin handles all file-
names other than the initial inputs, this eliminates the com-
mon issue of pipelines crashing due to typos in file and di-
rectory names. The generated script will log into remote
machines, copying files and executing processes as neces-
sary.
LoonyBin also offers the option of executing workflows
asynchronously. In this mode, a Java process launches in-
dividual bash scripts when dependencies have been satis-
fied, and a browser-based web portal is provided to monitor
workflow progress.
LoonyBin allows each vertex to run on a different machine.
A machine can be a target on which to simply run com-
mands, or it can be the head node of a cluster through which
one can submit jobs. LoonyBin natively supports sched-
ulers such as Torque, Sun Grid Engine, and Condor. In this
respect, LoonyBin can be thought of as a meta-scheduler: it
primarily relies on other schedulers to ensure that resources
are effectively allocated. LoonyBin also provides integra-
tion with the Hadoop Distributed File System.

3. Data, Metadata, and Provenance
While being able to automatically execute and repro-
duce workflows is good, simply completing the job is not
enough. We also want to know how the input files at a
given step came to be; this history of the tool’s ancestors

along with their parameters and inputs is called PROVE-
NANCE – dubbed “the bridge between data and experi-
ments” by Miles (2008). In addition, we may also wish
to store METADATA, qualities associated with the data such
as how long it took to run a tool and on which machine a
tool ran. All the provenance and metadata is stored in plain-
text log files in a standard format: tab-delimited key-value
pairs and newline-delimited records, making it easy to pro-
cess these log files using standard command-line tools or
scripts. Finally, the log files for all antecedent steps for the
same realization are concatenated together at each vertex so
that logs for each realization can be processed via a single
file.
Since the user might want to run further analysis later, it
is important to be able to easily find the data itself. To ac-
commodate this, LoonyBin maintains a highly organized
directory structure for each workflow. Under a master di-
rectory, LoonyBin creates a directory with the name of each
vertex in the HyperWorkflow with child subdirectories for
each realization.

4. Real-World Usage
The first real-world tests of LoonyBin has been in the CMU
StatXfer machine translation system for GALE Phase 4
(see Figure 3) and the 2010 Workshop on Machine Trans-
lation. Aside from the experimental benefits provided by
HyperWorkflows, the sanity-checking and logging capabil-
ities turned out to be some of the most useful features of
LoonyBin for this task. For instance, the word alignment
program GIZA++ is notorious for creating blank output
files, crashing, and then returning a successful error code.
Our GIZA++ tool descriptor has a post-analyzer that de-
tects failures and logs the Alignment Error Rate. During
corpus preprocessing, we log the number of types, tokens,
etc. for the entire parallel corpus after each processing step.
This has proven useful both for understanding how each
tool affects the data and for comparing different systems at
later dates.

5. Related Work
In this section, we describe various alternative methods of
implementing workflows (see Table 1 for a summary). Per-
haps the most common tool for implementing workflows
are scripts. Perhaps the most common tool for implement-
ing workflows are scripts, which can be hard to maintain as
new steps and tools inevitably make their way into a work-
flow. Others have used build utilities such as GNU Make
since this more explicitly models the dependencies between
steps. However, as a build tool, it is an awkward fit for ex-
periment management, since it does not have the notion of
HyperWorkflows and keeping experimental conditions sep-
arate via Make variables can be error-prone.
Workflow Management Systems (WMS) have been a focus
of research in the e-Science community for many years,
though they have remained largely unnoticed by the NLP
community. The DAGMan (DAGMan Team, 2009) project
grew out of the Condor scheduler and allows the user to de-
scribe dependencies between Condor jobs in the form of a
DAG. While certainly a better fit than a build utility, DAG-
Man does not support handling of metadata or provenance
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Table 1: Tools commonly used to implement workflows.
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Figure 3: A simplified version of the CMU StatXfer system HyperWorkflow for the GALE Phase 4 Machine Translation
Evaluation showing the multiple experiments that were run

on its own. The Pegasus Project (Deelman et al., 2003)
aims to solve this by building on top of DAGMan and pro-
viding a mechanism for describing workflows in a more
abstract way while providing comprehensive support for
metadata and provenance management. Similarly, Kepler
(Altintas et al., 2004) provides a stand-alone system for de-

signing and running workflows. Dryad (Isard et al., 2007)
also allows constructing workflows on Windows HPC clus-
ters using a C++ library. In terms of raw performance,
Dryad is a clear winner among all of these systems, in-
cluding LoonyBin. However, none of these systems allow
the user to explicitly encode multiple experiments as Hy-
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Figure 4: A screenshot of the LoonyBin user interface

perWorkflows without resorting to looping constructs. In
contrast, LoonyBin explicitly avoids Turing-completeness
to ensure determinism while still allowing the user to easily
encode experimental variations.
For a general disussion of terminology used in WMS, we
recommend McPhilips (2008). For a more complete discus-
sion of the current state of scientific workflow management
systems, we recommend Deelman (2008) or Ludäscher
(2009).

6. Future Work
Though LoonyBin attempts to encode reproducible work-
flows, this is only achievable up to a point. Changes in
software versions, environment variables, and hardware re-
sources could cause workflows to fail in new environments.
While it is not practical to consider hardware limitations,
it is easy to generate workflows such that all environment
variables must be captured within the workflow definition
rather than externally. However, since this would place a
large burden on the user, we have not yet pursued this. On
this issue of software versions, we plan to link each tool in a
workflow to a particular revision of a source code manage-
ment system so that the original software versions can be
rebuilt if desired. With this addition, we foresee the ability
to publish and share LoonyBin workflows online.
Besides HyperWorkflows in which certain portions of a
workflow are run multiple times guided by packing ver-
tices, certain portions may also be shared at different points
within the same realization. For example, a group of ver-
tices might create a translation model, filter it to a specific
set, and then prune it. Currently, one must duplicate these
portions of the workflow. Programming languages, in con-
trast, deal with this cleanly with the notion of functions.
Eventually, we would like to integrate this into LoonyBin
with the ability to use workflows (but not HyperWorkflows)
as vertices.

LoonyBin gives the user the ability to easily execute paths
through a HyperWorkflow either exhaustively or by select-
ing a subset of realizations. Yet exhaustive exploration
of these workflow configurations is not ideal with regard
to time and resource limitations while the user often uses
1) simple criteria for selecting which path to select next or
2) does not have a good idea of what to select next. This
suggests that we could do automatic optimization of hy-
perparameters. Since a HyperWorkflow already defines a
search space over a workflow, we would need only to de-
fine an objective function to choose the next realization to
explore next.

Another aspect of scientific workflows is analyzing and
recording results. While LoonyBin records these in orga-
nized log files, we would like to automatically generate
charts, graphs, and tables from these. Further, it would be
desirable to have a method of archiving experiments from
a collection of workflows run over a long period of time
within a research group.

Some users are very experienced and comfortable with text
editors such as vim and Emacs. Therefore, we also plan to
provide a human-editable format for storing workflows so
the visual editor can be bypassed.

Currently, LoonyBin generates bash scripts that implement
workflows. However, it should also be possible to generate
DAGMan files to run on a Condor cluster (although Loony-
Bin already supports Condor as a scheduler). Another op-
tion would be generating Pegasus DAX files to be mapped
on to the Grid. Finally, we could consider generating Dryad
process wrappers to be mapped on to a Windows HPC clus-
ter by adding a new WorkflowVisitor in LoonyBin.

1305



7. Conclusion
We have presented LoonyBin, which we are releasing4

as an open-source tool for managing workflows in lan-
guage technology systems. In our own experiences with
the StatXfer MT system, we have found the tool to be
extremely useful. To encourage adoption, we release the
source under the nonrestrictive LGPL license and provide
quickstart video screencasts as tutorials. We hope that by
providing this tool to the community, experiments will be-
come more reproducible and researchers become more pro-
ductive.
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9. Appendix: MetaHyperDAGs
In this section, we sketch the equivalence of MetaHyper-
DAGs and the semantic DAGs presented in Section 2.2. We
also present a complex example that highlights a few im-
portant boundary cases and shows the power of this struc-
ture. This information is not intended for casual users and
will likely be of interest only to users who wish to know the
boundaries of LoonyBin’s expressive power or those wish-
ing to reimplement the core algorithms.
While semantic DAGs provide a convenient way of in-
crementally creating hyperedges, they are not so conve-
nient when unpacking HyperWorkflows into their unpacked
counterparts. Therefore, it is easier to think about visiting
a HyperWorkflow in terms of a MetaHyperDAG in which
each hyperedge (or meta-edge) represents an atomic deci-
sion. We must generalize a HyperDAGs to a METAHY-
PERDAG by allowing meta-edges, which may take mul-
tiple hyperedges as their input5, so that a traversal of the
HyperWorkflow visits each vertex the minimum number of
times. Consider Figure 5. If we were to model the neces-
sarily joint decision of which realization values to select for
z as hyperedges alone, we arrive at hyperedges that conflate
the decision of choosing the value of realization variables
A, B, and C. This would produce two hyperedges, one for
a1-b1-c1 and one for a1-b1-c2. Both of these hyperedges
would have y as a destination, causing y to get visited twice.
Yet y should be visited only once. By introducing the large
bold meta-edges in Figure 6, we can atomically choose a
combination of realization values for z while not causing
spurious ambiguity for y. We insert a meta-edge whenever

4LoonyBin is available for download at
http://www.cs.cmu.edu/˜jhclark/loonybin

5Alternatively, we could have inserted no-op vertices at the
source of the meta-edges, making the meta-edges normal edges.

the parents of a vertex are influenced by differing sets of re-
alization variables. In this way, we can construct an equiv-
alent MetaHyperDAG for a semantic DAG. The remaining
figures show the unpacking process, starting at a semantic
DAG and ending with separate unpacked DAGs.
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point in having a packing vertex with a single input edge. There is a 1-1 mapping between a LoonyBin Semantic DAG and
a corresponding MetaHyperDAG.
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Figure 6: The corresponding MetaHyperDAG. Notice that packing vertices have been transformed into hyperedges and
meta-edges. See that the two d2 edges entering C created a hyperedge with multiple sources while the multiple edges
leaving A creates a hyperedge with multiple destinations. When there are multiple packing vertices as the direct parents of
a vertex, a cross product is implied as shown at z. Finally, whenever the parents of a vertex are influenced by differing sets
of realization variables, we create meta-edges shown in bold as seen at w and z
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Figure 7: A broken HyperDAG-only conception of the above semantic DAG. Notice that to satisfy the constraint that
each decision be atomic, composite hyperedges that jointly decide at least A, B, and C at the same time were introduced.
However, this causes v to have an two hyperedges (one for d1 and one for d2), which include realization variables that do
not even affect v. This violates the constraint that each vertex be visited a minimal number of times.
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Figure 8: The corresponding paths through this MetaHyperDAG. Note that the realization variable C becomes irrelevant
for realization value d2 so that we no longer need to pick a value for it when exploring that path. In this form, it is natural to
have multiple edges with the same source and destination vertices since they might be linking different files or parameters.
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