
Analysing Temporally Annotated Corpora with CAVaT

Leon Derczynski, Robert Gaizauskas

University of Sheffield
211 Portobello, S1 4DP, UK

L.Derczynski@dcs.shef.ac.uk, R.Gaizauskas@dcs.shef.ac.uk

Abstract
We present CAVaT, a tool that performs Corpus Analysis and Validation for TimeML. CAVaT is an open source, modular checking utility
for statistical analysis of features specific to temporally-annotated natural language corpora. It provides reporting, highlights salient links
between a variety of general and time-specific linguistic features, and also validates a temporal annotation to ensure that it is logically
consistent and sufficiently annotated. Uniquely, CAVaT provides analysis specific to TimeML-annotated temporal information. TimeML
is a standard for annotating temporal information in natural language text. In this paper, we present the reporting partof CAVaT, and
then its error-checking ability, including the workings ofseveral novel TimeML document verification methods. This isfollowed by
the execution of some example tasks using the tool to show relations between times, events, signals and links. We also demonstrate
inconsistencies in a TimeML corpus (TimeBank) that have been detected with CAVaT.

1. Introduction
In essence, TimeML mandates the mark up of expres-
sions referring totimes, expressions denotingeventsand ex-
pressionssignalling temporal relations between times and
events or events and events; it also allowslinks to be added
between entities, which are labelled with the temporal rela-
tion holding between them.
Existing TimeML tools can be divided into two categories:
those which produce or alter mark-up, for example to as-
sist annotation, and those that perform analysis. Only a
few tools have as yet been developed for TimeML, mostly
focusing on the annotation task, such as TTK (Verhagen
and Pustejovsky, 2008), which does not support analysis.
From the second category, in the absence of other software,
the TimeML-using community is restricted to generic XML
analysis tools, such as Xaira (Burnard and Dodd, 2003) or
LT-XML 1, as well as similar format-specific tools (TEI).
These generic corpus tools are powerful applications, but
require substantial effort to apply to TimeML data.
We have constructed CAVaT (Corpus Analysis and Valida-
tion for TimeML) to process collections of temporally an-
notated documents. CAVaT’s functionality is divided into
two main parts; an integrated browsing and report genera-
tion system, and a modular extensible error checking and
corpus validation framework.
In this paper, we first describe the technical aspects of the
tool. We then present the reporting part of CAVaT, and
then its error-checking ability, followed by the executionof
some example tasks using the tool. We present an overview
of the tool’s operation and capabilities in Section 2. This
includes details of the corpus loading and folding process
(Section 2.1), report generation, and also a detailed expla-
nation of the advanced validation modules that are included
with CAVaT (Section 2.3). A brief syntax summary is pre-
sented in Section 3; the full guide is on the CAVaT web-
site2. Next, in Section 4, we present sample queries and
output. In Section 5, we show inconsistencies and observa-
tions in a TimeML corpus (TimeBank) that have been de-

1From http://www.ltg.ed.ac.uk/software/ltxml
2Available at http://code.google.com/p/cavat/

tected with CAVaT. Finally, Section 6 summarises the tool
and discusses future work.

2. Overview of the tool
CAVaT is an open source tool, constructed from a set
of Python modules and a database. It uses NLTK3 and
MySQL4. The interface is a text-based interactive prompt,
and all operations are performed with text commands.
Command syntax strives to be simple, flexible and close
to natural language. After loading and pre-processing a
TimeML corpus, one can analyse it using built-in reporting
functions, and perform data validation with one of many
checking components.

2.1. Preprocessing

CAVaT can work on any TimeML-annotated corpus that is
stored as a collection of uncompressed files in a single di-
rectory, by importing it to a set of database tables. The cor-
pus is initially processed by an XML parser (using Python’s
minidom andexpat implementations), which retrieves
document level data as well as all temporally annotated in-
formation, and places it into a MySQL database. Tempo-
rally annotated data includes all TimeML tags and their at-
tributes, as well any enclosed tokens for EVENT, SIGNAL
and TIMEX3 tags.
In TimeML, events are represented with the EVENT tag,
and temporal expressions with the TIMEX3 tag. These
intervals are the elements which CAVaT and the rest of
this paper assume as temporal primitives, unless otherwise
stated. Temporal relations between intervals are described
with the TLINK tag, and temporal signals with SIGNAL.
See Figure 1 for an example.
Automatically classifying the type of temporal relation be-
tween intervals is currently a difficult problem in tempo-
ral processing of text (Mani et al., 2006; Lapata and Las-
carides, 2006; Hepple et al., 2007). The task is often made
simpler by reducing the number of temporal link classes.
TimeML includesBEFORE and AFTER relations, though

3See http://www.nltk.org/
4See http://www.mysql.com/

398

Figure 1: Example text and TimeML annotation.

Text: "On Thursday, he took the plane to Copenhagen"

TimeML:

 <SIGNAL sid="s1">On</SIGNAL>

<TIMEX3 tid="t1" type="DURATION">Thursday</TIMEX3>,

he <EVENT eid="e1" class="I_ACTION">took</EVENT>

the plane to Copenhagen.

<MAKEINSTANCE eiid="ei1" eventID="e1" pos="VERB"

 tense="PAST" polarity="pos" />

<TLINK eventInstanceID="e1" relatedToTime="t1"

 signalID="s1" relType="DURING">

Table 1: Mappings between TimeML relations that can be applied
in order to reduce the size of the relation set; when applyingthe
transformation in the table, TLINK argument order is swapped.

Original relation type Folds to relation
AFTER BEFORE

IS INCLUDED INCLUDES

IAFTER IBEFORE

BEGUN BY BEGINS

ENDED BY ENDS

DURING INV SIMULTANEOUS

DURING SIMULTANEOUS

SIMULTANEOUS SIMULTANEOUS

one may simply reverse the arguments of aBEFORE rela-
tion to turn it into anAFTER one — so,June 2008 was
before August 2009is equivalent toAugust 2009 was after
June 2008. It is thus possible to convert all links of one
of these types to the other. We call this techniquefolding.
Given a set of mappings, the 13 TimeML relations can be
reduced.
CAVaT offers three folds:

• CAVaT fold – Collapses all inverse relations, such as
mappingINCLUDED BY to INCLUDES (see Table 1).

• SputLink fold – The mapping introduced by Marc
Verhagen, included in TTK (Verhagen, 2005).

• Compact fold – Reduces TimeML’s link relation set
to 3 classes, using mappings defined in Setzer et al.
(2005).

The first two are lossless, in that no temporal information
is removed by the folding process. The third is lossy. It is
possible to perform a lossy fold by, for example, reducing
the TimeMLBEGUN BY relationship to one ofINCLUDES.

2.2. Querying

The reporting part of CAVaT makes analysis of TimeML
corpora simpler and easier than working directly with a set
of XML documents, allowing flexible queries, and catering
for inquiries specific to temporally-annotated data.
The development of CAVaT has been driven by investi-
gations of TimeML corpora. Many of the operations per-
formed against a corpora had common elements, often cen-
tred around the retrieval of class distributions or token fre-
quencies. A tool for TimeML corpus research could en-
compass all the required operations, while providing access
to a larger range of reports.

CAVaT uses a report generation system where one can view
any number of pre-defined features that match conditions of
the user’s choosing. Queries can produce reports at vary-
ing levels of granularity – one may choose to examine data
at sentence, document or corpus level. Reports can output
counts, distributions, lists or text extracts. Example queries
are listed in Section 4. Data such as part-of-speech infor-
mation, tense, aspect, and event recurrence are captured by
attributes described by TimeML, and any data like this (an-
notated by tags and their attributes) can be queried. In ad-
dition, properties specific to temporal data but not directly
present in mark-up are implemented, including:

• Event / event instance abstractionIn some cases,
one piece of text may refer to two separate events
(an example is given later in Section 5.1.). To per-
mit annotation of this, TimeML’s EVENT tag is placed
around the text, and then event instances are specified
using one or more MAKEINSTANCE tags. Data re-
lating to a piece of event text, such as part of speech,
polarity and modality, are described in the MAKEIN-
STANCE tag. However, we would often like to see
the part of speech data for an event; indeed, when
discussing temporal entities, the term “event” is often
used in place of “event instance”. Thus, CAVaT im-
plicitly translates between these two related tags when
requested; for example, when one asks to see event
modality or cardinality.

• Signalled links TLINKs may indicate a textual sig-
nal that suggests the type of relationship between their
arguments. For example, inLydia ate dinner before
leaving the house, the wordbeforeacts as a signal, or-
dering two events. As signals are explicit indicators
of temporal association, and correctly typing a tempo-
ral link is difficult, it is useful to be able to quickly
identify which links employ a signal.

• Signal text and TLINKs As SIGNAL text referenced
from a TLINK may be thought of as that TLINK’s sig-
nal text, CAVaT permits queries that specify signal text
as an attribute of a TLINK.

• Text position and lemma Although not part of the
TimeML annotation schema, CAVaT logs text position
(by sentence number and word number), and main-
tains lemmas of text found within tags.

One may view a particular TLINK’s location in the origi-
nal document, showing the link’s arguments and their re-
lation type. This helps understand the context of a single
TLINK. For example, one may often see many links to a
single document date, or discover that most links have ar-
guments within the same paragraph – something not im-
mediately obvious to humans while browsing the TLINK
markup, and unclear with generic corpus tools.

2.3. Checking

Temporal annotation is a complex task, and as a result, a
relatively small amount of text has been annotated to date.
The largest TimeML corpus is TimeBank (Pustejovsky et
al., 2003), with less than 200 documents, and around 65000

399

Figure 2: With time flowing from left to right, this represents A

BEFOREB andB INCLUDES C. It is not possible forC andA to
be the same interval.

tokens. Because of the complexity of temporal annotation,
errors can arise beyond those that may be detected using
an XML DTD. CAVaT is both a reporting and validation
tool, and seeks to automatically detect high-level and com-
plex errors that are rarely immediately obvious. Part of the
motivation behind this part of the tool is similar to that of
writing unit tests that highlight bugs in an application: to
improve quality by automatically detecting previously seen
errors. In this section we detail some checks that CAVaT
can perform on a TimeML corpus.
Error checks are defined as Python modules, so that one
may describe a detection method for an error case and share
it with other researchers without modifying CAVaT’s core
code. The modules inherit from thecavatModule class;
documentation is in the source code, and one may view a
list of available modules with the commandcheck list.

2.3.1. Inconsistent closure
It is possible to create an inconsistent configuration of tem-
poral links. For example, we may haveA BEFOREB and
B INCLUDES A; this is clearly not possible, asINCLUDES

stipulates that the start point ofA occur after the start point
of B (see Figure 2). While this example is fairly clear, it
may not be at all clear to human annotators that a partial
temporal link annotation could imply an inconsistent con-
figuration.
Automatically checking the consistency of a temporal net-
work is hard. TimeML’s relations are based on those of
Allen (1983), and it is difficult to guarantee the consistency
of networks formed using the latter set of relations (Vi-
lain et al., 1989; Tsang, 1987). We re-state the problem
in a more simple fashion, as follows. Intervals are repre-
sented by pairs of endpoints, and we define intervals and
the TimeML relations between them in terms of relations
between these points. Our model uses only simultaneous
(=) and before (<) relations.
The consistency checker works in a similar way to the clo-
sure algorithm in Setzer et al. (2005). It maintains an
agenda and database. Assertions are taken from the agenda
and used to infer further assertions when combined with
assertions in the database. We initially process intervalsin
the document (taken from TLINK arguments) – for each
intervalI we addIstart < Iend to the database. We then
generate initial data for the agenda based on TLINKs in the
document and a mapping for each TLINK to one or more
assertions, listed in Table 2.
The only inference rules needed with our minimal set of
relations are:

• If x = y theny = x

• If x = y andy = z thenx = z

• If x < y andy < z thenx < z

Table 2: Mapping from TimeML relation types to a simple point-
based temporal algebra. The TimeML relation is of the forma

RELATION b. Where multiple relations are given, all hold. Similar
to the table listed in (Verhagen, 2005).

TimeML relation type Relation added to agenda
BEFORE aend < bstart

AFTER bend < astart

IAFTER bend = astart

IBEFORE aend = bstart

INCLUDES astart < bstart, bend < aend

IS INCLUDED bstart < astart, aend < bend

BEGINS astart = bstart, aend < bend

BEGUN BY astart = bstart, bend < aend

ENDS aend = bend, bstart < astart

ENDED BY bend = aend, astart < bstart

SIMULTANEOUS astart = bstart, aend = bend

IDENTITY astart = bstart, bend = aend

DURING astart = bstart, aend = bend

DURING INV astart = bstart, aend = bend

We can take items from the agenda. For each such item,
we compare it against the database, and deduce new rela-
tions using the above rules. If a newly generated relation
conflicts with anything in the agenda or database, then the
document is inconsistent. Otherwise, we will move the item
from the agenda to the database, and add newly generated
relations to the agenda. If we can clear the agenda, then
the document is consistent; otherwise, it is not. Whether
we add new relations to the top or bottom of the agenda
(achieving depth- or breadth-first search, respectively) is ir-
relevant to the success of the algorithm, though computa-
tional performance differences have not been measured.
Our baselines are the results of thetlink loop test (Sec-
tion 2.3.3.) and also the results of closure success according
to SputLink (Verhagen, 2005). This algorithm detected all
known inconsistencies in TimeBank, and found one more;
full details are later in Section 5.2. A test TimeML corpus
is included with CAVaT for verifying that the consistency
checker works, which alternative implementations may use
for validation.
Below is sample output from a consistency check:

cavat> check consistent in 3
Temporal graph consistency checker v1 loaded
Checking wsj_0927.tml (id 3)
! Inconsistent closure - could not assert
(ei2415_2 < ei2414_1)

2.3.2. Disconnected sub-graph detection
After inferring a temporal closure (Verhagen, 2005) of a
document, one is usually left with a single interconnected
temporal graph, where nodes are TIMEX3s or EVENTs
and edges represent TLINKs. However, disconnected
groups of links may exist post-closure. This should be
brought to the attention of the user; it often suggests that
annotating a small number of additional links can greatly
increase the amount of data inferable though closure, and
that an annotation is incomplete.
CAVaT’s sub-graph identification module,split graph,
works by processing TLINKs from a document sequen-
tially. We maintain a list of sets that will hold intercon-

400

nected intervals, beginning with an empty list. For each
TLINK, we check to see if either of its arguments (which
are both intervals) can be found in any set in our list. If
one argument can but the other cannot, the new interval is
added to the same set as the found interval. If they are
both found in the same set, no action is taken. If they are
found in different sets, those two sets are merged. If neither
TLINK argument can be found anywhere, a new set hold-
ing both intervals is created. This process is repeated until
all TLINKs have been processed, at which point each set in
the list represents an independent sub-graph of connected
intervals.
The module will then report statistics about the graph(s)
found in the specified document. These include:

• Count of sub-graphs, intervals and TLINKs;
• The number of “isolated” sub-graphs – that is, those

described by only one temporal link – and the propor-
tion of intervals/links used to describe all these iso-
lated sub-graphs;

• Mean and maximum sub-graph size, and the propor-
tion of the document’s intervals that are in the largest
sub-graph;

• The entropy of sub-graph sizes, which acts as a “frac-
turedness” measure, showing how far the document
is from having one single totally connected temporal
graph including all TLINKs;

• The distribution of sub-graph sizes.

Even though sub-graphs are populated by processing the
two intervals of a TLINK at the same time, it is possible
to have a sub-graph containing just one node, in the case
of a TLINK loop (Section 2.3.3.). Note that a document
containing intervals but no temporal links between them is
marked as “un-fractured”, as this check ignores any items
not referenced at least once by a temporal link.
Here is sample output from an attempt to identify discon-
nected sub-graphs:

cavat> check split_graph in 3
Split graph detection v1 loaded
Checking wsj_0927.tml (id 3)
Subgraphs found: 13 - composed of 69 nodes and linked
by 65 TLINKS.

Isolated subgraphs, that contain just one TLINK: 5
(making up 38.5% of all subgraphs / consuming 14.5%
of all nodes / described by 7.7% of all TLINKs);

Mean graph size 5.3 nodes; largest subgraph (size 35)
has 50.7% of all nodes.

Entropy of subgraph sizes: 0.448277644573
2 nodes: (5)
3 nodes: (4)
4 nodes: (3) ...

35 nodes: (1) .

2.3.3. Superfluous TLINKs
Some TLINKs in TimeML corpora have been specified that
associate an event with itself. For example:
<TLINK lid="l67" relType="IDENTITY"

eventInstanceID="ei1241" relatedToEventInstance="ei1241"

/>

In this case, the only information conveyed is that ei1241
is identical to itself, making this a redundant TLINK. CA-
VaT includes a check that will identify TLINKs where both
arguments reference the same event instance or event. Al-
though such TLINKloops might be detected by consis-

tency checking, those which specify a SIMULTANEOUS
or IDENTITY relation will not.
Below is sample output, showing some superfluous
TLINKs:

cavat> check tlink_loop in 165 159 143
TLINK loop checker v1 loaded
Checking ABC19980304.1830.1636.tml (id 165)
TLINK ID l23 may be a loop (eventID match), type
INCLUDES, event ei286 / ei288 - check document
manually
Checking wsj_1013.tml (id 159)
TLINK ID l107 loops directly (instanceID match), type
IDENTITY, event ei2495 / ei2495
Checking wsj_0586.tml (id 143)
TLINK ID l192 loops directly (instanceID match), type
BEFORE, event ei1404 / ei1404

2.3.4. Orphaned object details
There is not yet a definition for TimeML annotation com-
pleteness, that states a minimal satisfactory level of annota-
tion for a document. In the absence of such a definition, it
is not a mistake to annotate entities without attaching them
to anything else in the document. However, we believe that
wherever possible, every interval should be connected to at
least one other interval, and that the annotation of entities
that do not contribute or relate to any other annotated in-
formation is superfluous. For example, if one chooses to
mark text as a temporal signal, a related link or event in-
stance should reference the signal. In this example, if the
signal conveys no temporal information, it should not be
annotated.
To this end, CAVaT includes a module that is aware of five
cases which describe objects attached to nothing else, and
reports suchorphan objects. Firstly, any TIMEX3 that is
not related by any link is deemed to be independent. Also,
any event instance (from MAKEINSTANCE) that is not
referenced by a link is also orphaned. Next, an EVENT
that is never instantiated is unattached, as instantiationis
required by current TimeML syntax before EVENTs can
be linked to anything else. Instances that come from non-
existent or mislabelled EVENTs are also orphans. Finally,
SIGNALs that are not referenced by any link or event in-
stance (as in our example above) are included in the list of
orphaned objects.
Here is the sample output from a check for orphans:

cavat> check orphans in wsj_0927.tml
Orphaned tag detection v1 loaded
TIMEX3 t104 not in any link
TIMEX3 t131 not in any link

2.4. Limitations

CAVaT is currently limited in the number of objects (based
on TimeML tags) that it can store for a single corpus. Ob-
jects are stored in MySQL tables, and these are limited by
the operating system’s maximum file size limit. The maxi-
mum number of corpora that CAVaT can stored is restricted
to the operating system limit of files in a single directory.

3. Syntax

Here we briefly introduce CAVaT’s basic top-level com-
mands, and some of their more useful features. A
full specification of CAVaT’s syntax is available at
http://code.google.com/p/cavat.

401

3.1. Corpus manipulation

Commands for manipulating TimeML corpora within CA-
VaT begin withcorpus. One may view a list of available
corpora withcorpus list, and use a name from the re-
sulting list to select a corpus for querying or checking with
the corpus use command. It is also possible to view
any notes attached to the currently selected corpus by using
corpus info. Before one canuse a corpus, though, a
directory of TimeML files must be imported into CAVaT,
usingcorpus import. One may also opt to fold the
corpus on import (see Section 2.1.); a note will be attached
to the database if this has been done.

3.2. Querying

Theshow command generates reports from the current cor-
pus. Reports focus on one tag type, and give information
about its attributes. One can view all values for a tag with
“list” reports, or the distribution of values with “distribu-
tion” reports, or simply see how many instances of that tag
use a particular field with “state” reports.
The general format for report generation is:
show <report type> of <tag> <field> [as <format>]

From the above example,<tag> corresponds to a TimeML
tag, and is one ofevent,instance,timex3,signal,
tlink, slink or alink. As well as the attributes avail-
able for each tag, the following extra values for<field>
are available:

• For TLINKs, signaltext refers to the text en-
closed by the start and end tags of an associated signal;

• For EVENTs, one may reference all the attributes of a
MAKEINSTANCE tag too;

• In TLINKs, SLINKs and ALINKs the arguments are
referred to asarg1 andarg2, so that the CAVaT user
does not have to worry about the implicit indication of
interval type present in attribute names.

Reports are available in multiple formats. These can be
specified by addingas <format> to the end of a show
query.

• screen - The default choice, screen gives text for-
matted for display in a fixed-width font.

• csv - Output as comma separated values.
• tex - TeX table format, including caption.

The TeX output of an example report, showing the dis-
tribution of TLINK relTypes in TimeBank v1.2, can
be generated withshow distribution of tlink
reltype as tex and is shown in Table 3.
One may also specify a subset of a corpus to be used for
reporting, using a simplewhere clause. For example, one
may ask:
cavat> show state of tlink signalid where reltype is

after

to see how many TLINKs of typeAFTER use a signal; or,
one may ask:
cavat> show distribution of tlink reltype where signalid

is not filled

to find out which relTypes are most likely in TLINKs that
do not specify a signal. As part of CAVaT’s goal to be easy

Table 3: Distribution of Tlink reltype

Tlink reltype Frequency Proportion
BEFORE 1408 21.9%
IS INCLUDED 1357 21.1%
AFTER 897 14.0%
IDENTITY 743 11.6%
SIMULTANEOUS 671 10.5%
INCLUDES 582 9.07%
DURING 302 4.71%
ENDED BY 177 2.76%
ENDS 76 1.18%
BEGUN BY 70 1.09%
BEGINS 61 0.95%
IAFTER 39 0.608%
IBEFORE 34 0.53%
DURING INV 1 0.0156%
Total 6418

to use and close to natural language, there are multiple valid
syntaxes for filled/unfilled attributes.

3.3. Browsing

The ability to examine annotated entities in a TimeML cor-
pus is required as part of investigative research. To enable
this, CAVaT includes thebrowse command.
Browsing allows the user to select a document (with
browse doc, followed by a document ID or filename),
and then view any tag within that document. Associated
data is also shown; for example, if one browses an EVENT
tag, any related MAKEINSTANCE tags will also be listed.
One may view the tag in three formats –screen, the de-
fault; csv, as two rows of comma-separated values (the
first with attribute names as column headings); ortimeml,
giving valid TimeML for the requested object. The syntax
for these is the same as that forshow commands; simply
appendas <output type> to the browse command.
The document selected for browsing is also used as the
default document for checks, which are detailed in Sec-
tion 2.3.

4. Example tasks
Below are some examples of using CAVaT to address real
research problems. All are based on TimeBank v1.2.

4.1. Show all temporal links that employ a signal

As part of research toward better automatic TLINK anno-
tation, we wanted to know what proportion of TLINKs in a
corpus had been annotated as employing a signal.

cavat> show state of tlink signalid
Count State of Tlink signalid

===
718 signalid filled (11.2%)

5700 signalid unfilled (88.8%)

The state keyword here treats signalID as having two
states – filled or unfilled. The TLINK’ssignalid field
will either be empty/absent or contain a reference to a sig-
nal annotated in text; for this task, we do not care which
specific signal is being referenced.

402

Table 4: Distribution of Event part-of-speech

Event pos Frequency Proportion
VERB 5122 64.5%
NOUN 2225 28.0%
OTHER 299 3.77%
ADJECTIVE 266 3.35%
PREPOSITION 28 0.353%
Total 7940

Table 5: Distribution of Tlink signal text when Reltype is “before”

Signal text Frequency Proportion
before 24 31.6%
Previously 10 13.2%
by 7 9.21%
already 6 7.89%
Earlier 6 7.89%
until 5 6.58%
then 4 5.26%
followed by 2 2.63%
prior to 2 2.63%
Other signals, frequency 1 10 13.2%
Total 76

4.2. Dealing with ambiguous “part of speech” values

Many instances of events in TimeBank assert
pos="other". This is a problem when, e.g., using
WordNet to lemmatise event strings. The distribution in
Table 4 can be created with the command:
cavat> show distribution of event pos

After this, we would like to view event text that is classified
asother, using the following query:

cavat> show list of event text where pos is other
#10.86
#39.8 million
#54.8 million
$1
$1.05
(truncated)

The result suggests that there are at least some numeric val-
ues for these event tokens, as well as the more typical verbs.
This led to the substitution of all currency and numeric
event strings with representative tokens, as a feature for a
CRF classifier, yielding a performance increase in TLINK
classification (in unpublished results).

4.3. Which signals does theBEFORE relation use?

Sometimes, particular relation types are strongly suggested
by related signals. To determine the signal texts used with
BEFORETLINKs, one may query:
cavat> show distribution of tlink signaltext where

reltype is before

From the results in Table 5, we can see that the token “be-
fore” suggests aBEFORE relation, but that the majority
of annotatedBEFORE relations do not employ this signal
(from Table 3, there are a total of 1408 such relations, only
24 of which use the signal). This indicates that building a
relation classifier that relies solely on such signals will not
be useful.

4.4. Superfluous TLINK checking

One may want to find instances where a link has been made
between an entity and itself. We have an error checking
module for this,tlink loop:

cavat> check tlink_loop in WSJ910225-0066.tml
TLINK ID l383 matches, type IS_INCLUDED, event ei1482
TLINK ID l376 matches, type AFTER, event ei1454
TLINK ID l345 matches, type AFTER, event ei1356

One can explicitly queryin all to search the entire cor-
pus for similar mis-annotations.

5. Validation of a sample corpus
As we can now load and process any TimeML corpus,
and have a set of advanced validation tests, it is logical
to test existing TimeML annotated corpora and examine
them. In this section, we present the results of running CA-
VaT’s check modules on TimeBank v1.2. This corpus is
not new and has been amended and improved by the com-
munity (Boguraev et al., 2007), so may contain many fewer
errors than freshly annotated documents.

5.1. Checking for loops

We used thetlink loop module (Section 2.3.3.) on the
corpus. This identifies TLINKs where both arguments are
the same event or event instance.
Of TimeBank’s 183 documents, 19 have at least one TLINK
containing such a loop, and there are 26 loops in total. Of
these loops, 10 are on TLINKs of typeSIMULTANEOUS or
IDENTITY . Such TLINKs will not make a graph inconsis-
tent, but are certainly redundant. The remaining 16 loops
of other types will cause an inconsistency. All but one of
the loops found are temporal links where both arguments
reference the same event instance; only one references two
different instances of the same event (TLINK L23, in doc-
ument ABC19980304.1830.1636.tml). The TimeML in
question is as follows:
But they still have <EVENT eid="e28"
class="I ACTION">catching</EVENT> up to do two hundred
and thirty four Americans have <EVENT eid="e30"
class="OCCURRENCE">flown</EVENT> in space, only twenty
six of them women.
<MAKEINSTANCE eventID="e30" eiid="ei286" tense="PRESENT"
aspect="PERFECTIVE" polarity="POS" cardinality="234"
pos="VERB"/>
<MAKEINSTANCE eventID="e30" eiid="ei288" tense="PRESENT"
aspect="PERFECTIVE" polarity="POS" cardinality="26"
pos="VERB"/>

<TLINK lid="l23" relType="INCLUDES"

eventInstanceID="ei286" relatedToEventInstance="ei288"/>

In this case, the annotation suggests that during the flying in
space of 234 Americans, 26 women flew, which is a correct
interpretation of the text. CAVaT recommends the manual
examination ofeventID loops upon their detection. All
the other tags reported by this check indicate redundant or
incorrect annotations.

5.2. Checking for consistent graphs

Since the consistency checker uses a novel method (see
Section 2.3.1), we verified its output by comparing it with
that of SputLink and CAVaT’s loop detection, and finding
explanations for every inconsistency. A small test corpus
of TimeML documents is also included with CAVaT for as-
suring the accuracy of this tool.

403

SputLink would not report an inconsistency with a TLINK
loop that was not of typeSIMULTANEOUS or IDENTITY ;
many of the inconsistent documents were found faulty by
both SputLink and CAVaT. Some documents had an erro-
neous initial TLINK configuration; most faults were subtler
than this, and their discovery required a closure attempt.

5.3. Checking for split graphs

Thesplit graph module checks for documents whose
temporal graphs contain sets disconnected TLINKs. No
single document in TimeBank has a fully-connected tem-
poral graph, with a path traceable between every inter-
val. The “best-connected” document (least fractured) is
wsj 0144.tml, which has 34 intervals split into only two
subgraphs; one containing 32 intervals, the other two.
The most fractured document iswsj 1033.tml, which is
split into 12 sub-graphs having a mean graph size of only
2.7 intervals (a single TLINK connected to no other cre-
ates a graph of size 2). Despite having 32 intervals in total
to connect, the largest sub-graphs in this document include
only 4 intervals.

5.4. Replication

The results above can be simply replicated by downloading
CAVaT v1, gathering a copy of TimeBank v1.25, import-
ing thedata/timeml/ subdirectory of TimeBank, and
runningcheck test in all in CAVaT, wheretest
is the name of the desired test module.

6. Conclusion and future work
We have described CAVaT, a language-independent tool
which adds a layer of abstraction between TimeML markup
and human researchers, making data easier to analyse, and
patterns easier to spot. It also helps identify trouble spots
in annotations.
TimeML corpora are only available at this time in Roma-
nian (Forăscu et al., 2007) and English; this makes multi-
lingual testing of the tool difficult. However, the markup
is not language-specific, and results are likely to be equally
useful across many languages; this may be shown using test
corpora released for TempEval 26, which will include En-
glish, Italian, Spanish, Chinese, Korean and French.

Future work CAVaT may be able to provide repair sug-
gestions. These may include fixes for inconsistent graphs,
as well as suggestions for missing fields based on lexical re-
sources, third-party tools or heuristics. The modular error
checks allow creation of an open database of TimeML val-
idations, to help improve the integrity of all TimeML cor-
pora. Check modules that match the output of rule-based
high confidence tools such as S2T (Verhagen and Puste-
jovsky, 2008) can be added.
The consistency checker is “a TimeML closure engine that
uses the precise relations behind the scenes” (Verhagen,
2005). Therefore, it may be used to empirically discover
how often incorrect links are introduced in closure, when
compared with the existing leading closure tool, SputLink.

5LDC catalogue number LDC2006T08
6http://www.timeml.org/tempeval2/

Acknowledgements The first author would like to ac-
knowledge the UK Engineering and Physical Science Re-
search Council for support in the form of a doctoral stu-
dentship, and Marc Verhagen of Brandeis University for
useful comments on the temporal closure process.

7. References
J.F. Allen. 1983. Maintaining Knowledge about Temporal

Intervals.Communications of the ACM, 26(11).
B. Boguraev, J. Pustejovsky, R. Ando, and M. Verhagen.

2007. Timebank evolution as a community resource for
timeml parsing. Language Resources and Evaluation,
41(1):91–115.

L. Burnard and T. Dodd. 2003. Xara: an XML aware tool
for corpus searching. InProceedings of Corpus Linguis-
tics, pages 142–4.

C. Forăscu, R. Ion, and D. Tufiş. 2007. Semi-automatic
Annotation of the Romanian TimeBank 1.2. InProceed-
ings of the RANLP Workshop on Computer-aided lan-
guage processing, pages 978–954.

ISOTimeML Working Group. 2008. 24617-1: 2008.
Language resources management–Semantic annotation
framework (SemAF)–Part1: Time and events. ISO/TC
37/SC 4/WG 2.

M. Hepple, A. Setzer, and R. Gaizauskas. 2007. USFD:
preliminary exploration of features and classifiers for the
TempEval-2007 tasks. InProceedings of the 4th Inter-
national Workshop on Semantic Evaluations, pages 438–
441. Association for Computational Linguistics.

M. Lapata and A. Lascarides. 2006. Learning sentence-
internal temporal relations.Journal of Artificial Intelli-
gence Research, 27(1):85–117.

I. Mani, M. Verhagen, B. Wellner, C.M. Lee, and J. Puste-
jovsky. 2006. Machine learning of temporal relations.
In Proceedings of the 44th annual meeting of the Associ-
ation for Computational Linguistics, page 760.

J. Pustejovsky, P. Hanks, R. Sauri, A. See, R. Gaizauskas,
A. Setzer, D. Radev, B. Sundheim, D. Day, L. Ferro,
et al. 2003. The TimeBank corpus. InCorpus Linguis-
tics, pages 647–656.

A. Setzer, R. Gaizauskas, and M. Hepple. 2005. The role
of inference in the temporal annotation and analysis of
text. Language Resources and Evaluation, 39(2):243–
265.

E.P.K. Tsang. 1987. The consistent labeling problem in
temporal reasoning. InProc. AAAI Conference, Seattle,
pages 251–255.

M. Verhagen and J. Pustejovsky. 2008. Temporal process-
ing with the TARSQI toolkit. Proceedings of CoLing:
Posters and Demonstrations, pages 189–192.

M. Verhagen. 2005. Temporal closure in an annota-
tion environment.Language Resources and Evaluation,
39(2):211–241.

M. Vilain, H. Kautz, and P. Van Beek. 1989. Constraint
propagation algorithms for temporal reasoning: A re-
vised report. Readings in qualitative reasoning about
physical systems, 373:381.

404

