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Abstract
In ontology learning from texts, we have ontology-rich domains where we have large structured domain knowledge repositories or we
have large general corpora with large general structured knowledge repositories such as WordNet (Miller, 1995). Ontology learning
methods are more useful in ontology-poor domains. Yet, in these conditions, these methods have not a particularly high performance
as training material is not sufficient. In this paper we present an LSP ontology learning method that can exploit models learned from
a generic domain to extract new information in a specific domain. In our model, we firstly learn a model from training data and then
we use the learned model to discover knowledge in a specific domain. We tested our model adaptation strategy using a background
domain that is applied to learn the isa networks in the Earth Observation Domain as a specific domain. We will demonstrate that our
method captures domain knowledge better than other generic models: our model better captures what is expected by domain experts than
a baseline method based only on WordNet. This latter is better correlated with non-domain annotators asked to produce the ontology for
the specific domain.

1. Introduction
Domain knowledge bases are extremely important in a
variety of natural language processing applications but
manually creating structured knowledge repositories is a
very time consuming and expensive task. Semi-supervised
learning of domain knowledge bases from texts is gener-
ally seen as the solution. This is a very attractive and
rich research area that is full of challenges. Generally,
the process for automatically creating, adapting, or extend-
ing existing knowledge bases relies on existing structured
knowledge and domain corpora. In ontology learning mod-
els using lexico-syntactic patterns (LSP) (Robison, 1970;
Hearst, 1992a; Pantel and Pennacchiotti, 2006), existing
domain ontologies or structured knowledge bases give pos-
itive learning examples. These latter are exploited to learn
lexico-syntactic patterns from domain corpora. Learnt
LSPs are then used to extract and structure new knowl-
edge from the domain corpora. For a successful applica-
tion, these LSP methods for learning domain ontologies
need large domain corpora and existing domain knowledge
bases. LSP methods for learning ontologies from texts
are good models only when we consider ontology-rich do-
mains or we do generic knowledge extraction. In this lat-
ter case, these methods can exploit large general corpora
and large general structured knowledge repositories such as
WordNet (Miller, 1995). There are only few domains with
well-assessed existing structured knowledge bases where
the problem is to expand these ontologies. On the contrary,
the large number of applications domains has little or not
existing structured knowledge. The big challenge is to suc-
cessful apply these methods in ontology-poor domains.
One of the possible ways to address the above challenge
is to build LSP models that learn lexico-syntactic patterns
on generic and ontology rich domains and then apply these
patterns on specific ontology poor domains. In line with
(Gao et al., 2009), we respectively refer as the background
domains and application domains to these two kinds of do-
mains. Yet, in machine learning and in statistical learning
learning data should be enough representative of the envi-

ronment where learned models will be applied. The statis-
tical distribution of learning data should be similar to the
distribution of the data where the learn model is applied.
In this application scenario, this assumption is inaccurate.
Background domain data, also called out-of-domain data,
used for learning lexico-syntactic patterns have generally
a different distribution with respect to application domain
data, also called in-domain data. Generally, out-of-domain
data are more than in-domain data. We need to envisage
methods that exploit these data for building accurate in-
domain models.
In this paper we present an LSP ontology learning method
that can exploit models learned from a generic domain to
extract new information in a specific domain. In our model,
we firstly learn a model from training data and then we use
the learned model to discover knowledge in a specific do-
main. In line with (Gao et al., 2009), we call background
domain that we use for training purposes. The background
domain is a generic domain defined through a generic cor-
pus and a generic knowledge base. The adaptation domain
is the domain where we apply the model. The adaptation
domain corpus is used to generate feature vectors for each
domain pair. The learned model will decide if the a onto-
logical relation between two words hold in the particular
domain. We tested our model adaptation strategy using a
background domain that is applied to learn the isa networks
in the Earth Observation Domain as a specific domain. We
will demonstrate that our method captures domain knowl-
edge better than other generic models: our model better
captures what is expected by domain experts than a baseline
method based only on WordNet. This latter is better cor-
related with non-domain annotators asked to produce the
ontology for the specific domain.
The rest of the paper is organized as follows. In section 2.,
we analyze the related work on the area of domain adapta-
tion. Then, we present our model in Section 3.. In section
4., we, then, evaluate and assess the performance of our
method on the target domain, i.e., Earth Observation Do-
main. Finally, in section 5., we draw some conclusions.
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2. Related Work
One of the basic assumptions in machine learning and in
statistical learning is that learning data are enough repre-
sentative of the environment where learned models will be
applied. The statistical distribution of learning data should
be similar to the distribution of the data where the learn
model is applied. In natural language processing tasks in-
volving semantics, this assumption is extremely important.
Learning ontologies from texts using lexico-syntactic pat-
tern (LSP) based methods is one of these semantic tasks.
LSP methods (Hearst, 1992b; Pantel and Pennacchiotti,
2006; Snow et al., 2006) generally use existing ontologi-
cal resources to extract learning examples. These latter are
matched over a collections of documents to derive lexico-
syntactic patterns describing a semantic relation. These
patterns are then used to expand the existing ontological
resource by retrieving and selecting new examples.
LSP ontology learning methods are generally used to ex-
pand existing domain ontologies using domain corpora or
to expand generic lexical resources (e.g., Wordnet (Miller,
1995)) using general corpora (Snow et al., 2006; Falluc-
chi and Zanzotto, 2009b). In this way, the basic assump-
tion of machine learning approaches is satisfied. Yet, the
nature of the ontology learning task requires that models
learned in a general or a specific domain may be applied
in other domains for building or expanding poor initial on-
tologies using domain corpora. In this case, the distribution
of learning and application data is different. Learned LSP
models are “domain-specific” as lexico-syntactic patterns
may be related to the prose of a specific domain. These
models are then accurate for the specific domain but may
fail in other domains. If the target domain has not rele-
vant pre-existing ontologies to expand, we will not have
enough data for training the initial model. In (Snow et al.,
2006), all WordNet has been used as source of training ex-
amples. In these cases, we need to adopt domain adapta-
tion techniques (Gildea, 2001; Roark and Bacchiani, 2003;
Chelba and Acero, 2006; Daumé and Marcu, 2006; Gao et
al., 2009; Bacchiani et al., 2004).
Domain adaptation is a known problem in machine learning
and statistical learning. To stress the difference between the
distribution of the data in the original domain (also called
background domain) and in the target domain, these two
are referred as out-of-domain data and as in-domain data.
Out-of-domain data are generally large sets and are used
for training.
In the general application scenario for ontology learning
method the assumption that out-of-domain data and in-
domain data share the same underlying probability distri-
bution is inaccurate. This happens in many applications.
Generally, in-domain data is drawn from a distribution that
is related, but not identical, to out-of-domain distribution of
the training data. As out-of-domain data are generally more
than in-domain data, we need to envisage methods that ex-
ploit these data for building accurate in-domain models.
The domain adaptation problem exactly consists of lever-
aging out-of-domain data to derive models performing well
on in-domain data.
This is a natural need as manually building initial training
resources for new domains is an expensive task just as de-

signing a system for each target domain. Then the natural
expectation is to minimize the amount of effort required
to building in-domain data using a model trained with out-
of-domain data. In such cases, it becomes very impor-
tant to adapt existing models from rich source domains to
resource-poor target domains.
The problem of domain adaptation arises in a variety of
applications in natural language processing (Blitzer et al.,
2006; Chelba and Acero, 2006; Daumé and Marcu, 2006):
machine translation (Bertoldi and Federico, 2009), word
sense disambiguation (Chan and Ng, 2007) and many other
areas.
Different domain adaptation techniques are introduced in
the context of specific applications and statistical learning
methods. For example, a standard technique used in statisti-
cal language modeling and in other generative models is the
maximum a posteriori (MAP) estimation (Gauvain and Lee,
1994) as prior knowledge to estimate the model parame-
ters. The MAP framework is general enough to include
some previous model adaptation approaches, such as cor-
pus mixing (Gildea, 2001). Another example is the MAP
estimation used in (Roark and Bacchiani, 2003) to adapt
a lexicalized probabilistic context-free grammar (PCFG)
to a novel domain. In (Chelba and Acero, 2006) a MAP
adaptation technique for maximum entropy models is de-
veloped for the problem of recovering the correct capital-
ization of uniformly case text for language modeling in
speech recognition. In (Daumé and Marcu, 2006) a statisti-
cal formulation is provided, that is a mixture of maximum
entropy model and linear Chain Models for conditional ran-
dom fields. Two other classes of model adaptation methods
are very interesting: error-driven learning approaches and
model interpolation approaches. In error-driven learning
approaches, the background model is adjusted to minimize
the ranking errors made by the model on the adaptation data
(Gao et al., 2009; Bacchiani et al., 2004). In model interpo-
lation approaches, the in-domain data are used to derive an
adaptation model, which is then combined with the back-
ground model trained on out-of-domain data. In (Gao et
al., 2009) model interpolation is investigated for web search
ranking.
One of the possible ways of using the model adaptation is
to adjust the model trained on the background domain to
a different domain (the adaptation domain) modifying op-
portunely the parameters and/or structure. The motivation
of this approach is that usually the background domain has
large amounts of training data while the adaptation domain
has only small amounts of data.
In this paper we propose an approach to the domain adap-
tation problem where we build a background model and we
use its predictions as features for the in-domain data. The
basic idea is that in-domain data can be obtained to adapt
all components of an already developed system.
In (Gao et al., 2009) a set of error-driven learning methods
are developed where, in an incremental way, each feature
weight could be changed separately but also new features
could be constructed.
In our case, differently, we do not add any feature but we
only change each feature weight in accord to the used in-
domain corpus.
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In (Blitzer et al., 2006) a common representation for fea-
tures extracted from different domains is given using pivot
features from unlabeled data to put domain-specific words
in correspondence. Pivot features are features which occur
frequently in the two domains and behave similarly in both.
By analogy with (Blitzer et al., 2006) we propose to learn
common features, meaningful for both domains that have
different weights in accord to the occurrences in the differ-
ent corpus used for the two domains. We hypothesize that a
model trained in the source domain using this common fea-
ture representation will generalize better the target domain.
In some cases, many steps may be required to adapt a model
trained on the source domain for use in the target domain
(Daumé and Marcu, 2006; Roark and Bacchiani, 2003;
Ando, 2004). On the contrary, in our work we learn a model
from the out-of-domain data and we use it to learn the in-
domain data without any additional effort.

3. Learner Model: from Background to
Application domain

Can training data from one corpus be applied to learn an-
other corpus? The basic idea is partly to answer this ques-
tion because we want to define an ontology learning model
that can be adapted to previously unseen distributions of
data. This model is thought to exploit the information
learned in a background domain for extracting information
in an adaptation domain.
Our ontology learning method is based on the probabilis-
tic formulation given in (Snow et al., 2006; Fallucchi and
Zanzotto, 2009a). We use this probabilistic setting to learn
a model that takes into consideration corpus-extracted evi-
dences over a list of training pairs. The initial feature space
is built starting from the analysis of a generic corpus where
we observe a list of training pairs of words that are in a
target semantic relation. We can generate these pairs us-
ing general resources such as WordNet. These pairs are
used to enable the probabilistic method to induce lexico-
syntactic patterns for the model of the specific semantic re-
lation (Hearst, 1992b). The learned model can be used to
estimate the probabilities of the new instances computing
a new feature space using the corpus of the adaptation do-
main.
In the rest of this section, we will firstly describe the back-
ground ontology learning model (Sec. 3.1.) and we will
then illustrate the method that we will be adapted to the
new domain (Sec. 3.2.).

3.1. Background Ontology Learner
In the probabilistic formulation, the task of learning ontolo-
gies from a corpus is seen as a maximum likelihood prob-
lem. The ontology is seen as a set O of assertions R over
pairs Ri,j . In particular we will consider the is-a relation.
In this case, if Ri,j is in O, i is a concept and j is one of its
generalizations. For example, Rdog,animal ∈ O states that
dog is an animal according to the ontology O.
The main probabilities are then: (1) the prior probability
P (Ri,j ∈ O) of an assertion Ri,j to belong to the ontology
O and (2) the posterior probability P (Ri,j ∈ O|−→e i,j) of
an assertion Ri,j to belong to the ontology O given a set of
evidences −→e i,j derived from the corpus. These evidences

are derived from the contexts where the pair (i, j) is found
in the corpus. The vector−→e i,j is a feature vector associated
to a pair (i, j). For example, a feature may describe how
many times i and j are seen in patterns like ”i as j” or ”i
is a j”. But many other indicators exist of an Is-a relation
between i and j (see (Hearst, 1992b)).
Given a set of evidences E over all the relevant word pairs,
the probabilistic ontology learning task is defined as the
problem of finding an ontology Ô that maximizes the prob-
ability of having the evidences of E, i.e.:

Ô = arg max
O

P (E|O)

In the original model (Snow et al., 2006; Fallucchi and Zan-
zotto, 2009a), this maximization problem was solved by a
local search.
In the present model at each step we maximize the ratio be-
tween the likelihood P (E|O′) and the likelihood P (E|O)
where O′ = O ∪ N and N are the relations added at each
step. As in (Snow et al., 2006; Fallucchi and Zanzotto,
2009a) this ratio is called odds. It is calculated using the
logistic regression and then solving a linear problem using
the pseudo-inverse matrix (Fallucchi and Zanzotto, 2009a).
The regression coefficients will be estimated as follows

β̂ = X+
CB
l (1)

where l is the logit vector and X+
CB

is the Moore-Penrose
pseudoinverse (Penrose, 1955) matrix of the inverse evi-
dence matrix XCB

obtained from a generic corpus CB that
includes a constant column of 1’s, necessary to obtain the
β0 coefficients.
The regressors represent the model that we learned from the
training pairs using a generic corpus CB that we will use to
compute the probabilities of the testing pairs.

3.2. Estimator for Application Domain
In our task, instead of finding the ontology that maximizes
the likelihood of having the evidences E, we calculate,
given the regressors, the probabilities of the testing pairs
step by step. The idea is that, given the domain based cor-
pus CA, for each testing pair we compute the vector space
according to the features selected in the previous generic
corpus feature space analysis.
After the domain based corpus feature space analysis where
we look for the testing pairs in CA, we obtain a new feature
space XCA

. It is a matrix n′ ×m where n′ is the number
of the new instances found in the corpus CA and m is the
number of the features. We compute the logit of the new
instances as in (Fallucchi and Zanzotto, 2009a)

l′ = αXCA
β̂ (2)

where XCA
is the inverse evidence matrix obtained from

a adaptation domain corpus CA that includes a constant
column of 1’s, necessary to obtain the β0 coefficients. The
parameter α is used to adapt the model by the β vector to
the new domain.
From the definition of logit we can compute the probabili-
ties of the new instances, i.e.:

pi =
exp(li)

1 + exp(li)
(3)
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This latter can be used to build the know ledge base in the
new domain.

4. Experimental Evaluation
We experimented with our model adaptation strategy us-
ing a generic domain as background domain and the Earth
Observation Domain as specific domain. We took the isa
relation as the target relation. The target of the experiments
is to understand whether or not our model adapt to specific
domains. We then compare our system (Our-System) with
respect to a system that uses only WordNet (WN-System).
In this section, we firstly describe the general experimental
set up. We then describe the quality of the target domain
ontologies. Finally, we analyze the accuracy of our models
with respect to the three different ontologies.

4.1. Experimental Setup
To define completely the experiments we have to define:
both training and testing pairs, which corpus has been used
to extract evidences for training pairs, which corpus to ex-
tract evidences for testing pairs, and which feature space
we use for both corpora.
To build the training pairs we generated all the pairs that
were in hyperonym relation in WordNet1 (Miller, 1995) and
we obtained about 2 millions of words.
Here, we firstly define the semantic networks used in the
experiments of Section 4.3.. The network of words will
be used as a source of training and testing examples. For
each experiment we need: a training example set TR =
(TRp, TRn) with positive pairs TRp and negative pairs
TRn, and a testing example set TS.
To build TS we start from a given list of 63 terms that are
relevant in Earth Observation Domain. Then we combine
each term with the other terms and we generate 63 × 63
pairs. Furthermore, for each term w, we select all the
synsets sw in WordNet. In the case of a term with a synset
in WordNet we generate the pairs combining w with all the
hyperonyms for each synset. Otherwise, ifw has compound
words we look for our semantic head in WordNet. If we
find the synsets, we generate the pairs combining w with
the hyperonyms of the semantic head of w.
We extract the training example pairs from an existing
knowledge repository: WordNet2 (Miller, 1995).
Given hyperonymy as target relation, we can derive the
network of words R from the set R as follows: R =
{(wa, wb)|(Sa, Sb) ∈ R,wa ∈ Sa, wb ∈ Sb}. We then
build the set H that contains all pairs of words in WordNet
that are in hyperonymy relation. Then TRp = H− T S .
Given the set of the words in WordNet W , the training neg-
ative example is TRn = W ×W − TRp − TS. We build
TRp, TRn and TS without overlap.
We searched for the pairs in TR in a corpus CB (in par-
ticular the English Web as Corpus (ukWaC) (Ferraresi et
al., 2008) has been used). This is a web extracted corpus
of about 2700000 web pages containing more than 2 bil-
lion words. It contains documents of several different top-
ics such as web, computers, education, public sphere, etc..

1We used the version 3.0 of WordNet
2We use the version 3.0 in prolog.

It has been largely demonstrated that the web documents
are good models for natural language (Lapata and Keller,
2004).
Using a web crawler, here we pick up a corpus related to
Earth Observation Domain CA , successively ”cleaned”,
that contains about 8300 documents (115,6 MB).
We use the bag-of-word feature space. Out of the T ∪ T ,
only those pairs that appeared at a distance of 3 tokens at
most have been selected. Using these 3 tokens, we generate
the bag-of-word feature space.
The pairs in TR found in the ukWaC are 527348, while the
pairs in TS found inCA are 404. The two generated feature
spaces have the same features that are 276670.
The model to build ontologies in Earth Observation Do-
main has been generated by using the training pairs and the
corpus ukWac.

4.2. Evaluating the Quality of Target Domain Specific
Ontologies

We want to evaluate our approach in learning the bulk of
the ontologies, i.e., the isa relation, in Earth Observation
Domain. between two pairs of words is a binary problem.
We then asked three annotators (A1, A2 and A3) to build
three different ontologies: two of them are expert in the do-
main (A1 and A2), the third one is not (A3). A1 and A2

have different levels of expertise: A1 is a young expert in
the domain and A2 an older one. Each annotator made a
binary classification of 641 pairs of words in Earth Obser-
vation Domain, i.e., the TS set introduced in the previous
section.
We then wanted to judge the quality of the annotation pro-
cedure according to their inter annotation agreement. A
simple measure of the quality of the agreement rate be-
tween two human annotators is the ratio between the num-
ber of items identically judged by two different annotators
and the total number of items considered by the annotators.
In (Scott, 1955) this measure is named observed agree-
ment Ao and it is defined as the percentage of judgments
on which the two analysts agree when coding the same data
independently. In accord to (Artstein and Poesio, 2008) we
define the agreement value agri for all items I as follows:

argi =
{

1 if annotators assign i to the same category
0 if annotators assign i to different categories

The observed agreement has been evaluated as in the fol-
lowing:

Ao =
1
i

∑
i∈I

agri

This measure does not take into account changes in the
agreement between two annotators. An improved measure
of inter-annotator agreement is given by the Cohen’s kappa
coefficient (Cohen, 1960). It is a statistical measure that
takes into account the effect of changes in the agreement
giving the possible agreement beyond change actually ob-
served. The kappa-coefficient is defined as follows:

k =
Ao −Ae

1−Ae

• Ae : expected agreement by change
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Figure 1: Scale for the interpretation of Kappa by Landis
and Koch (1977)

• 1−Ae : attainabled agreement over and above change

• Ao −Ae : actually found agreement beyond change

The expected agreement (Ae) is the probability of the
agreement among annotators due to change. There are two
different methods for estimating a probability distribution
for random assignment of categories. The two approaches
reflect different conceptualizations of the problem.
In the first approach, each annotator has a personal distri-
bution, based on that annotator’s distribution of categories
(Cohen, 1960). In the second approach, there is one dis-
tribution for all annotators, derived from the total propor-
tions of categories assigned by all annotators (Scott, 1955;
Fleiss and others, 1971). Data are respectively visualized
in a contingency table (first approach) and in an agreement
table (second approach).
The distinction between the two approaches, in the case of
two annotators, is often glossed over because in practice the
two computations ofAe produce very similar (when not the
same) outcomes, as shown in section 4.2.1..
In (Carletta, 1996) the adaptation of the kappa coefficient
to computational linguistic is suggested.
Different levels of agreement may be defined, according to
the experiments of a specific application. In (Landis and
Koch, 1977) confidence intervals are proposed for the val-
ues of the kappa coefficient, as reported in Figure 1.
We can examine the issue of inter-annotator agreement by
comparing the agreement rate of the human annotators.
There are different methods for measuring the agreement
among 3 annotators.
When there are more than two annotators, some of them
may agree and the rest disagrees on the same item. In this
case, the observed agreement can no longer be defined as
the percentage of items getting agreement. To solve this
problem , we can analyze two solutions : pairwise agree-
ment and multi-π agreement both in (Fleiss and others,
1971).
In the first section 4.2.1. we will describe the inter-
annotators agreement for each pair of annotators that has
a personal distribution and we will show that this is simi-
lar to the distribution computed on both annotators of each
pair.
In the multi-π agreement, we examine the distribution of
all the three annotators.

4.2.1. Pairwise agreement
The pairwise agreement defines the agreement on a partic-
ular item as the proportion of agreed judgment pairs out of
the total number of judgment pairs for that item (Fleiss and
others, 1971).
We measure the inter-annotators agreement of the 3 pairs
of annotators: pair1 for the two annotators expert in the

domain A1 and A2; pair2 for one annotator expert in the
domain A1 and the other one not expert A3; and, pair3 for
the second annotator expert in the domain A2 and the other
one not expert A3.
Each annotator annotates 641 pairs of words in Earth Ob-
servation Domain and assigns to each pair one of the two
labels “YES” or “N0” (1 or 0). It is important to note that
only 404 pairs are found in Earth Observation Domain cor-
pus. We name 641-annotations the list that contains 641 an-
notations of each annotator and 404-annotations the list that
contains 404 annotations of each annotator. In the follow-
ing we discuss the inter-annotator agreement with respect
to both the lists of annotations.
Given the same data (641 or 404-annotations) with the same
guidelines, we build the contingency tables for the 3 pair-
wise annotators(respectly Table 2 and Table 4). For each
table we report the statistic of the two annotators.
Then in Table 1a we summarize the inter-annotator agree-
ment of the 3 pairwise agreements considering 641-
annotators. For example, the observed agreement for this
data is obtained summing up the cells of the table where
the annotators assign the same judgement and dividing by
the total number of annotations.
For example, considering pair1 (first row of the Table
1a), the two annotators label 47 occurrences as YES, and
490 as NO. The resulting observed agreement of pair1 is
Ao = (47 + 490)/641 = 0.8377535. As above mentioned,
there are two different methods to compute the expected
agreement. In the first method the expected agreement is
governed by prior distributions that are unique for each an-
notator and it is computed looking the actual distribution.
Then for pair1 we have Ae = 0.16848674 ∗ 0.1404056 +
0.83151326 ∗ 0.8595944 = 0.7384206.
In the second method we get the same distribution for each
annotator of the pair, then we have

Ae =
(

90 + 108
641 ∗ 2

)2

+
(

533 + 551
641 ∗ 2

)2

= 0.7388149

Since the two Ae values are similar and the same occurs
for the other pairs, we report only the expected agreement
computed using the first method
Finally, using both the observed and expected agree-
ment, the possible agreement beyond change observed for
the pair1 is kappa = (0.8377535 − 0.7384206)/(1 −
0.7384206) = 0.3797428. Analogously we compute kappa
value for the other pair of annotators.
In the same way we compute Observed Agreement, Ex-
pected Agreement and coefficient kappa for the pairwise
agreement considering 404-annotations (Table 3a). Sum-
marizing only for pair3 on 641-annotations the coefficient
kappa is in the “fair” interval in accord to the scale pro-
posed in (Landis and Koch, 1977) and reported in Figure
1. Most likely there is a fair agreement between annotators
A2 andA3 because the first one is an older expert in the do-
main while the second one is not expert at all, so they have
a different knowledge with respect to the specific Earth Ob-
servation Domain.
In all the other cases the pairwise agreement is better be-
cause the coefficient kappa belongs to the “moderate” inter-
val. We are confident on the reliability of such annotations
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A1

yes no
yes 47 61 108

A2

no 43 490 533
90 551 641

(a) pair1 = (A1, A2)

A1

yes no
yes 76 83 159

A3

no 14 468 482
90 551 641

(b) pair2 = (A1, A3)

A2

yes no
yes 72 87 159

A3

no 36 446 482
180 533 641

(c) pair3 = (A2, A3)

Table 1: Contingency tables for pairwise annotator agreement for 641-annotations

Ao Ae kappa

pair1 = (A1, A2) 0.8377535 0.7384206 0.3797428
pair2 = (A1, A3) 0.8486739 0.6811997 0.5253266
pair3 = (A2, A3) 0.8081123 0.6670496 0.4236749

Table 2: pairwise agreement for 641-annotations

as the annotators agree on labeling the same pairs of words.
This allows us to prove the validity of the annotation.

4.2.2. Multi-π agreement
In multi-π agreement the agreement of the annotators is
considered as a whole. There is only one distribution for
all the annotators, derived from the total proportions of cat-
egories assigned by each annotator.
When there are more than two annotators, the visualization
of the data is a difficult task: a possible solution is in using
the agreement table where each annotator is represented in
a separate column.
The columnsA1,A2, andA3 of table 4a and table 4b report
the label 1 or 0 assigned for each pair (first column) by the
3 annotators respectively in 641 or 404-annotations.
For both tables we report in the columns YES and NO re-
spectively the sum of 1s and 0s in A1, A2, and A3. In table
4c we report the observed and expected agreement and the
relative kappa coefficient for both 641 and 404 annotations.
The kappa value obtained from both annotations con-
firms the conclusions deduced with the pairwise agreement
method that proved the validity of the annotations of the 3
annotators.

4.3. Result
In our experiments we investigated how the approach to
compute a model using both a background domain and an
existing network, can be positively used to learn the isa re-
lation in Earth Observation Domain.
For the evaluation, we compare our learner model (Our-
System) directly with currently existing hyperonym links in
WordNet (WN-System) and we measure in both cases the
performance to find correctly the testing pairs that are in
isa relation.
In order to evaluate the performance of the two systems for
the pairs in Earth Observation Domain we used the three
different ontologies produced by the three annotators. We
will call these three target ontologies with the name of the
annotator.
The results of the experiments are reported in Table 6a and
in Table 6b. In the first table we compute the recall, the

precision and the f-measure of the WN-System against the 3
ontologies, while in the second table we compute the recall,
the precision and the f-measure of the Our-System.

We can then draw some observations: First, Our-System
behaves better than the WN-System on the ontologies pro-
duced by the expert annotators. The f-measure of both
the expert annotators (A1 and A2) is better for Our-System
with respect to WN-System. On the contrary, for the last
ontology (A3) the WN-System has better performance than
our system. Then, our system is capturing knowledge of
the specific domain as it is behaving better than the generic
system with respect to domain experts. Second, in the case
of the expert annotators, the recall of our system is higher
than the recall of the WordNet based system. This confirms
that the coverage of WordNet in the specific domain is low
and only learning methods can be used to adapt the ontolog-
ical information to the specific domain. On the contrary, for
the non-domain expert, WordNet is good enough to cover
domain knowledge.

In conclusion, results show that Our-System is a good
learner method that can be positively used to learn the isa
relation in Earth Observation Domain.

5. Conclusion

In this paper we present an ontology learning method that
can exploit the models learned from a generic domain to
extract new information in a specific domain. In our model,
we firstly learn a model from the training data, then we
use the learned model to discover the relation between two
words in a specific domain.

We tested our model adaptation strategy using a back-
ground domain that is applied to learn the isa networks in
a specific domain, i.e., the Earth Observation Domain. The
results of the experiments are promising showing that this
way of using a model identified in a background domain is
helpful to learn the isa relation in Earth Observation Do-
main.
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A1

yes no
yes 40 32 72

A2

no 35 297 332
75 329 404

(a) pair1 = (A1, A2)

A1

yes no
yes 65 54 119

A3

no 10 275 285
75 329 404

(b) pair2 = (A1, A3)

A2

yes no
yes 53 66 119

A3

no 19 266 285
72 332 404

(c) pair3 = (A2, A3)

Table 3: Contingency tables for pairwise annotator agreement for 404-annotations

Ao Ae kappa

pair1 = (A1, A2) 0.8341584 0.7023086 0.4429077
pair2 = (A1, A3) 0.8415842 0.6291663 0.5728117
pair3 = (A2, A3) 0.7896040 0.6322174 0.4279336

Table 4: pairwise agreement for 404-annotations

pairs of words A1 A2 A3 Yes NO
(agriculture,department) 0 0 0 0 3

(soil,earth) 1 1 1 3 0
(agriculture,business) 0 0 0 0 3

(wind,direction) 1 0 0 1 2
(climate,climate change) 0 0 0 0 3
(climate change,climate) 0 1 1 2 1
(climate change,activity) 1 0 1 2 1

(forest,terra firma) 1 1 1 3 0
. . . . . . . . . . . . . . . . . .

TOTAL 90 108 159 357 (0.19) 1566 (0.81)

(a) Agreement table for 641-annotations

pairs of words A1 A2 A3 Yes No
(forest,terra firma) 1 1 1 3 0

(wind,process) 0 0 0 0 3
(forest,object) 0 0 0 0 3
(cloud,state) 0 1 0 1 2
(soil,object) 0 1 1 2 1

(wind,breath) 0 0 0 0 3
(wind,act) 0 0 0 0 3

(topography,geography) 1 1 1 3 0
. . . . . . . . . . . . . . . . . .

TOTAL 75 72 119 266 (0.22) 946 (0.78)

(b) Agreement table for 404-annotations

Ao Ae kappa

641-annotations 0.83151 0.69764 0.44277
404-annotations 0.82382 0.65739 0.48577

(c) Multi-π agreement rispet to 641 and 404 annotations

Table 5: Agreement tables and Multi-π agreement for 641 and 404 annotations

annotators recall precision f-measure
A1 0,36 0.184932 0,244344
A2 0,305556 0,150685 0,201836
A3 0,470588 0,383562 0,422642

(a) WN-System against the 3 annotators

annotators recall precision f-measure
A1 0,493333 0,253425 0,334842
A2 0,4305556 0,212329 0,284404
A3 0,4369748 0,356164 0,392453

(b) Our-System against the 3 annotators

Table 6: Performance of both systems with respect to 3 annotators

Annotators recall precision f-measure
A1 0,36 0.184932 0,244344
A2 0,305556 0,150685 0,201836
A3 0,470588 0,383562 0,422642

(a) WN-System against the 3 annotators

Annotators recall precision f-measure
A1 0,493333 0,253425 0,334842
A2 0,4305556 0,212329 0,284404
A3 0,4369748 0,356164 0,392453

(b) Our-System against the 3 annotators

Table 7: Performance of both systems with respect to 3 annotators
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