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Abstract 
We propose a strategy to reduce the impact of the sparse data problem in the tasks of lexical information acquisition based on the 
observation of linguistic cues. It justifies that the uncertainty created by missing values, i.e. non-observed cues, can be handled by 
estimating its likelihood of being observable. Because of the Zipfian distribution of words, instead of estimating the likelihood from 
the data, we exploit the correlation drawn from the fact that a lexical class is based on the observation of different cues. We obtained 
experimental results that show a clear benefit of the proposed approach. 

 

1. Introduction 
Lexical coverage is crucial to achieve the proper 
performance of any processing component for NLP 
applications that relies on lexical information. Research in 
automatic lexical acquisition tries to offer a solution to the 
creation and maintenance of large-coverage lexica for 
feeding these processing components.  
 
Recent research with supervised Machine Learning 
methods shows that automatic lexical acquisition can be 
approached by assigning a word certain properties 
according to the linguistic information gathered from its 
occurrences in texts (Brent, 1993; Merlo and Stevenson, 
2001; Baldwin and Bond, 2003; Baldwin, 2005; Joanis 
and Stevenson, 2003; Joanis et al. 2007). Words are 
represented in terms of a collection of attributes, which 
are taken as hints or cues for the properties to be assigned. 
Each attribute records the observation that the word has 
been found in a particular context or not. For instance, to 
induce whether a noun can be classified as a countable or 
as a mass noun, its co-occurrence with particular 
determiners and quantifiers will be taken as a cue: 
‘some/*many mud’. A learner is supplied with the 
information about the occurrences of pre-classified 
samples in these significant contexts. This linguistically- 
motivated information, registered as numerical values of 
vector attributes about matched and non-matched cues, is 
supposed to be enough to separate new data into the 
proposed classes. The work by Dorr and Jones (1996) 
leads us to think that if the linguistic cues are properly 
identified, the mapping to classes has to follow 
necessarily.  
 
One of the problems of this approach (Joanis and 
Stevenson, 2003; Joanis et al. 2007; Korhonen et al. 2008), 
and the one we will concentrate on in this paper, is the 
high number of missing values, that is, zero values for 
most of the attributes that register the occurrence of the 
token in these particular contexts that are considered cues. 
In this framework, a zero value could mean either that the 
cue has not been observed because the word in question 
does not belong to the class, i.e. negative evidence, or that 
the word in question has not been observed in the cue 
sought, i.e. lack of evidence. This uncertainty creates 
problems to the learner, because zero values for 

incompatible labelled examples make the cue lose its 
predictive capacity and even though some samples 
display the sought context, it is not taken into account.  
In this paper we present the results of our experiments to 
try to reduce this uncertainty by, as other authors do 
(Joanis et al. 2007, for instance), substituting zero values 
for pre-processed estimates. Here we present a first round 
of experiments that have been the basis for the estimates 
of linguistic information motivated by lexical classes. The 
results show a clear improvement with respect to other 
methods.  
 
These experiments have addressed two cases that suffer 
from severe problems of missing values just to test this 
approach. The classification of these particular classes 
might be better solved with other approaches, however. 
Note, in addition, that there are other important problems 
in lexical acquisition, such as noise filtering, which are 
not under the focus of this paper (see for instance 
Korhonen, 2002).  
 
In what follows, we first introduce the state of the art in 
linguistic cue-based lexical information acquisition, and 
we motivate our proposal of using the linguistic 
knowledge about correlations between cues to re-estimate 
the missing values. This is the subject of section 2. In 
section 3, we focus on the problems caused by missing 
values and we introduce our approach taking into account 
the characteristics of linguistic data. In section 4, we  give 
details about the probability estimation and the 
production of what we call ‘harmonized vectors’. Section 
5 is reserved for giving methodological details of the 
experiments, whose results are presented in section 6, 
together with an evaluation. In Section 7, we  present our 
conclusions and future work.  

2. The use of cues in lexical information 
acquisition 

According to the linguistic tradition, words that can be 
inserted in the same contexts can be said to belong to the 
same class (Harris, 1951). Thus, lexical classes are 
linguistic generalizations drawn from the characteristics 
of the contexts where a number of words tend to appear. 
One of the approaches to lexical information acquisition 
proposes classifying words by training a classifier with 
information about their occurrence in selected contexts 
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where words belonging to a class indeed occur, e.g. the 
class of transitive verbs will  appear in passive 
constructions, while intransitive verbs will not, as 
expected. Thus, the whole set of occurrences (tokens) of a 
word are taken as cues for defining its class membership 
(the class of the type), either because the word is observed 
in a number of particular contexts or because it is not.  
 
Different supervised methods of machine learning 
techniques have been applied to cue-based lexical 
acquisition. A learner is supplied with classified examples 
of words represented by numerical information about 
matched and not matched cues. The final exercise is to 
confirm that the data characterized by the linguistically- 
motivated cues indeed support the division into the 
proposed classes. This was the approach taken by Merlo 
and Stevenson (2001), who worked with a DT and 
selected linguistic cues to classify English verbs into three 
classes: unaccusative, unergative and object-drop. For 
instance, animacy of the subject is a significant cue1 for 
the class of object-dropping verbs, in contrast to  verbs in 
unergative and unaccusative classes. More general 
linguistic information was used by Joanis et al. (2007): i.e. 
frequency of filled syntactic positions or slots, tense and 
voice features, etc. to describe the whole system of 
English verbal classes.  
 
Cue-based classification of nouns has been less addressed 
than that of verbs. Some selected references are Light 
(1996), who used information from derivational affixes to 
classify nouns; and Baldwin and Bond (2003), who  
induced mass/count information, from a parsed English 
corpus, using parallel supervised classifiers that took into 
account morpho-syntactic cues like head number, 
modifier number, subject-verb agreement, occurrence in 
‘N of N’ constructions, etc. The accuracy of their system 
was measured in terms of F-score 2  of 0.89 in the 
classification of English mass nouns, with a gold standard 
test set that, however, accepted a double classification, i.e. 
a noun could be both mass and count. More recently, Bel 
et al. (2007) trained a Decision Tree (DT) to classify 
Spanish nouns as mass nouns (among other lexical 
features, such as subcategorized complements and 
bounded prepositions) with an accuracy of 0.67, although 
allowing only one class per word in the gold standard.  
 
The problems caused by sparse data, i.e. the lack of 
evidence, and therefore abundance of zero values, in 
cue-based lexical acquisition are addressed by Joanis et al. 
(2007), who reported that even using medium to high 
frequency words (for instance, their test set were verbs 
with more than 100 occurrences in the British National 
Corpus, BNC), they had to pre-process missing values by  
substituting zeros for a trimmed mean value of the 
observed values for this particular cue in the whole test set, 
as we will see in section 3.  
 
For our experiments, we have addressed two tasks which 
specially suffer the problem of zero values even with 
medium to high frequency words: the classification of 
mass nouns, which we have tested for Spanish nouns; and 
                                                           

                                                          

1 The context taken as a cue was the use of personal pronouns 
(not it) as subject. 
2 F-score is the harmonized mean value of precision and recall. 

the classification of concrete/abstract nouns, which we 
have addressed for English nouns. In the following 
sections we give details of the cues used to create both 
datasets and we motivate them. 

2.1 Cues for mass/countable distinction  
In several languages, Spanish and English among them, 
the distinction between mass and non-mass nouns is 
grounded on morphosyntactic cues of a lexical class that 
is based on the denotation of the word (Gillon, 1992 for 
English; and Bosque, 1996 for Spanish)3.  
 
For our experiments with Spanish nouns, we have used 
Bel et al. (2007) cues and data. The cues devised for 
identifying Spanish mass/non-mass nouns are the 
following:  
- Plural morphology: Spanish mass nouns tend to appear 
in singular more than in plural.  We have registered both 
in different attributes. 
- Singular undetermined noun phrases after a verb or a 
preposition  are a clear cue of the head noun being a mass 
noun: “hay barro en el salón” (‘there is mud in the living 
room”) vs. “hay hombres/*hombre en el salón” (“there 
are men/*man in the living room”).  We have used a cue 
for each possible context. 
- The co-occurrence with particular quantifiers, such as 
“más” (‘more’), “menos” (‘less’), “poco” (‘few’), etc. in 
singular is also a cue for mass nouns.  
- Derivational suffixes of nouns such as “-ción” or “-dad” 
are considered cues, as well.  
The cues based on a collection of lexical items are rarely 
observed, but their predictive nature is very high, 
becoming one of the typical examples of frequently zero- 
valued attribute. 

2.2 Cues for abstract nouns in English 
Concrete/abstract classification (Baroni et al. 2008) has a 
more severe problem of sparse data than mass class. The 
distinction between abstract/concrete nouns is more 
semantically based than the mass one, and contextual 
morphosyntactic cues are harder to find. Our final set of 
cues consists of nine cues for abstract nouns and five 
meant to identify non-abstract nouns, as follows:  
- According to Light (1996), suffixation is the most 
powerful cue to identify English abstract nouns. The 
suffixes we have used as cues are: -ness, -tion, -ity, -ism, 
-dom, -ment, -tude, -ence. We have also included the –ing 
ending to capture most of the verbal nominalizations, 
which tend to be abstract, although this cue has introduced 
some noise (as in ‘building’, which is a concrete noun).  
- For non-abstract noun detection, we have used the 
following suffixes: -er, -or, -ist, trying to capture nouns 
that refer to persons or instruments: doctor, teacher, 
dentist, opener, etc. For both types of suffixes we have 
also included as separate cues the possibility of being 
coordinated with a noun that has one of these suffixes, as 
coordination tends to link nouns belonging to the same 
class. While in the case of suffixes used to build abstract 

 
3 Despite their lexical characterization, nouns can change this 
lexical feature when being in particular syntactic contexts, 
which makes the lexical acquisition of this feature a very 
interesting scenario, as the number of cues that are meant to 
identify the members of the mass class is reduced.  
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nouns we indeed meet the problem of missing values, i.e. 
a pretty large number of abstract nouns do not have any of 
the suffixes that would be a cue; in the case of  suffixes 
used to build concrete nouns, the problem is noise, i.e. 
there are many abstract nouns that have these endings, for 
instance ‘answer’.  
- Concrete nouns tend to co-occur with adjectives that 
refer to colour and size, for instance big, small, huge, 
large, little, long, short, thin, tall, round, medium. Thus, 
the co-occurrence with these words has been considered a 
cue. 
- Abstract nouns have been found to co-occur more with 
particular determiners such as much, little or that.  

3. Missing values 
Missing or zero values are due to the optional nature and 
variety of the contexts of occurrence we are using for 
identifying lexical classes. For instance, in our previous 
example ‘there is mud in the living room’, the word ‘mud’ 
can also appear with other determiners that are less 
informative for our classification, i.e. “the mud”. 
Moreover, as we have seen in the previous section, in 
order to identify a class it is necessary to use a number of 
different possible contexts in which a word cannot occur 
simultaneously. Note that it is impossible for low 
frequency words to occur in every of these contexts, and a 
number of the attributes of its vector representation will 
be necessarily zeros. Note that for 11 out of 17 cues in our 
English test set, less than 40% of the nouns were observed 
in these contexts once or more times. Supervised machine 
learning methods such as DT’s can handle missing values 
by assigning a probability to each of the possible values, 
which is calculated based on the frequencies of the 
various values of an attribute in the examples. However, 
when the training set contains a majority of cases with a 
missing value, labelled both as positive and negative 
examples, the cue loses its predictive power. Although a 
word occurs in one of these informative contexts, it will 
not be taken into account because the abundance of other 
cases where it will be zero-valued will make the learner 
ignore it, being the numerous cases of zeros more salient 
than the few with values. In Figure 1, we can see the 
relation between the occurrences of a word (tokens) and 
the number of different cues observed, at least once, in a 
corpus of 3.3 Million words in our experiment of 
abstract-noun classification in English. 

Figure 1: Relation between token frequency (dark line) 
and the number of different cues observed, at least once, 
for 213 English nouns in a corpus of 3.3 M words. The 
scale is logarithmic in order to see the details of the low 

frequency words. It is clear that the lower the frequency is, 
the fewer cues tend to be observed.  

In other works on lexical information acquisition, the 
problems created by zero values could have remained 
hidden by the selection of testing datasets with high 
frequency words in large corpora. For instance, Merlo and 
Stevenson (2001) extracted the counts of only 20 verbs 
per class from a 65-million-word tagged ACL/DCI corpus 
(Brown and Wall Street Journal 1987-1989), and from the 
29-million-word parsed Collins corpus (Collins, 1997), 
selecting those samples with a minimum of 10 
occurrences per verb. But, according to Zipf (1935), there 
will be a large number of words, especially nouns, that 
will appear fewer times in any corpus of any length. For 
instance, Yallop et al. (2005) calculated that in the 
100M-word BNC, from a total of 124,120 distinct 
adjectives, 70,246 occur only once, 106,464 less than ten 
times and 119,337 less than a hundred times. Similar 
figures would result from the analysis of noun 
occurrences. As already said, these low frequency words  
will not occur in every possible context, and hence the 
proliferation of missing values will make different 
cue-based methods for lexical acquisition inoperative. If 
the learner has been trained only with the more frequent 
words, during classification the lower frequency ones will 
not be displaying enough evidence, and hence will be 
misclassified. If the training material takes them into 
account, zero values will characterise both positive and 
negative examples, thus creating an uncertainty that the 
system will not be able to solve. The uncertainty is due to 
the fact that either  a zero value is indeed a negative value, 
i.e. the cue is that it has not been observed; or  a zero value 
indicates that the cue was just not observed in the 
examined corpus, by chance, because of its optional 
nature. 
 
Missing values have been a topic for Machine Learning 
methods and, of course, for the application of ML to other 
NLP tasks. For instance, for Decision Trees, Quinlan 
(1986) proposed different methods to estimate the 
unknown values. These included using the modal value, 
using Bayesian probabilities, determining the unknown 
value using a DT, and distributing the unknown examples 
according to the known examples. According to Mingers 
(1989) experiments, the easiest and best method to deal 
with zero values is to assume that they can be substituted 
at a given point for the most common value observed 
among the other examples in the same class.  For NLP 
tasks, Katz (1987) and Baayen and Sproat (1996), among 
others, acknowledged the importance of pre-processing in 
that way low frequency events for Markovian methods, 
for instance. 
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For lexical classification, Joanis et al. (2007) 
experimented with more than 100 occurrences per verb in 
the BNC, but still they had to substitute missing values for 
a mean value obtained from the test set, as we will see 
later. Korhonen (2002) and Korhonen and Krymolowski 
(2002), in a different learning scenario, smoothed zero 
values with back-off estimates, i.e. informative prior 
probabilities calculated on a previously available set of 
classified verbs (i.e. Wordnet). In all cases the treatment 
of missing values increased accuracy in the classification 
task, showing the impact of this phenomenon in language 
data. 
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Our experiments try to improve these results by 
addressing the uncertainty mentioned before with the 
objective of separating zero values into, on the one hand, 
negative values and, on the other hand,  likely to be 
unobserved values. As we will show, we are proposing a 
back-off solution, computing the estimates that are to 
substitute the zero values from the correlations holding 
among the different cues that define a class. The 
estimation is done by applying Bayesian methods that 
take into account two factors: the fact that there are 
several cues to identify each lexical class and the fact that 
there are actual data coming from actual occurrences of 
the word, although there are few of them. If several cues 
are meant to describe one lexical class, then it is possible 
to use the knowledge that there is such a correlation in 
order to make predictions about the likelihood of the one 
that is missing, taking as a reference the related cue or 
cues in actual occurrences, as we explain in the next 
section. 

4. Harmonization 
Our aim was to distinguish between negative cues and 
unobserved cues for improving the material to be supplied 
to the learner, and our proposal was to make this 
distinction by using information on the correlations 
among the cues. According to Anderson (1991), 
categorization is justified by the observation that objects 
tend to cluster in terms of their attributes. Thus, if a 
number of attributes are used to identify a class, to know 
just a part of the attributes still helps to predict the values 
of the other, unobserved, attributes.  
 
In the preceding section we have described the different 
cues that we have used to identify a particular lexical class, 
i.e. no plural morphology, absence of determiner, etc. The 
idea behind our approach is that when a cue for 
identifying class A, for instance, is matched, it is more 
likely to observe other cues that would also be significant 
for class A, than to observe the ones that are used for 
identifying other classes. Our hypothesis is that 
classification results would improve if we could 
distinguish real zero values, the negative case, from those 
cases where the fact of being unobserved is related to low 
frequency or to the non-obligatory character of the 
contexts used as cues. Thus, we approach this task by 
computing, for each of these zero-valued components, the 
probability of there being a positive value.   
 
To sum up, we preprocess the data gathered from a corpus 
by smoothing missing values with an estimate of their 
probability of being a positive cue, based on the 
information supplied by the concept of lexical classes. We 
call the results “harmonized vector” because the values 
are harmonically re-evaluated. The calculation is made as 
follows. 

4.1 Basic vector representation 
We have used Regular Expressions to implement patterns 
that check for the cues in a part-of-speech tagged corpus. 
A vector representing a word consists of as many 
components as cues devised to identify members, and also 

non-members, of the class that our classifier is intended to 
learn and predict, as detailed in section 2. The positive or 
negative results of the n-pattern checking in all the 
occurrences of a word are stored as numeric values of an 
n-dimensional vector. Thus, a single vector summarizes 
all the occurrences of a word (the type) by encoding how 
many times each cue has been observed or whether it has 
not been observed (zero value). This vector, which we call 
Frequency, is the input for the different smoothing and 
harmonization techniques used in the experiments.  

4.2 The probability of being a positive cue 
As already said, the frequency vector can contain many 
zero-valued components. Our hypothesis is that 
classification results would improve if we could 
distinguish actual zero values, the negative case, from 
those cases likely to be related to low frequency or to the 
non-obligatory character of some of the contexts used as 
cues. Thus, we have approached the task by computing, 
for each of these zero-valued components, the probability 
of there being a positive value. We have used the 
knowledge we have about the particular cues that jointly 
identify the classes into which we want to classify words, 
and the frequency vector obtained as a representation of 
their occurrences in a corpus, as we have explained in 
section 4.1.  
 
Following Anderson (1991), we want to obtain (1), the 
probability of a component’s value given all the 
components of the vector where it appears. 
 
(1)  ∑=

k
ii kjPvkPvjP )|()|()|(  

 
Where v is the vector representing the occurrences of the 
word, k is the class that is being used for classification and 
j is the value of the component number i of the vector v. (1) 
wants to make a prediction about unobserved attributes. 
In our case, we want to make a prediction about the 
probability of j being positive, given the actual vector v 
registering the matched cues from all the occurrences of a 
word. The summation is across all the possible values of  
class k, because we want to find the probability of j=1 
taking into account both values for k, yes and no.   
 
We start with , that is, the probability of the class 
given the vector matched cues, because it involves the 
calculation of , as we will see below.  The 
probability that a given vector belongs or not to a class is 
approximated as the probability of a class given a 
particular vector, , and can be calculated by 
Bayesian inversion as (2): 

)|( vkP

)|( kjPi

)|( vkP

 
 
(2) 

∑
=

k
kvPkP

kvPkPvkP
)|()(

)|()()|(  
 
 
Where P(k) is the prior probability of class k, and P(v|k) is 
the likelihood of vector v given class k. The prior is 
estimated for the current experiments with a value 0.5 for 
each class, in order to prevent unbalanced classes from 
affecting the results of the harmonization experiment. We 
will see in the conclusions that it is a future task to use a 
more realistic prior.  
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To calculate the likelihood of the vector given the class 
P(v|k), we consider the likelihood of the components, and 
again following Anderson (1991) we use (3): 
 
(3)  ∏=

i
i kjPkvP )|()|(

 
The likelihood of each vector component given a class 
should had been computed from the training sample, but 
our hypothesis is that because our data is 
Zipfian-distributed and there are many missing values for 
j, the training sample cannot be used. The same reasons 
we have argued for preprocessing the data to be supplied 
to the learner apply here, as well: too many missing values 
will supply the assessment with uncertain information4. In 
order to solve that point we have probabilistically 
modeled the linguistic information contained in the 
definition of lexical classes. For instance, for the case of 
the abstract class that we have defined in section 2, we 
have used five cues, out of seventeen, to identify concrete 
nouns. It follows that the probability of Pi(j|k) is 1 for 
each of these cues: as linguists, we expect that if a word 
belongs to the class concrete, it will appear with each of 
these cues. However, as we know that none of them is 
obligatory and that a word can have low frequency, we 
have heuristically tuned its likelihood to a probability of 
0.5, because the cue can be seen or not.  
 

 abstract Concrete

  Suffix=0 0.5 1.0 

  Suffix=1 0.5 0.0 

 SC_Adj=0 1.0 0.5 

 SC_Adj=1 0.0 0.5 
Table 1. A sample of the likelihood of particular cues j  

given a class k, P(j|k), for abstract/concrete. 
  
In Table 1, we show a sample of the probabilities of the 
two types of cues for the abstract case: those  meant to 
identify the abstract class (for instance, suffixes such as 
–ness, -tion, etc.) and those meant to identify the concrete 
class (for instance, size or colour adjectives). Table 1 
reads as follows: the probability of occurring with a 
particular suffix (Suffix=1) given an abstract noun is 0.5, 
but if the word is concrete is 0. We cannot be certain about 
the positive case, but we are so about the negative case. 
This is a very simplistic approach to model the 
information about the lexical class. In Table 2, we show 
the probabilities estimated for the more complex  mass 
class in Spanish, where we have been able to take into 
account more cues and, crucially, also the fact that a given 
cue can identify two classes in a three-class lexical 
model5.  
 
                                                           
4 We have compared Pi(j|k) assessed with linguistic information, 
as just explained, with that obtained from the training data. As 
expected, the strongest differences are mainly in the assessment 
of the cues that are less frequent, thus confirming our initial 
suspicions. 
5  The lexical model addressed mass, count and mass-count 
names. Merlo and Stevenson (2001) and Joanis et al. (2007) had 
identified an important aspect about the distribution of cues for 
lexical classes: there are classes that share cues. 

  mass=no mass=yes 
Plu=no 0.50 0.54 
Plu=yes 0.50 0.46 
Undet=no 1.00 0.50 
Undet=yes 0.00 0.50 
Quant=no 1.00 0.50 
Quant=yes 0.00 0.50 
Morfo=no 0.63 0.66 
Morfo=yes 0.37 0.34 

Table 2. A sample of the likelihood of particular cues j  
given a class k, P(j|k), for the mass class. 

 
Note that the likelihood of the attributes obtained from the 
knowledge of which cues are under the same 
class, , is used in (3) and also in (1). Thus, the 
posterior probability of the class given the vector, and the 
likelihood of the cue given the same class are multiplied 
to take all the available information into account. 

)|( kjPi

 
In practice, the results of harmonization can be summed 
up with the following explanation. When the initial 
frequency vector has one or more positive cues from those  
defined to identify a particular class, then all the 
components of cues related to the same class get some 
probability of being positive, i.e. the case of acero or 
desabastecimiento in Table 3 below. The cues related to 
the other class remain zero-valued. When the frequency 
vector has positive values for two or more cues, each one 
related to different classes (because of noise, for instance), 
then the value obtained by the initially zero-valued 
attributes after harmonization is kept as zero, as in the 
case of agua.  
 
Note that frequency information is lost, however, as now  
all the vector components encode probabilities.  
 

Harmonized Frequency Word 
0,1,0,1,0,1,1,0,1, 
0,0,1,1,0 

0,3,0,1,0,1,1,0,1, 
0,0,1,1,0 

agua (‘water’) 

1,1,0.5,0.5,0.5,1,1,1,1, 
0,0,0,0,0 

1,2,0,0,0,2,1,1,2, 
0,0,0,0,0 

acero (‘steel’) 

0.5,0.5,0.5,0.5,0.5,0.5,1, 
0.5,0.5,0,0,0,0,0 

0,0,0,0,0,0,1,0,0, 
0,0,0,0,0 

desabastecimiento 
(‘shortage’) 

Table 3: Comparative view of harmonized and 
frequency-based vectors for different occurrence patterns 

of positive mass nouns in Spanish. The last five components 
are cues for non-mass class 

We have kept this simple scenario in order to clearly see 
the impact of harmonization. However, it is a future task 
to assess priors and conditional probabilities differently to 
obtain better predictions. 

5. Experiments and Methodology 
For our classification experiments we have used a C4.5 
Decision Tree classifier (Quinlan, 1993), a Support Vector 
Machine (LibSVMs, Chang and Lin, 2001, with a Radial 
basis function as kernel), which has recently shown its 
adequacy to the task (Joanis et al. 2007). We have used the 
implementation of the Weka platform (Witten and Frank, 
2005). For each experiment we have used a 10-fold 
cross-validation testing.  
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The baseline has been a simple majority-class classifier, 
as computed from an actual MT dictionary of 35.000 
lemmas for the Spanish case, and from the gold-standard 
files for the English case, which had to be 50% but some 
nouns have been deleted because they did not occur in our 
corpus.  
 
Our experiment had to confirm that the information 
supplied by the harmonized vectors improved the 
classification results, even when the frequencies of the 
words were low. Thus, the corpus used to gather data has 
been considerably small, compared to other works. We 
have used the IULA-UPF Multilingual Technical Corpus 
(Cabré et al., 2006), a part-of-speech tagged corpus which 
consists of domain-specific texts. The section used in our 
evaluation contains 1 million words for Spanish in the 
domain of economy; and 3.3 million words from different 
domains for English. 
 
The Spanish dataset consists of the vectors for 250 
different nouns, as used by Bel et al. (2007), where there 
are 102 nouns with the value mass=yes. The evaluation 
has been done by comparing with Bel et al. (2007) 
gold-standard files, which were manually encoded. The 
number of occurrences for each type varies, as shown in 
Table 4. Each word has been represented by a vector of 23 
attributes encoding the positive and negative cues 
reported in section 2, gathered from the corpus just 
mentioned. The data contains noise and a high number of 
missing values, which reproduces a scenario that suffers 
from the sparse data problem: for the five best attributes 
ranked by a chi-squared filter, there are 89, 115, 139, 156 
and 209 vectors, respectively, that have zero as value. 
  

#of occurrences (tokens) 1 2-10 11-50 >50 
Spanish types 44 101 58 47 
English  types 15 55 55 62 

Table 4. Token frequency per type in the used corpora. 
 
The English dataset for the task of concrete-abstract 
classification has initially consisted of 250 nouns selected 
by Altarriba et al. (1999), as we have used their ratings of 
concreteness as our Gold standard. However, there were 
63 nouns that did not occur in our corpus and we have 
deleted them. The final test set has been of 187 types. 
Frequency information about them in our corpus is shown 
in Table 4, where we can see that the majority of nouns 
occur less than 50 times. The English dataset has suffered, 
more than the Spanish one, from the sparse data problem. 
For the first 5 best chi-squared ranked attributes there are 
107, 111, 129, 185, 169 samples, respectively, that are 
zero-valued.  
 
For the different experiments, the test sets we have used 
are:   
• Zero-valued components, substituted by a simple 

mean based smoothing, which has been calculated on 
the members of each class in the dataset.  

• Zero-valued components, substituted by a trimmed 
mean value, which has been obtained from the 
dataset and calculated by discarding 30% of the 
lowest and the highest scores. 

• Frequency of each cue. 
• The harmonized vectors. 

  

6. Results and discussion 
 
Our harmonization method wanted to discriminate real 
negative cues (i.e. the significant fact is that the cue has 
not been observed) from lack of evidence, as this 
uncertainty negatively affects classification already when 
learning from the data. For the learner, zero values for 
incompatible labelled examples make the cue  lose its 
predictive or discriminative capacity, and then, although a 
sample shows the sought cue correctly, the learner will not 
take it into account. Thus, the objective of our experiment 
was to test to what extent the qualified information 
supplied by the harmonized vector contributes to the 
accuracy of the classification, independently of the 
datasets and of the methods used.  
 
Results are presented in terms of accuracy, i.e. the 
percentage of correct classifications out of all the 
classifications, in Table 5. They confirm that harmonized 
vectors improve learning results, if compared with the 
results obtained by using smoothing methods such as 
mean and trimmed mean values computed from the 
available datasets, as proposed by Mingers (1989) and 
Joanis et al. (2007). Our method also slightly improves 
the results of just using the frequency of the cues in our 
test set, but differences in the Spanish set are not 
significant. As said, frequency information is meant to 
handle noise.  
 

  
 Spanish Mass English Abstract 
Experiment DT SVM DT SVM 
Mean 74.2 63.8 57.8 61.0 
Trimmed mead 77.5 67.4 55.6 61.0 
Frequency 79.9 79.1 61.4 64.1 
Harmonized 82.8  80.7  76.1 70.1 
Baseline 74.8 61.5 

Table 5: Results of the experiments 

 
DT and SVM results are similar, and there are some 
improvements of the classification results in both datasets 
and for the two methods. The best accuracy is achieved 
with the Spanish dataset working with DT’s, which is in 
contradiction with Joanis et al. (2007) experimental 
results, where they reported to have gained by using 
SVM’s. Some reasons for this could be the fact that their 
vectors have a higher dimensionality (224 attributes) than 
ours (23 attributes), and  the size of the corpus we have 
already commented in section 5. However, and although a 
proper comparison of results is impossible due to the 
differences between both datasets, our results seem to be 
in line with their results: 77.5% of accuracy for English 
verbs when working with DT’s. Our results show an 
improvement also compared to Bel et al. (2007), which 
report 67% of accuracy for the same tasks, using a 
vector-of-vectors representation for classifying Spanish 
mass nouns with a DT. The improvements when using an 
informed estimate support Korhonen (2002) results, when 
she used informed priors computed from WordNet. But 
the availability of previously classified resources can be a 
problem, while our proposal only makes use of the 
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knowledge of which cues are used together to identify 
every class. 
 
An analysis of the errors shows that the classifiers using 
harmonized vectors cannot handle noise, if compared 
with vectors using frequency information. Very frequent 
words tend to occur in most of the proposed contexts, 
although in different proportions.  
 
The improvement in the Spanish set is not statistically 
significant, however. Error analysis shows that it has to do 
with the loss of frequency information, which in the other 
experiments helps in noise filtering, but not in the 
harmonized vector. Our class-based probability 
information increases the chances of a zero value  being a 
positive, but cannot correctly handle the actually observed 
data where noise exists. It remains for future work to 
introduce noise filtering.  
 
Another remarkable aspect has to do with the size of the 
training corpus, which for the Spanish case is rather small. 
However, in comparison with the results of the English 
experiment, with a 3-times larger corpus, the size does not 
seem to be an important factor, as the bad results with 
frequency vectors and DT show for the English case. As 
expected, the phenomenon of missing values, the problem 
that really affects the DT’s, is to a certain extent 
independent of the size of the corpus because of the 
Zipfian distribution of words. 
 

7 Conclusions 
 
The results of our experiments support our proposal to  
use harmonized vectors to overcome one of the problems 
caused by sparse data in lexical acquisition: abundance of 
uncertain zero values. By just using the knowledge of the 
correlations that hold among different cues used to 
identify a class, we can estimate the likelihood of each 
zero-valued component being positive. Our method opens 
the possibility of working with cues, which have a strong 
predictive power but very low occurrence. It is also a 
topic for future research to combine harmonization with 
frequency information in a smart way. 
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