
Syntactic testsuites and Textual Entailment Recognition

Paul Bedaride∗, Claire Gardent+

∗ INRIA/LORIA and Université Henri Poincaré
+ CNRS/LORIA

paul.bedaride@loria.fr claire.gardent@loria.fr

Abstract
We focus on textual entailments mediated by syntax and propose a new methodology to evaluate textual entailment recognition systems
on such data. The main idea is to generate a syntactically annotated corpus of pairs of (non-)entailments and to use error mining to
identify the most likely sources of errors. To illustrate the approach, we apply this methodology to the Afazio RTE system and show how
it permits identifying the most likely sources of errors made by this system on a testsuite of 10 000 (non) entailment pairs.

1. Introduction
The Recognising Textual Entailment (RTE) challenge eval-
uates the ability of NLP systems to detect whether one sen-
tence implies (textually entails) another. However, because
it is constructed semi-automatically from real text, the data
used for this challenge displays the full “NLP complexity”:
semantic construction but also anaphora resolution, tempo-
ral and spatial reasoning and reasoning based on lexical
and general world knowledge. This makes it difficult to
assess how well RTE systems deal with each of these pro-
cesses and consequently, how far NLP is from providing
them with a principled treatment.
In this paper, we focus on syntax based entailments that
is, entailments such as (1) where entailment is mediated by
syntax alone.

(1) a. John sends a book to Mary
→ John sends a book

b. John sends a book to Mary
→ A book is sent to Mary by John

c. John quickly sent a book to Mary
→ John’s sending of a book to Mary was fast

To evaluate the capacity of RTE systems to deal with such
cases, we propose a methodology that combines the auto-
mated construction of graduated, annotated, testsuites with
a fine grained statistical data analysis of the system results
that relies on testsuite annotations that are produced auto-
matically.
This methodology differs from the traditional, corpus based
analysis used in the RTE challenge in two main ways. First,
it permits evaluating RTE systems on a specific entailment
type, in this case, syntax based entailment. Second, the
testsuite annotations and the statistical data analysis it sup-
ports, permit a precise identification of the most probable
sources of errors.
We first sketch the method used for creating graduated test-
suites for syntax-based entailment (Section 2.). We then
evaluate an RTE system on this suite (Section 3.) . Fi-
nally, we show how error mining techniques which were
originally developped for identifying errors in deeo com-
putational grammars can be used to detect the most likely
sources of RTE errors (Section 4.).

2. Creating syntactic testsuites
An RTE testsuite consists of pairs of sentences annotated
with either TRUE or FALSE depending on whether the first
sentence textually entails the other or not.
To build an RTE testsuite which focuses on entailments me-
diated by syntax alone, we use a technique inspired from
template based surface realisation (Johnson et al., 2004).
We start by manually specifying a set of syntactic patterns
together with a lexicon linking patterns to strings. We then
use this knowledge to build sentences and associate them
with a meaning representation.
It is worth stressing that our aim is here to illustrate the
usefulness of the proposed evaluation methodology not to
provide an extensive coverage of the possible syntactic vari-
ations on a given content.

2.1. Syntactic patterns
We provide an XML specification of the possible syntactic
patterns acceptable for various verb types (e.g., transitive,
intransitive) of English. A syntactic pattern is a sequence of
words and syntactic categories. It is furthermore annotated
with a subcategorisation type and with one or more syntac-
tic tags describing the specific syntactic constructs involved
in this pattern such as active (A) or passive (P) verb form,
relativised argument (R) and verbal (V) vs. nominal (N)
predicate.
For instance, the following patterns describe a string of the
form NP-V-Prep-NP where the verb has subcategorisation
type nVnPn i.e., ditransitive. The first pattern describes a
sentence where the verb is in the active form (V-A e.g.,
“John sent a book to Mary”); the second pattern describes
a sentence where the verb is in the passive form (V-P-PP0
e.g., “A book is sent to Mary by John”); and the third pat-
tern describes an active voice sentence with a relativised
subject (e.g., “The man who sent a book to Mary ...”).

<Const id="nVnPn" type="V-A">
<NP id="0"/> <Verb /> <NP id="1"/>
<PP id="0"/> <NP id="2"/>

</Const>

<Const id="nVnPn" type="V-P-PP0">
<NP id="1"/> is <PPVerb />
<PP id="0"/> <NP id="2"/>

3132

by <NP id="0"/>
</Const>

<Const id="nVnPn" type="V-R0-A-PP0"
relPro="0">

<NP id="0"/> who <Verb /> <NP id="1"/>
<PP id="0"/> <NP id="2"/>,

</Const>

2.2. A Base Lexicon for the Syntax/Semantics
interface

To build sentences out of the syntactic patterns, we spec-
ify a base lexicon which lists for each predicate, the corre-
sponding verb and noun forms, the verb subcategorisation
type, the semantic type of its arguments and the mapping
between syntactic and semantic arguments.
For instance, the entry for the ”send” predicate is as fol-
lows.

<Set pred="send">
<Parts>
<Verb>sends</Verb>
<PPVerb>sent</PPVerb>
<Noun>sending</Noun>
<Arg n="0" id="Person"/>
<Arg n="1" id="Object"/>
<Arg n="2" id="Person"/>

</Parts>
<Dists>
<Dist constfam="possNpn"

dist="01" fill="of" />
<Dist constfam="nVn"

dist="01" />
<Dist constfam="nVnPn"

dist="012" fill="to" />
</Dists>

</Set>

This says that the predicate “send” can be realised by the
verb forms sent or sends or by the noun form sending; that
a sending event involves three participants named 0, 1 and
2 whose ontological types are Person, Object and Person
respectively; and that three possible syntactic patterns and
syntax-to-semantic mappings are possible namely, poss-
Npn (John’s sending of a book), nVn with distribution 01
(e.g., John sent a book) and nVnpn with preposition filler
“to” and distribution 012 (e.g., John sent a book to Mary).
The distribution shows the linear order of the semantic ar-
guments realisation in the string.
Note that because the lexicon refers to syntactic families,
each Dist specification may in fact license several syn-
tactic patterns namely, all the syntactic patterns associated
with the family referred to by the Dist element. For in-
stance, given the three syntactic patterns listed in section
2.1. for the nVnpn verb type, the send predicate will li-
cence the production of an active voice variant, a passive
voice one and a relativised subject one.

2.3. Linking strings to semantic types
The information described so far refers to the syntax and
semantics of predicative structures. To produce sentences
out of these structures, information is also needed about the
strings realising the predicates and their arguments. To this

end, we specify for each ontological type referred to in the
predicate specification, one or more example strings that
are typical representatives of that type. For instance, the
“Person” and “Object” type will be associated with exam-
ple strings as follows.

<SemArgs>
<SemArg id="Person">
<Arg>John</Arg>
<Arg>Mary</Arg>
<Arg>Mark</Arg>
<Arg>Jane</Arg>
<Arg>Kevin</Arg>
<Arg>The man</Arg>

</SemArg>
<SemArg id="Object">
<Arg>a book</Arg>
<Arg>a fork</Arg>
<Arg>a spoon</Arg>

</SemArg>
</SemArgs>

2.4. Generating a testsuite of textual entailments
mediated by syntax

The testsuite is generated in two steps. First, sentences are
generated. Second, sentences are associated with a seman-
tic representation and the entailment value between the two
sentences is determined by comparing their associated se-
mantics.

2.4.1. Generating sentences
For a given predicate, we generate the set of strings that can
be associated with this predicate given the constraints stated
in the base lexicon and the available syntactic patterns. For
instance, given the send predicate and the above lexical
and syntactic specifications, the following sentences/NPs
will be produced:

(2) a. John sends a book

b. John sends a book to Mary

c. The man who sends a book to Mary

d. John’s sending of a book

Complex sentences involving more than one clauses are
produced by dedicated procedures dealing with e.g., rela-
tive clauses.

2.4.2. Generating testsuite items
A testsuite item consists of two sentences (generated as
described above), a truth value (false or true) indicating
whether the entailment holds and a set of syntactic tags as-
sociated with each of the two sentences e.g.,

T: John’s sending of a book to Mary was fast
send-{(N,-,Poss), (N,-,PP0)}

H: John sent a book
send-{(V,A,-)}

E: True

To construct theses testsuite items, we start by associat-
ing each sentence with a semantic representation as fol-
lows. Each argument is associated with a triplet of the

3133

form (predicate, role, arg) where predicate is the value
of the pred attribute, role is the n id of the argument Arg
and arg is the Arg value (picked among the corresponding
SemArgs). For instance, the semantics of ”John sends a
mail to Mary” and of ”John who send a mail to Mary” is

(send, 0, John), (send, 1, mail), (send, 2, Mary)

In other words, the meaning representation obtained cap-
tures basic predicate/argument relationship whereby other
semantic phenomena such as e.g., quantification are not
dealt with. Clearly such phenomena have an impact on en-
tailment and should be catered for at some point. However
since we are mostly concerned with setting up a methodol-
ogy which supports the evaluation of syntax based entail-
ment, we leave their handling for further research.
A testsuite item 〈S1, S2〉 with semantics Sem1 and Sem2

will be annotated with TRUE if Sem1 ⊂ Sem2 and with
FALSE otherwise.
The syntactic annotations labelling each sentence are col-
lected from the syntactic patterns used to construct the sen-
tence.

3. Evaluating an RTE system
Although the testsuite building tool described in the previ-
ous section is far from covering all possible syntactic vari-
ations of a given sentence, it provides a good starting point
for evaluating the ability of RTE systems to handle such
variation. To illustrate this, we evaluate the Afazio RTE
system on a testsuite created using that tool.

3.1. The Afazio RTE system
Similarly to the Nutcracker system (Curran et al., 2007),
the Afazio RTE system combines a statistical parser (the
Stanford parser (Klein and Manning, 2003)) with a sym-
bolic semantic component. First, a system of cascaded
rewrite modules is used to rewrite the output of the parser
into a “normalised” semantic representation intended to
abstract away from surface differences and assign para-
phrases the same representation (Bedaride and Gardent,
2009a; Bedaride and Gardent, 2009b). Special emphasis is
placed on capturing syntax based equivalences such as syn-
tactic (e.g., active/passive) variations, redistributions and
noun/verb variants. Next, automated reasoning is used to
check entailment.

3.2. The evaluation testsuite
Using the methodology described in section 2.4., we built
an entailment testsuite where entailment is mediated purely
by syntax. The resulting testsuite is graduated in that it con-
tains cases of varying syntactic and semantic type. More
specifically, its composition can be summarised as follows:

• It consists of 10 testsuites of 1 000 test items each.

• Each testsuite contains an equal distribution of true
and false entailments.

• Each test suite contains sentences made up of up to
three clauses.

• The predicates (verbs and nouns) used by each test
suite have one of 10 distinct subcategorisation type.

• Each test suite uses a different combination of
subcategorisation types e.g., INTRANSITIVE-
VERB, TRANSITIVE-VERB, DITRANSITIVE vs.
INTRANSITIVE-VERB-WITH-PLURAL-SUBJECT,
TRANSITIVE-VERB, DITRANSITIVE.

3.3. Results
The results obtained by the Afazio system on this testsuite
are given in the following table:

True False Total
Correct 2445 4872 7317

Incorrect 2482 33 2515
Errors 73 95 168
Total 5000 5000 10000

True and False are the gold values for entailment (True in-
dicates a sentence pair such that the first sentence textually
entails the other, False a sentence pair where no such en-
tailment holds). Correct and Incorrect give the system’s
behaviour with respect to the gold. In particular, Incor-
rect indicates mismatches between the system result and
the gold annotation. Finally, errors are cases where auto-
mated reasoners fail to return an answer (since first order
logic is only semi decidable, there is never a garantee that
automated reasoners succeed in determining whether or not
entailment holds).
Although the overall accuracy is reasonable (73.2 %), false
negatives (that is, incorrect system answers on true entail-
ment or equivalently, entailments that are labelled as non
entailments by the system) are numerous. To get a clearer
picture of which linguistic phenomena are ill handled we
perform error mining on the afazio results as explained be-
low.

4. Finding the source of errors
The annotations contained in the automatically constructed
testsuite allow us to caracterise the most important sources
of failures. To this end, we use error mining techniques that
were developed by the parsing community to identify the
most likely sources of errors in manually specified, deep
grammars. In specific, we use (Sagot and de La Clerg-
erie, 2006)’s suspicion rate to compute the probability that a
given syntactic tag pair (cf. section 2.) is responsible for an
RTE detection failure. The tags with highest suspicion rate
indicate which syntactic phenomena often cooccurs with
such failure.
For each testsuite item (T,H), we store all tag pairs
(TAGH , TAGT) such that TAGT and TAGH are asso-
ciated with the same predicate but TAGT occurs in T and
TAGH in H.
Given a testset and a subset of incorrectly recognised entail-
ments, the supicion rate of each tag pair is computed usin a
fix point algorithm. The suspicion rate of a form f after n
iteration is written Sn

f . (Sagot and de La Clergerie, 2006)
propose differents rankings with several measure functions
Mf . The simplest one is Mf = Sn

f that get the most cer-
tains errors. Another one takes into account the number of

3134

pairs |Of | where a form f occurs. Instead, we prefer to
consider the number of errors pairs |Oerr

f |. The reason for
this is that sometimes a form has a low suspicion rate, oc-
curs in a couple of error pairs but in a lot of pairs, and the
score will be high even if solving the form’s problem will
not really improve the system. The first corrected measure
function is Mf = Sf ∗ |Of | that calculate the expected
value of the gain (in term of error pairs that become ok) if
we correct problems due to form f . The last one, which we
used to produce our results, is a balance between the two
others functions Mf = Sf ∗ log(|Of |).

4.1. How to mine for errors in RTE results
There are several ways to mine for errors given the method
just sketched and the data we have available. A first option
that comes to mind is to take the whole corpus and to con-
sider as a failure all mismatches between system and gold
answers.
A drawback of this method is that it fails to differentiate
beween false positives and false negatives. In RTE, false
positives are cases where the system labels a true entail-
ment as false. Conversely, false negatives occur when the
systems labels a non entailment as true. Intuitively, these
are very different types of errors. Moreover, given a certain
type of RTE system and a certain type of data, false pos-
itives might be more frequent than false negative or vice
versa. For instance, given an RTE system based on word
overlap and testsuites such as ours, which (because the lex-
icon is restricted) exhibit a higher than average overlap be-
tween the two sentences, false positives will be higher than
false negatives. That is, an RTE system might be biased in
such a way that it produces more false positives than false
negatives or vice versa.
We therefore chose to perform error mining separately for
false positives and for false negatives. Given this, to com-
pute the suspicion rate of each pairs of syntactic tags, we
compare, for each such pair, its number of occurrences in
false positives (false negatives) cases with its total number
of occurrences in non entailment (entailment) pairs.

4.2. Results analysis
Table (1) shows the results of error mining for false neg-
atives. The first line indicates that sentence pairs where a
given predicate is realised as a verb (V) in the passive (P)
voice with one relativised (R) argument in the hypothesis
(H) but as an active (A) voice verb (V) involved in a coor-
dination (C) in the text (T), has 61,02% of chance of yield-
ing a false negative. Further, there are 65 such cases in the
testsuite. Hence if the system can be corrected for this type
of errors the net gain will be of 37.22 corrected pairs.
More generally, looking at the top rows, we observe that
N/V alternations occur frequently (line 2, 3, 5 and 6)
and that in V/V configurations, C (i.e., coordination) re-
curs (lines 1 and 4). Improving the system handling of
noun/verb alternations and of coordinations is therefore
likely to improve overall performance.
Looking now at the figures given by mining for errors
on false positives (Table 2), we observe a really low er-
ror rate compared to the results for false negatives. This
is due of course, to the much smaller amount of relevant

R
an

k Tag pair
S10

f
#errors

#pairs
Merr

fH T
1 V P R V A C 0.6102 61/65 2.547
2 V A R N PP0 0.4038 349/539 2.5401
3 N PP0 V A R 0.3828 291/378 2.2717
4 V A R V A C 0.5397 51/58 2.1913
5 V A N 0.7868 12/12 1.9552
6 V P N 0.7848 11/11 1.8818
7 N PP0 N PP0 0.3207 245/486 1.9837
8 V A R N 0.6697 13/14 1.7675
9 N PP0 V A 0.4093 63/102 1.8929
10 N PP0 V P R 0.3295 150/214 1.768

Table 1: Error minning results on false negatives

data (33/4906) to be worked with. Nonetheless, the figure
clearly show that false positives frequently occurs when-
ever a relativised (R) or prepositional (PP0) argument is
used. This is likely related to incorrect PP attachment and
relative pronoun resolution, two processes with a strong im-
pact on the resulting Predicate/Argument representations.

R
an

k Tag pair
S10

f
#errors

#pairs
Merr

fH T
1 V P R V P 0.0203 5/246 0.1119
2 N PP0 N PP0 0.0067 9/456 0.0407
3 V A V P 0.0202 2/66 0.0846
4 N PP0 N S 0.0058 3/150 0.029
5 V A PP0 V A R 0.0039 4/233 0.0214
6 V P R V P R 0.0025 9/1213 0.0176
7 V A V A R 0.0077 2/174 0.0395
8 V A PP0 V P PP0 0.0048 3/202 0.0257
9 V A R V A R 0.0024 8/761 0.016
10 V P R N S 0.0069 2/69 0.0292

Table 2: Error minning results on false positives

5. Conclusion
The development of a linguistically principled treatment of
the RTE task requires a clear understanding of the strength
and weaknesses of RTE systems with respect to the various
types of reasoning involved. We presented an evaluation
framework which focuses on the simplest of these reason-
ing namely syntax based reasoning. As the results show,
there is room for improvment even on that most basic level.
The main contribution of this paper is the specification of
an evaluation methodology which permits a focused evalu-
ation of RTE systems. Future work will concentrate on the
following points.
First, we plan to use the existing framework to compare the
Afazio RTE system with other RTE systems and in particu-
lar, with a system integrating an off the shelf Semantic Role
Labeller (SRL). Indeed SRLs aim to capture syntax based
equivalences. We intend to compare the Afazio RTE sys-
tems which integrates a symbolic SRL module with an off
the shelf SRL system extended with a semantic reasoning
module similar to that used in the Afazio RTE system.

3135

Second, we will investigate in how far surface realisation
systems (systems that generate from a conceptual repre-
sentation one or more string(s) verbalising that represen-
tation) can be put to work to automatically create gradu-
ated syntactic testsuites. We plan in particular, to use the
GenI surface realiser (Gardent and Kow, 2005) to generate
such suites. Because GenI is based on a large scale gram-
mar which describes both syntax and semantics, using it to
create RTE testsuites should help to overcome the seman-
tic and syntactic limitations of the testsuite creation tool
sketched in this abstract.

6. References
P. Bedaride and C. Gardent. 2009a. Normalising semantics

: a framework and an experiment. In IWCS 2009 (In-
ternational Conference on Computational Semantics),
Tilburg, The Netherlands.

P. Bedaride and C. Gardent. 2009b. Noun/verb entailment.
In 4th Language and Technology Conference, Poznan,
Poland.

J.R. Curran, S. Clark, and J. Bos. 2007. Linguistically mo-
tivated large-scale nlp with c&c and boxer. In Proceed-
ings of the ACL 2007 Demo and Poster Sessions, pages
33–36, Prague, Czech Republic.

C. Gardent and E. Kow. 2005. Generating and selecting
grammatical paraphrases. ENLG, Aug.

W. Lewis Johnson, P. Rizzo, W. Bosma, S. Kole, and
M. Ghijsen. 2004. Generating socially appropriate tu-
torial dialog. In Workshop on Affective dialog systems.

D. Klein and C. D. Manning. 2003. Accurate unlexicalized
parsing. In ACL ’03: Proceedings of the 41st Annual
Meeting on Association for Computational Linguistics,
pages 423–430, Morristown, NJ, USA. Association for
Computational Linguistics.

B. Sagot and E. de La Clergerie. 2006. Error mining in
parsing results. In Proceedings of ACL-CoLing 06, pages
329–336, Sydney, Australie.

3136

