
Efficient Spoken Dialogue Domain Representation and Interpretation

Tobias Heinroth, Dan Denich, Alexander Schmitt, Wolfgang Minker

Ulm University – Institute of Information Technology
Albert-Einstein-Allee 43, 89081 Ulm (Germany)

{tobias.heinroth, dan.denich, alexander.schmitt, wolfgang.minker}@uni-ulm.de

Abstract
We provide a detailed look on the functioning of the OwlSpeak Spoken Dialogue Manager, which is part of the EU-funded project
ATRACO. OwlSpeak interprets Spoken Dialogue Ontologies and on this basis generates VoiceXML dialogue snippets. The dialogue
snippets can be interpreted by all speech servers that provide VoiceXML support and therefore make the dialogue management indepen-
dent from the hosting systems providing speech recognition and synthesis. Ontologies are used within the framework of our prototype
to represent specific spoken dialogue domains that can dynamically be broadened or tightened during an ongoing dialogue. We provide
an exemplary dialogue encoded as OWL model and explain how this model is interpreted by the dialogue manager. The combination
of a unified model for dialogue domains and the strict model-view-controller architecture that underlies the dialogue manager lead to
an efficient system that allows for a new way of spoken dialogue system development and can be used for further research on adaptive
spoken dialogue strategies.

1. Introduction
Nowadays Spoken Dialogue Systems (SDS) see use in a
variety of applications: customer relationship management
in call centres, command-and-control of devices and ser-
vices in cars, or phone-based booking services to name but
a few. However, for a vast majority of the users it is still
uncommon to talk to a computer-based system. Compared
to established interfaces such as keyboard or mouse SDS
still lead a shadowy existence. Undoubtedly a reason for
this social antagonism is the high complexity of human lan-
guage making SDS error-prone. To cope with this problem,
specialised algorithms within the area of speech recogni-
tion and synthesis have been implemented and are subject
to ongoing advancement. On the level of spoken dialogue
management, which is a further key aspect of SDS, there
are still no satisfying solutions available. On the one hand,
heavyweight rule-based frameworks such as the TrindiKit
(Larsson and Traum, 2000) require strong assumptions re-
garding the set-up and adjustment. On the other hand, sta-
tistical approaches such as the Bayes Net Prototype imple-
mented within the TALK Project (Young et al., 2006) rely
on the availability of training data for the spoken dialogue
manager (SDM), which appears to be a big disadvantage.
One reason for the absence of a powerful and generic SDM
is that there is no standard for spoken dialogue domain de-
scriptions defined yet. The most widespread technology to
implement SDS and to define the underlying SDM is the
W3C standardized VoiceXML (Oshry et al., 2007) descrip-
tion language. In this approach the XML-based definition
is used to describe the dialogue flow, the utterances, and
the grammars. Since JavaScript can also be used within a
VoiceXML document, conditions on external data or sim-
ilar sources can be expressed. It is possible to imple-
ment command-and-control and, by extending the scope
of a grammar, mixed-initiative dialogue structures. How-
ever, more complex structures such as negotiative or task-
oriented dialogue flows within changing domains still wait
for an appropriate approach. It seems to be necessary to
combine the expressiveness of the scientific systems men-

tioned above and the domain-related adaptation require-
ments we especially have within Intelligent Environments
(IE).
In a former publication we have presented the architecture
and the benefits of our proposed SDM called OwlSpeak
that provides the fundamentals of adaptive spoken dialogue
management (Heinroth et al., 2010). In the work at hand we
present the inherent mechanisms of the SDM and focus on
the interplay of dialogue manager and underlying domain
model encoded in OWL.
The remainder of this paper is structured as follows: The
next section gives an overview on the framework of OwlS-
peak and provides some related publications. In Section 3
we provide an exemplary instance of a Spoken Dialogue
Ontology to show how a dialogue domain can be repre-
sented. Section 4 details the methods of OwlSpeak’s com-
putational part, the Controller in order to show how a dia-
logue domain can be interpreted. The paper concludes and
provides some future work in Section 5.

2. Framework
OwlSpeak was implemented within the framework of the
EU-funded project ATRACO1. The aim of ATRACO is to
contribute to the realization of activity spheres based on
trusted ambient ecologies, see (Kameas et al., 2009; Pru-
vost et al., 2009; Heinroth et al., 2009). An ambient ecol-
ogy usually resides within an IE and consists of:
- Entities (users, agents)
- Devices and services
- Local ontologies
An activity sphere (see Figure 1) is both the semantically
rich description of the resources required to achieve a user
aim or an entity goal and its instantiation in the context of
a specific ambient ecology; thus, multiple spheres, each
corresponding to a separate aim or goal, can be instanti-
ated concurrently, using the resources of the same ambient

1Adaptive and TRusted Ambient eCOlogies - http://www.
atraco.org

2445

http://www.atraco.org
http://www.atraco.org


1,8 m x 0,8 m

TV:
Channel
Volume

Plant:
Dry / wet

Bookcase:
Books

Radiator:
Temperature

User:
Profile

Sphere 
Manager

Ontology 
Manager

Speaker:
Volume

Light bar:
Brightness

IA

FTA

PA

Sphere Ontology

Interaction Agent:
User needs

Window:
Open / close
Brightness

Couch:
Anybody sitting?

FTA

FTA

Aim
Goal

Goal
Goal

Goal
Goal

Task Task

Task

Figure 1: High-level view of one instance of ATRACO.

ecology at the same time. Each sphere is regarded as an
autonomous instance of ATRACO and is supported by an
independent ATRACO system; all spheres adopt the same
ATRACO architecture. An activity sphere consists of:
- A description of an aim as a set of goals each modelled

with an abstract task model
- Users / Devices / Services / IE, each having its local on-

tology
- Software Modules (sphere manager, ontology manager)
- Agents (Fuzzy Task Agent (FTA), Planning Agent (PA),

Interaction Agent (IA)), each having its local ontology
- Policies (i.e. privacy, interaction, spoken dialogue, etc.)
- A sphere ontology
The sphere manager is responsible for creating, managing
and dissolving spheres. The various agents are responsi-
ble for resolving conflicts, interacting with the user and in
general realizing the concrete tasks in the task model. The
sphere ontology is managed by the ontology manager. It re-
sults from merging the local ontologies of devices, services
and IE required to achieve a specific goal and contains all
necessary knowledge and information.
The ontology manager informs the various agents, when
there is a change of state of the sphere ontology, so that the
agents can directly take advantage of a homogeneous and
always updated information pool. Agents, devices, and ser-
vices autonomously maintain and update their local ontolo-
gies. Thus, the sphere ontology, being the result of aligning
local ontologies, always reflects the most recent state of the
sphere. The spoken dialogue manager OwlSpeak, which is
detailed in Section 4 is part of the multimodal Interaction

Agent and acts as the main component providing spoken
interaction between user and ATRACO system.
The main concept underlying OwlSpeak is inspired by the
Model-View-Controller paradigm. According to our ap-
proach VoiceXML is used as View; this presentation layer
consists of a grammar to catch the next user utterance
and/or provide a system prompt combined with a redirect
link to access the next generated dialogue snippet. These
VoiceXML snippets will be generated during the ongo-
ing user-system conversation by the controller layer, which
constitutes the computational part of OwlSpeak. The core
of our approach constitutes a unified Model underlying the
controller. It is represented by the so called Spoken Dia-
logue Ontology (see next Section) and also serves as the
interface to the world outside the SDM, i.e., the ATRACO
system.

3. Representation
Our approach is based on a unified model that represents
a specific spoken dialogue domain: the Spoken Dialogue
Ontology2 (SDO) encoded in OWL. In the remainder of
this paper we use the terms concept and class interchange-
ably. Figure 2 shows an SDO providing a model of a fictive
dialogue that could run as shown in Table 1.
The basic concepts used within the SDO are utterance, to
express what the system can say, grammar, to express what
the user can say, and semantic, to express the meaning of

2Online available: http://owlspeakonto.dyndns.
info/OwlSpeakOnto.owl

2446

http://owlspeakonto.dyndns.info/OwlSpeakOnto.owl
http://owlspeakonto.dyndns.info/OwlSpeakOnto.owl


Figure 2: An exemplary dialogue domain modelled as a Spoken Dialogue Ontology.

what was said by either system or user. The move concept
encapsulates these basic classes and usually represents pair-
ings such as grammar plus semantic or grammar, utterance
(i.e., confirmation), and semantic.
The two more general concepts are agendas and moves,
which are strongly interrelated. The agenda concept is used
to bundle several moves that belong to a specific dialogue
turn. Furthermore it provides the links to all next possi-
ble agendas and lists (semantic) requirements that must be
evaluated as true before the demanded agenda can be inter-
preted by the controller.

Utterance Semantic
U: Hello. userGreetingDone
S: Hello user, what do you

want to do?
-

U: Control heating! heatingControlOn
S: Warmer or colder? -
U: Warmer! heating(warmer)
. . .

Table 1: An exemplary dialogue that is part of the presented
SDO (U is user and S is system).

Therefore the agenda concept inherently requires the be-
lief class for storing individuals of the class semantic, in-
dicating that the respective semantic value is evaluated as
true. This means that system and user agreed on a specific
knowledge. As depicted in Figure 2 both the agenda and

the belief classes have subclasses called workspace and be-
liefspace. They are used internally by the controller to tem-
porarily store individuals that will be used during the ongo-
ing dialogue. A designer creating an SDO wouldn’t need
to work on these classes. The History class is used to store
all agendas that already have been processed. The variable
class will be used for semantic values that provide informa-
tion that might change during an ongoing dialogue such as
counters or other mathematical expressions. However, this
is a topic of future work.
A main benefit of the proposed SDO is that it can dynam-
ically broaden or tighten its scope by modifying the indi-
viduals during the ongoing dialogue. Since the controller is
able to work on a set of SDOs that can be enabled or deacti-
vated while the system is running it is possible to interrupt a
dialogue to utter something with a higher priority (such as a
warning) and then proceed with the dialogue. Furthermore,
because of the open nature of OWL ontologies, other com-
ponents, namely ATRACO agents, may enrich the SDOs
with new beliefs or add agendas that should be executed by
the SDM.

4. Interpretation
In addition to defining the model layer by developing the
structure of the SDO, the main effort is to implement so-
phisticated algorithms for interpreting the model and gen-
erating VoiceXML snippets. This and furthermore updating
the SDO is the role of the controller. As shown in Figure 3
the controller has a dual hypostasis: implemented as a Java

2447



Servlet instance it can be invoked to work on the SDO, i.e.,
to update its state or to request the actual dialogue turn to be
carried out. A dialogue turn can either be a user or system
turn or an exchange (see (ITU, 2005)).

Spoken Dialogue 
Ontology

request

work?Agenda&Move

matchAgenda

utterances grammars

VoiceXML 
Document

User Turn
System Turn
Exchange

response

read/write

read

processMove(get 
Moves(Agenda))

processMove(Move)

tidyUp()

Controller

Figure 3: Detailed view on the Controller.

If the controller is invoked using the request command
the matchAgenda() function (see Listing 1) derives a valid
agenda that can be accessed (i.e., all of its requirements
are evaluated as true). Taking this agenda into account two
stacks are built: one for all utterances that should be used
in the next turn and one for all grammars that are needed
to understand what the user utters. The controller then gen-
erates a valid VoiceXML document that represents the next
turn. Within this document the actual agenda is stored as
a variable, since an expected work command will need that
information as described in the next paragraph.

1 matchAgenda(Agenda){
2 if ((knowledgeIn(Beliefs)).containsAll(

requiredKnowledge(Agenda))){
3 if(Agenda.hasMoves()){return Agenda;
4 }else{
5 nextAgenda = getChildren(Agenda);
6 delete(Agenda);
7 matchAgenda(nextAgenda);
8 }
9 }

10 }

Listing 1: The matchAgenda() function written as pseudo
code.

If the controller is invoked using the work command, either
one or two parameters can be transferred that the system
will require: The actual agenda that should be processed
and an optional move that was executed by the user. The

controller verifies that the parameters are valid (i.e., are part
of the SDO) and then starts to work. At first, it checks if the
move (i.e., the recognized speech) is listed to be part of the
actual agenda. This must be done since the system is able
to understand global commands that do not directly belong
to the ongoing dialogue as well.
If the user’s input is not part of the actual agenda, the sys-
tem will consider the dialogue as interrupted and will not
process the actual agenda. However, it will process the
global command and later on will resume the dialogue.
If the move is listed within the current agenda, then the
agenda should be considered to be processed.
To understand the processing functionality we have to fo-
cus on the concept of beliefs. Moves as part of an agenda
can have a semantic value that provides the computational
meaning of the respective move. For example, if the system
asks “How do you do?”, the user can answer “I’m fine”
or “I’m sick”. The semantic value of the former answer
would be user(fine) and of the latter user(sick). Both val-
ues could be passed to a user profile ontology that is part
of the ATRACO ecology and will be attached to the beliefs
class, which is part of the SDO. The belief class is used
to evaluate the requirements that are necessary to perform
further agendas. For example, the user(sick) belief could
enable the following question to be uttered by the system:
“Do you want to arrange a doctor’s appointment?”.
This processing mentioned above takes the individuals of
the belief class into account and can be split into the fol-
lowing functions:
- Store the semantic values of the agenda as beliefs.
- Remove semantics that are marked to be contrary to the

agenda’s semantics.
- Store all possible agendas that could be performed during

the next turn
- Remove the executed agenda itself.
The system will then process the move that was executed by
the user in a similar way the agenda was processed. Finally,
the work command calls the function that implements the
request command, since the system now can generate a new
VoiceXML document on the basis of the updated SDO.

5. Conclusions
In this paper we have provided a focussed look on the func-
tioning of the controller that performs the computational
part of the OwlSpeak SDM. OwlSpeak is integrated within
the ATRACO system and will be evaluated within the intel-
ligent environment iSpace at the University of Essex. The
developed SDO is used as model to represent a specific di-
alogue domain that can adaptively be modified during an
ongoing dialogue. The controller is able to interpret a set
of these models and generates VoiceXML dialogue snip-
pets that are processed by an independent VoiceXML-based
speech Server such as TellMe3 or Voxeo Prophecy4.
We estimate our approach to be efficient because we com-
bine all information needed to perform a specific dialogue
within one unified dialogue domain. Since all SDOs are
of the same structure they may be treated as one virtually

3http://studio.tellme.com/
4http://www.voxeo.com/prophecy

2448

http://studio.tellme.com/
http://www.voxeo.com/prophecy


aligned SDO and interpreted in a similar way only one sin-
gle SDO would be treated. To resolve conflicts we aim at
the implementation of a general “system SDO” that pro-
vides resolution dialogues such as “Which device should
be activated?” if a grammar matches two different devices
that can be accessed with similar grammars. The idea of
a unified model for spoken dialogue representation is not
only efficient during runtime but also facilitates the devel-
opment, i.e., the design of spoken dialogues. Specialised
tools are planned to be implemented for this purpose.

Acknowledgements
The research leading to these results has received fund-
ing from the European Community’s 7th Framework
Programme (FP7/2007-2013) under grant agreement n∘

216837 and from the Transregional Collaborative Research
Centre SFB/TRR 62 “Companion-Technology for Cogni-
tive Technical Systems” funded by the German Research
Foundation (DFG).

6. References
Tobias Heinroth, Alexander Schmitt, and Gregor Bertrand.

2009. Enhancing speech dialogue technologies for am-
bient intelligent environments. In 5th International Con-
ference on Intelligent Environments (IE09), volume 2
of Ambient Intelligence and Smart Environments, pages
42–49. IOS Press, July.

Tobias Heinroth, Dan Denich, and Alexander Schmitt.
2010. Owlspeak - adaptive spoken dialogue within in-
telligent environments. In IEEE PerCom Workshop Pro-
ceedings. presented as part of SmartE Workshop.

ITU. 2005. Parameters describing the interaction with spo-
ken dialogue systems. ITU-T Recommendation Supple-
ment 24 to P-Series, International Telecommunication
Union, Geneva, Switzerland. Based on ITU-T Contr.
COM 12-17 (2009).

Achilles Kameas, Christos Goumopoulos, Hani Hagras,
Michael Gardner, Tobias Heinroth, Wolfgang Minker,
Apostolos Meliones, Dimitrios Economou, Yacine Bel-
lik, and Gaëtan Pruvost. 2009. A Pervasive System Ar-
chitecture that supports Adaptation using Agents and
Ontologies. In The 10th International Symposium on
Pervasive Systems, Algorithms and Networks (I-SPAN),
pages 148–153, Los Alamitos, CA, USA, December.
IEEE Computer Society.

Staffan Larsson and David Traum. 2000. Information State
and Dialogue Management in the TRINDI Dialogue
Move Engine Toolkit. Natural Language Engineering,
6:323–340.

M. Oshry, R. Auburn, P. Baggia, M. Bodell, D. Burke,
D. Burnett, E. Candell, J. Carter, S. Mcglashan, A. Lee,
B. Porter, and K. Rehor. 2007. Voice extensible markup
language (voicexml) version 2.1. Technical report, W3C
Voice Browser Working Group, June.

Gaëtan Pruvost, Achilles Kameas, Tobias Heinroth, Lam-
brini Seremeti, and Wolfgang Minker. 2009. Combining
agents and ontologies to support task-centred interoper-
ability in Ambient Intelligent Environments. In Proceed-
ings of the 2009 Ninth International Conference on In-
telligent Systems Design and Applications (ISDA), pages

55–60, Washington, DC, USA, November. IEEE Com-
puter Society.

Steve Young, Jason Williams, Jost Schatzmann, Matt Stut-
tle, and Karl Weilhammer. 2006. D4.3: Bayes net pro-
totype - the hidden information state dialogue manager.
Technical report, TALK - Talk and Look: Tools for Am-
bient Linguistic Knowledge, IST-507802, 6th FP.

2449


	1 Introduction
	2 Framework
	3 Representation
	4 Interpretation
	5 Conclusions
	6 References

