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Abstract
We present LIPS (Lexical Isolation Point Software), a tool for accurate lexical isolation point (IP) prediction in recordings of speech.
The IP is the point in time in which a word is correctly recognised given the acoustic evidence available to the hearer. The ability to
accurately determine lexical IPs is of importance to work in the field of cognitive processing, since it enables the evaluation of competing
models of word recognition. IPs are also of importance in the field of neurolinguistics, where the analyses of high-temporal-resolution
neuroimaging data require a precise time alignment of the observed brain activity with the linguistic input. LIPS provides an attractive
alternative to costly multi-participant perception experiments by automatically computing IPs for arbitrary words. On a test set of words,
the LIPS system predicts IPs with a mean difference from the actual IP of within 1ms. The difference from the predicted and actual IP
approximate to a normal distribution with a standard deviation of around 80ms (depending on the model used).

1. Introduction
Recent theories in human speech perception assume that
during the reception of acoustic evidence of a word, listen-
ers activate and strengthen word candidates in the mental
lexicon based on the word-onset being heard and recog-
nise a word as soon as one of the candidates stands out
sufficiently (Marslen-Wilson, 1987). The point at which
a listener can reliably discriminate from other word can-
didates is known as the isolation point. For some words,
especially monosyllables, this point may only be reached
once the corresponding acoustic signal is complete. For
other words, however, listeners are often able to recognise
them well before the corresponding acoustic signal is com-
plete (Marslen-Wilson, 1975). A listener may have reached
the isolation point, marking the time from which the word
is identified correctly, but may not be very confident about
it. For this reason, some studies also identify the recogni-
tion point (RP). The RP is similar to the IP, but additionally
requires the listener to be sufficiently confident about iden-
tification. 1 In this study, we will consider only IPs and
ignore RPs.
The time at which lexical isolation occurs may be useful
information in several kinds of studies, most notably in
evaluating competing cognitive models of speech percep-
tion and in accurately aligning words with brain responses
in neurobehavioural studies. Obtaining IPs for an arbitrary
set of words, however, requires costly psycholinguistic ex-
periments involving a fair number of subjects. In this pa-
per we describe a predictive model that produces accurate
isolation points for arbitrary speech-recorded words. This
model is implemented in a tool that caters cognitive studies

1A reason why a listener may not be entirely confident is the
activation of a few other candidates consistent with perception.
A common criterion for ‘sufficiently confident’ is usually 80%
confidence.

on speech perception.

2. The use of IPs
The accurate and automatic prediction of the isolation
points of words is particularly useful in studies of speech
production and the neuroscience of language. The acoustic
and linguistic features that are used in IP prediction can be
ranked according to their importance in the prediction task,
providing valuable insights as to the kind of information
that is important to the task. This in turn can provide valu-
able insights in studying human word and speech recogni-
tion. In neuroscientific studies of speech perception, accu-
rate alignment of word-based stimuli with corresponding
brain signals is important. Especially for brain-imaging
techniques that offer high temporal resolution in the or-
der of milliseconds, like magnetoencephalography (MEG)
and electroencephalography (EEG), accurate word align-
ment improves analysis. Gating studies are often used to
align words and signals, but such studies are rather time-
consuming and require numerous behavioural tests for each
stimulus.

3. Data
To train and test a predictive model for IP recognition, data
are needed containing audio recordings of words and their
corresponding isolation points. The IPs are usually ob-
tained by gating studies (Grosjean, 1980). In a gating study,
listeners are presented with increasingly long onsets of a
word (e.g. /c/, /ca/, /cap/) and are asked what they think
the word is, or going to become. The results indicate the
minimal acoustic input needed to identify words in speech.
For the work in this paper, gating data (audio recordings
and timings) have been used that were gathered and stud-
ied by (Tyler et al., 2002). The dataset includes 160 words,
each of which was presented to at least 10 subjects. The

3727



spoken words were recorded as complete words, and for
each one 100 ms onset was presented, followed by on-
sets with increasing duration by 50 ms increments until the
complete word had been heard. After each onset presen-
tation, subjects were given five seconds to write down the
word they heard. The IP was defined as the average gate
duration at which a word was first correctly identified. A
word was deemed to have been correctly identified when
a participant had written the correct word and had not de-
viated from that response on subsequent trials. From the
initial 160 words available, 6 words were discarded (these
words were not recognised by the end of the audio file by
all participants), leaving a dataset of 154 words, which all
have a non word-final IP.

4. Word features
For the various models that are described in this work, sev-
eral acoustic and linguistic word characteristics are used
that may aid the prediction, listed in Table 1.

Table 1: Word characteristics used in prediction

features

absolute time through word (ms)
word length (ms)
phoneme probability
cumulative vowel tally
cumulative stressed vowel tally
cohort size (type)

The suggested characteristics in table 1 are all time vary-
ing (with the exception of word length). They come in
two categories: 1) based on word frequencies (type and to-
ken) and 2) based on acoustic properties. In order to obtain
acoustic properties (both phonemic and sub-phonemic) at
high temporal resolution a speech recognition system is re-
quired. For this work, an automatic recogniser based on
CMU Sphinx (Walker et al., 2004), has been built into the
analysis module of the software. 2 The recogniser con-
verts the acoustic signal into a probabilistic phoneme lat-
tice and presents the most probable phoneme sequence, to-
gether with phoneme boundaries. Phoneme probabilities
were obtained by converting the words in the frequency list
of the British National Corpus (BNC) (Leech et al., 2001)
to phoneme sequences using the Carnegie Mellon Univer-
sity Pronouncing Dictionary (Weide, 2008). In those fea-
tures that require the recognition process, no forced align-
ment was used (a condition where the accuracy of the lat-
tice can be improved when the output of the recogniser is
known beforehand), so that the conditions under training
and testing are the same. However, forced alignment for
the training data may be found to increase the accuracy in
future. The cohort size at time q is the number of words an
audio file clipped between 0 ms and q ms could be starting.
So the audio /ca/ could be beginning of the words /cap/,

2Any other speech recognition toolkit, such as HTK (Young et
al., 2006), could have been used for the analysis module.

/captain/ and /cat/, among others. The number of possible
completions (and thus the cohort size) at q ms will always
drop as q increases, and will become one as soon as the
phonetic dictionary or word list contains a single continua-
tion. There are a number of ways to calculate this feature,
but it was done here by finding the sequence of phonemes
that have been heard up to time q using the speech recog-
niser, and then searching through a phonetic dictionary for
all words that start with that phoneme sequence.
These features may have information that can be used to
accurately predict the IP of a word. The following models
try to use this information to generate accurate predictions
of IPs for an unknown test set.

5. Predictive models
5.1. Model I
The first predictive model is a simple baseline model in
which the relative position of the IPs in the training data
are averaged. K is the model coefficient with a training set
with n word-IP pairs:

K =
1
n

n∑
i=0

IPi

duration(wi)
(1)

where IPi is the time in milliseconds between the isolation
point and the onset of the audio file for a word-IP pair in
the training set. The model coefficient is subsequently used
in a linear function to predict the IP for word w:

IP (w) = K · duration(w) (2)

This model uses only duration from the feature set.

5.2. Model II
This model is based on the direct predictions that the cohort
model (Marslen-Wilson and Tyler, 1980; Marslen-Wilson,
1987; O’Rourke and Holcomb, 2002) makes about the tim-
ing of the identification point. For isolated words, the co-
hort model assumes that full word identification occurs as
soon as the word-onset is no longer compatible with multi-
ple lexical candidates. The point at which the acoustic evi-
dence allows the listener to single out a candidate is known
as the uniqueness point (UP), which is expected to coin-
cide with the observed IP. 3 To evaluate this model an audio
recording was segmented at phoneme boundaries and the
cohort size was calculated at each progressive phoneme.
This model only uses cohort size as a feature to predict the
isolation point, where cohort size was defined by process
set out in section 4.

5.3. Model III
Predictive Model III uses logistic regression and takes an
unspecified amount of word features from section 4 to pre-
dict the isolation point. To train this model the recordings
were segmented at phoneme boundaries and the resulting

3The UP and the IP need not correspond: the word may be
recognised before a single candidate remains, if the context is
helpful. It may also happen that there is a delay in isolating the
word because of frequency effects.
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(b) Model II: Cohort-model based
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(d) Model IV: Ordinal logistic re-
gression

Figure 1: Distributions of difference between the actual and predicted IPs

data set was split into two categories: before IP; and after
IP. The logistic function is defined by:

f(Z) =
1

1 + e−z
(3)

The variable z is representative of a set of predictors and is
defined by:

z = β0 + β1x1 + β2x2 + . . .+ βkxk (4)

where β0, β1, β2 ... βk are the regression coefficients of
predictors x1, x2 .. xk respectively. The predictors used
here were: absolute time from the onset of the word, word
length, the type probability of the current phoneme, the
number of vowels that have been encountered to that point,
the number of stressed vowels that have been encountered
up to that point and the size of the cohort at that point (cal-
culated as in Model II). Model III was evaluated by calcu-
lating the value of the logistic function for predictors re-
trieved at successive phonemes in an unseen word and us-
ing the coefficients defined by the training data. The output
of the logistic function is confined to values between 0 and
1. The time of the first phoneme achieving f(z) > 0.5 was
taken to be the IP.

5.4. Model IV
Predictive Model IV uses ordinal logistic regression. The
method and evaluation here is similar to that of Model III
except that the training data is now split into 4 categories:
word beginning; just before IP; just after IP; word ending.

6. Model evaluation
The models have been trained on the word-IP pairs using a
leave-one-out strategy, with 10% of the data being retained
for a test set. Model performance is assessed by inspect-
ing the differences between the actual IP times (as speci-
fied by the gating experiment) and the predicted IP from the
model. The mean, standard deviation and median of these
differences can be seen in Table 2 and their distributions
displayed pictorially in Figure 1.
Models I and II have a similar standard deviation in the val-
ues for the difference between predicted and actual IP time.
However the ‘differences distribution’ for Model I is not

normal and is in fact wider than that of Model II (see fig-
ures 1a and 1b). Model I (which bases predictions solely
on relative distance through a word) is thus the worst per-
forming model. Model II (which bases prediction on cohort
size) performs slightly better since (despite being offset by
a mean of 18ms) its predictive value is simpler to define.
The performance of Models III and IV is reasonable similar.
The spread of the differences is narrower than for Models
I and II making them better IP predictors. However Model
IV performs arguably best with a mean difference between
actual and predicted IP of 0.44ms.

Table 2: Model performance metrics (sign signifies the di-
rection of difference)

model mean stdev median
I 2.16 90.14 -9.90
II 18.94 90.98 27.95
III -2.31 77.91 6.80
IV 0.44 84.62 -1.03

7. Discussion
A limitation of the current models is that they are tuned for
isolated words, and not for words in context. (Grosjean,
1980) noticed that a listener needed to hear an average of
199 ms of a word when it occurred in sentential context, as
opposed to 333 ms for the same word presented in isolation.
If we define the uniqueness point as the point at which there
ceases to be any overlap with any other words in the men-
tal lexicon, and we define the isolation point as the point
at which the listener guesses the whole word, then a word
may be recognised before there is one remaining candidate
left because of its context. IPs for words in context will oc-
cur on average earlier than IPs for words in isolation, and
to take advantage of word context and improve IP predic-
tion accuracy, the next version of LIPS will incorporate a
language model.
The training and performance of the speech recogniser is
crucial for allowing accurate IP prediction. LIPS is cur-
rently trained on American English pronunciation (acous-
tic model and training dictionary), which will inherently
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lower the accuracy of IP prediction for other varieties of
English. In future models, however, this will be amended
to suit the stimuli under observation. Other improvements
to LIPS will involve the use of various additional word and
sub-word measures as features in the IP prediction, such as
phoneme and cohort entropy scores.

8. Conclusions
This work confirms that IPs can be predicted using training-
based models, which are shown to out-perform the naive
baseline. This approach, once refined, will be of signifi-
cant use to cognitive-researchers who rely on costly gating
studies to inform their research.
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Appendix I
Words used in the recognition experiments (table 3).
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Table 3: Words used in the recognition experiments

chief drug rake trunk
hurricane priest garden food
coat bandit storm tart
swamp alley card pencil
desk ferry window pirate
blunder motive reason law
temper fate thrill benefit
cult trend custom clamour
system creed total pardon
fact charm loan lust
soak shine cut carve
thump grab stumble fall
float run crush fidget
sniff slap sprint press
burst hug munch offer
dare stay dodge cope
amble mix abandon recruit
need assist keep rid
admire say mimic hire
attempt relax leave ramp
fan bill park caravan
tusk whisky brush crow
arrow shop cage neck
temple hut kipper coast
sofa basket falcon affair
budget trace flow value
gain force mercy theme
bane despair issue luck
harm term envy fault
skill clue oath skip
shriek sing chat hop
jump giggle weep pounce
shiver tumble clap cuddle
hum chew scream shake
hiss roar/raw rub cling
demand join take guess
lack agree get astonish
insist divide accuse make
let publish crave ignore
believe declare attach hope
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