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Abstract
Systems that locate mentions of concepts from ontologies in free text are known as ontology concept recognition systems. This paper
describes an approach to the evaluation of the workings of ontology concept recognition systems through use of a structured test suite
and presents a publicly available test suite for this purpose. It is built using the principles of descriptive linguistic field work and of
software testing. More broadly, we also seek to investigate what general principles might inform the construction of such test suites.
The test suite was found to be effective in identifying performance errors in an ontology concept recognition system. The system could
not recognize 2.1% of all canonical forms and no non-canonical forms at all. Regarding the question of general principles of test suite
construction, we compared this test suite to a named entity recognition test suite constructor. We found that they had twenty features in
total and that seven were shared between the two models, suggesting that there is a core of feature types that may be applicable to test
suite construction for any similar type of application.

1. Introduction

Ontologies of the biomedical domain have become a crucial
enabling technology for modern molecular biology. Cur-
rently at least 160 biomedical ontologies exist or are under
construction. One major focus of current genomic science
is the construction of enormous databases of genes and pro-
teins in which the objects of description are labelled with
concepts from one or more ontologies that describe such
things as their molecular function, subcellular location, and
biological processes that they participate in. Creating tools
to assist with these databasing activities has been a major
focus of much recent work in BioNLP, or biomedical text
mining (Hirschman et al., 2005; Krallinger et al., 2008).
One way in which it has been proposed that text mining can
assist the database curators is by building tools that auto-
matically mine associations between genes or proteins and
concepts from the many ontologies of the biomedical do-
main (Blaschke et al., 2005). To do this, it is necessary to be
able to accomplish two tasks: locating mentions of genes or
proteins in text and associating them with unique database
identifiers, known as gene normalization (Hirschman et al.,
2005; Morgan et al., 2007; Morgan et al., 2008); and locat-
ing concepts from ontologies and associating those men-
tions with genes. Systems that locate mentions of concepts
from ontologies in free text are known as ontology concept
recognition systems.
In general, performance on the two tasks in concert has
been low. The aggregate task was part of the BioCreative
I shared task, and the best system performance was a pre-
cision of 34.62. (Recall was not measured but was clearly
very low—the highest-precision system extracted only 26
relations.) One cause of this low performance was un-
doubtedly the difficulty of associating mentions of genes

with unique database identifiers, and another was associat-
ing mentions of genes with mentions of ontology concepts.
However, recognizing ontology concepts was itself a clear
cause of errors in the systems that participated. (Camon et
al., 2005) gives anecdotal examples of some system errors.
This paper describes an approach to the evaluation of the
workings of ontology concept recognition systems through
use of a structured test suite and presents a publicly avail-
able test suite for this purpose. A structured test suite is
built by enumerating the factors that might affect system
performance and then systematically isolating, varying, and
combining them in a data set in which inputs are paired with
gold standard outputs. The goal is to build a test suite to
which arbitrary ontology concept recognition systems can
be applied.
More broadly, we also seek to investigate what general prin-
ciples, if any, might inform the construction of such test
suites. We return to this topic in the Discussion section.

1.1. Related work
(Cohen et al., 2004) demonstrated that principles of de-
scriptive linguistics (Bloomfield, 1933; Harris, 1951; Glea-
son Jr., 1961; Samarin, 1967) and software testing (Beizer,
1990; Beizer, 1995; Binder, 1999; Kaner et al., 1999; Pat-
ton, 2005; Kaner et al., 2002; Myers, 1979; Marick, 1997)
could be applied to build a system for the dynamic gener-
ation of structured test suites for biomedical gene/protein
named entity recognition (hereafter GM, or gene mention)
systems. They applied a simple test suite to five GM sys-
tems and found that the test suite revealed errors in all five
systems. They also attempted to predict performance on
standard NER metrics for specific equivalence classes for
one GM system, and found that four of five predictions
were verifiable. However, there was no attempt to gener-
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alize the work to tasks other than gene/protein named en-
tity recognition. In contrast to that effort, the work pre-
sented here attempts to build a test suite for a much broader
and less clearly defined class of semantic entities—namely,
concepts from a broad ontology.
More generally, outside of the biomedical domain, the sub-
ject of test stuites has been studied in the grammar engi-
neering community, resulting in such efforts as the early
Hewlett-Packard syntax test suite and the more recent TS-
NLP project (Oepen et al., 1998; Volk, 1998). Those efforts
have been restricted to testing the handling of morphosyn-
tactic features; the work presented here tests the hypothesis
that test suites are applicable to a considerably wider range
of applications than syntactic parsers.
Other work on evaluating ontology concept recognition
systems has focussed less on granular evaluation of per-
formance than on system comparison. (Shah et al., 2009)
compared the MetaMap and Mgrep systems for locating
mentions of concepts in four genres of text, finding that
Mgrep generally outperformed MetaMap in terms of preci-
sion. Their evaluation was done by post-hoc manual exami-
nation of outputs by four domain experts, making it difficult
to repeat the experiment. In contrast, our test suite can be
run many times a day, making it useful for such tasks as
systematic exploration of the parameter space of multiple
concept recognizers. Our design also made it easy to eval-
uate performance on all three sub-ontologies of the Gene
Ontology, while (Shah et al., 2009) only examined perfor-
mance on the biological process sub-hierarchy (along with
three other independent ontologies). We expand on the ad-
vantages of our approach versus post-hoc analysis such as
theirs in the Discussion section.
In the area of locating ontology concepts in text, the work of
(Verspoor et al., 2003) is relevant. They found that only 6%
of Gene Ontology terms occurred verbatim in the corpus;
this highlights the importance of the test cases in which we
change the form of terms.

2. Materials and Methods
2.1. Materials
As the target for our test suite construction efforts, we used
the version of the Gene Ontology available on 9/24/2009 at
4:28 PM Mountain time.
Because we do not believe in punishing system developers
for graciously making their applications freely available,
we do not identify here the concept recognition system that
we used in our experiments. It is freely publicly available
and is typical of other ontology concept recognition sys-
tems.

2.2. Methods
As was demonstrated in (Cohen et al., 2004), test suites for
GM can be built based on basic analytical techniques of de-
scriptive linguistic field work and on the principles of soft-
ware testing, which are shown there to have much in com-
mon. We applied a similar approach to the design of our
test suite here. The specific factors that we considered were
mostly linguistically motivated. Others were motivated by
the structure of modern biomedical ontologies, and others
were motivated by our knowledge of common techniques

in the construction of ontology concept recognition sys-
tems. The dimensions that we considered are classifiable
into two broad categories: features of the terms themselves,
and types of changes in the terms. The dimensions and their
categories are as follows:

2.2.1. Features of the terms
• Length

• Punctuation

• Presence of stopwords

• Ungrammatical terms

• Presence of numerals, Arabic and Roman

• Official synonyms

• Ambiguous terms

2.2.2. Types of changes in the terms
• Singular/plural variants

• Ordering and other syntactic variants

• Inserted text

• Coordination

• Verbal versus nominal constructions

• Adjectival versus nominal constructions

• Unofficial synonyms

In order to understand the architecture of the test suite, it is
helpful to understand the structure of concepts in modern
biomedical ontologies. (We recognize that the term “con-
cept” is controversial here, but use it to accord with much
other work in biomedical ontologies.) Each concept is a
triple of a unique identifier, a term, and a definition. Option-
ally, they may also have synonyms associated with them.
All terms are nominals—there are no verbs (at least in the
Gene Ontology). A typical concept from the well-known
Gene Ontology is the following:

Identifier: GO:0005623
Term: cell
Definition: The basic structural
and functional unit of all organisms.
Includes the plasma membrane and
any external encapsulating
structures such as the cell wall and
cell envelope.

The test suite was constructed by locating concepts in the
ontology whose terms had particular characteristics—of
length, singularity/plurality, etc. Inputs consist of either
terms or of the results of specific changes applied to those
terms, as described below. Each term was then paired with
the identifier that a system should return when that term is
encountered.
As mentioned above, some inputs consisted of terms ex-
actly as they appeared in the ontology. This might seem a
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trivial test, but it is a necessary sanity check on the per-
formance of the concept recognition system, and as we
will see, the system under test failed to recognize even the
canonical forms of some terms. Other inputs were con-
structed by applying some change, motivated either by lin-
guistic knowledge or by insight into typical system con-
struction, to a term. An example of this is pluralization of
singular terms. For example, our test suite contains the test
cases

ID: GO:0005623 cell
ID: GO:0005623 cells

. . . separated into two equivalence classes, one for singulars
and one for plurals. Note that in each case, the identifier
that should be returned is the same, but only the singular
form is the canonical term for the concept.

2.3. Specifics of the equivalence classes and
transformations

2.3.1. Features of terms
Length: Concepts were selected with terms whose lengths
varied from one to ten tokens. To the greatest extent pos-
sible, we avoided having any of those tokens be either stop
words, numerals, or single letters, since those form equiva-
lence classes of their own. We picked this axis to vary both
for linguistic reasons—length is known to be relevant for
the operation of many linguistic rules, ranging from tone
assignment in tone languages to the formation of compar-
atives and of irregular past tenses in English—and due to
insight into system construction. Length of gene names has
previously been shown to be important to the performance
of GM systems (Kinoshita et al., 2005; Yeh et al., 2005)
and gene normalization systems (Hirschman et al., 2005).
It is also of clear relevance to ontology concept recogni-
tion, since we know that some systems operate via sliding
windows of limited size.
Punctuation: Concepts were selected whose terms con-
tained punctuation, including (),-’. These were included
because of the likelihood that shallow parsers would be
thrown off by punctuation that normally demarcates syn-
tactic units.
Presence of stopwords: Concepts were selected whose
words contained tokens that are commonly on stopword
lists. These are known to create problems for information-
retrieval-based approaches to concept recognition, such as
(Johnson et al., 2006; Johnson et al., 2007). We also hy-
pothesized that they might pose problems for systems based
on shallow parsing of noun phrases.
Ungrammatical terms: Ontologies have been pointed out
to contain terms that are not themselves grammatical in En-
glish, such as phagocytosis, recognition (Ceusters et al.,
2005), and these have clear implications for text-based
methods of locating ontology concepts in text.
Presence of numerals, Arabic or Roman: This category
was included because it is known to be an unusual feature
of noun phrases (see e.g. the low or nonexistent coverage of
this phenomenon in (Quirk et al., 1985; Biber et al., 1999)).
We also found in our work on GM that such inputs were
handled erroneously in one system.

Official synonyms: Some terms in some ontologies have
synonyms associated with them. These should return the
same concept identifier as the official term.
Ambiguous terms: In previous work, we have found
that some ontologies contain ambiguous terms (Johnson et
al., 2007). For example, many terms in the ChEBI on-
tology (Degtyarenko, 2003) contain synonyms which are
ambiguous—C is a synonym of four different concepts in
ChEBI.

2.3.2. Features of variation in the terms
Singular/plural: Concepts were selected whose terms
were singular and which had both regular and irregular plu-
rals, separated into different equivalence classes. We also
selected concepts whose terms contained a plural, such as
GO:0007272 ensheathment of neurons.
Ordering and other syntactic variants: Many terms are
susceptible to variability in ordering and in other aspects of
syntactic realization, such as paraphrases that have function
words inserted or deleted, e.g. apoptosis induction instead
of the canonical GO:0006917 induction of apoptosis.
Inserted text: This feature deals with the common phe-
nomenon of the presence of other material within the
boundaries of a term in free text, e.g. some in ensheath-
ment of some neurons, derived from the canonical form
GO:0007272 ensheathment of neurons.
Coordination: This is a special case of syntactic variabil-
ity, included because of its prevalence in free text and its
difficulty for any language processing system.
Verbal versus nominal constructions: As pointed out
above, all terms in the prototypical ontology are nominals.
However, ontology concepts can appear in verbal forms.
For example, GO:0016477 cell migration might appear in
free text as cell migrated. We included all inflectional forms
of the corresponding verbs in the test suite.
Adjectival versus nominal forms: Similarly, many nom-
inals, including some that are high-frequency in this do-
main, can occur in adjectival forms. A common example is
GO:0005634 nucleus, which often appears as nuclear.

2.4. Applying the concept recognizer
Once the test suite was constructed, we applied the con-
cept recognition system to it. We mostly used the default
parameter settings.

3. Results
3.1. The test suite
The resulting test suite consists of 305 test cases, split
into 47 equivalence classes covering all of the feature
types listed in the Materials and Methods section. 188
of the test cases are canonical forms and 117 are non-
canonical1. The full test suite is freely available at

1This suggests that the test suite needs many more non-
canonical forms. If we think of canonical forms as “clean” tests
(ones which should be expected to pass) and non-canonical forms
as “dirty” tests (ones which exercise a system’s ability to handle
unexpected inputs), “immature” testing organizations have been
found to have a 5:1 ratio of clean:dirty tests, while “mature” ones
have a 5:1 ratio of dirty:clean tests.

443



http://bionlp-corpora.sourceforge.net/
testsuite/index.shtml.

3.2. Performance of the concept recognition system
• Accuracy on all canonical forms: 97.9% of all canon-

ical forms were recognized. The missed canonical
forms all contained the word in.

• Accuracy on all non-canonical forms: Non-canonical
forms were not recognized at all.

3.2.1. Specific error types that immediately became
apparent

A number of specific error types immediately became ap-
parent. They fell into two broad families. The first family
of errors is that the default system only recognizes terms
when they appear in free text as exact matches of the term
as it appears in the ontology. Important variant forms of the
terms are not recognized. These include:

• Simple syntactic variants, such as apoptosis induction
instead of the canonical form induction of apoptosis
(GO:0006917)

• Coordinated forms

• Forms with any inserted text

• Simple morphological variants, including plurals

• Part of speech variants, including verb/noun substitu-
tions (e.g. cell migrates instead of the canonical form
cell migration (GO:0016477)) and adjective/noun sub-
stitutions (e.g. nuclear instead of the canonical form
nucleus (GO:0005634))

The other family of errors concerned terms that contain the
word in. The application was frequently found to fail to rec-
ognize terms that contain the word in, even when the terms
appear in their canonical form. We have not yet been able
to isolate the conditions under which this does and does not
happen.

4. Discussion
Using our test suite, we were able to immediately identify a
number of errors in the performance of an ontology concept
recognition system, without the necessity of performing a
search of the corpus for relevant cases. As (Oepen et al.,
1998) point out, there are a number of advantages to us-
ing a test suite rather than naturally occurring corpora for
the specific task of testing natural language processing soft-
ware:

• Control over test data: Test suites allow for “fo-
cussed and fine-grained analysis of system perfor-
mance” (15).

• Systematic coverage: Test suites allow for systematic
evaluation of variations in a particular feature of inter-
est.

• Control of redundancy: Test suites allow for reduction
of redundancy when it obscures the situation, or for in-
creasing it when it is important to test the handling of a
feature whose importance is greater than its frequency
in naturally occurring data.

To this we can add speed of execution—(Cohen et al.,
2008) compared the efficacy of a structured test suite and
a very large corpus in achieving code coverage (a measure
of test sufficiency) and found that the test suite achieved
higher coverage, even though the test suite took only eleven
seconds to run and the corpus took four hours and 28 min-
utes.
The alternative to using a structured test suite is to use a
corpus, and then search through it for the relevant inputs
and hope that they are actually attested.
Can we find commonalities between (Cohen et al., 2004)’s
equivalence classes and dimensions of variability that can
lead us towards a general description of features that are
likely to be relevant to any semantic class of biomedical
named entity and to the very different application classes
of gene mention systems and ontology concept recognition
systems? Cohen et al.’s feature set comprised four broad
categories: orthographic/typographic features, morphosyn-
tactic features, source features, and lexical features. We
have organized our dimensions of variability into inherent
properties of terms (e.g. length and including punctuation)
and properties of variable forms of the terms (such as plu-
ralization and ordering). The level of granularity of the two
approaches is quite different, and features in this work are
divided amongst multiple categories in the (Cohen et al.,
2004) typology, making direct comparison at the category
level difficult. However, it is possible to compare individual
dimensions of variability between the two typologies. Table
1 shows a tabular comparison between the two typologies.
We see that between the two systems, there are twenty fea-
tures in total. Of these, seven are shared between the two
models. This suggests that there is no single set of features
that encompasses the needs of both types of systems, but
is consistent with the hypothesis that there is a core of fea-
ture types that may be applicable to test suite construction
for any similar type of application. Based on our compari-
son of the two feature sets, a first approximation of the core
feature set would be:

• Length

• Numerals

• Punctuation

• Function/stopwords

2The parts of speech feature of the GM test suite, which has no
correlate in the ontology concept recognition features, was never
actually implemented in the GM dynamic test suite generator.

3The lexicographic feature of the GM test suite, which has no
correlate in the ontology concept recognition features, was never
actually implemented in the GM dynamic test suite generator.

4Syntactic context in the GM test suite work is separate from
the four categories of features that we discussed above and in-
cludes much more than coordination.
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GM features Ontology concept
recognition features

length length
case no correlate
numeral-related features presence of numerals
punctuation-related features punctuation
Greek-letter-related features no correlate
function words stopwords
parts of speech2 no correlate
source or authority trivially present
original form in source canonical terms
lexicographic features3 no correlate
no correlate ungrammatical terms
no correlate official synonyms
no correlate ambiguous terms
no correlate singular/plural
no correlate ordering/syntactic variants
no correlate inserted text
syntactic context4 coordination
no correlate overlapping terms
no correlate verbal vs. nominal
no correlate adjectival vs. nominal

Table 1: Equivalence classes and dimensions of variability
in (Cohen et al., 2004)’s gene mention system test suite and
the ontology concept recognition test suite

• Source or authority

• Canonical form in source

• Syntactic context

Most of these features define equivalence classes, but we
might also ask whether or not they give us insight into
boundary conditions. Length and punctuation have obvi-
ous boundary conditions, but most of these classes do not.
We have suggested in (Cohen et al., 2004) and here that
designing test suites of this sort is helped not just by the
principles of software engineering, but by the approach
of descriptive linguistic field work. We note that except
for the single feature that is essentially “bookkeeping,” i.e.
tracking the source or authority, all of the remaining six
features are linguistically motivated. Length is of well-
known linguistic importance, as mentioned above. Nu-
merals and punctuation are written-language elements of
morphology, and function words are a linguistic category.
Canonical form is equivalent to the underlying form in any
derivational theory of linguistics, and syntactic context is
of course purely linguistically defined.

4.1. Future work
• In the current version, all terms are isolated, and not in

sentential context, so it may not be useful for learning-
based systems. Learning-based systems for ontol-
ogy concept recognition are almost nonexistent at this
time, so we feel comfortable leaving this for a future
release.

• The current version only covers a single ontology, al-
though it is the canonical biomedical ontology.

• We made no attempt to systematically sample the three
sub-ontologies of the Gene Ontology.

• The ratio of “dirty” tests to “clean” tests should be in-
creased.

5. Conclusion
Using our test suite, we were able to immediately identify a
number of errors in the performance of an ontology concept
recognition system, without the necessity of performing a
search of the corpus for relevant cases. More broadly, we
were able to find some core features for the design of this
type of test suite.
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