
Building a Textual Entailment Suite for the Evaluation of
Automatic Content Scoring Technologies

Jana Z. Sukkarieh, Eleanor Bolge
Educational Testing Service

Rosedale Road, Princeton, NJ 08541

E-mail: jsukkarieh@ets.org, ebolge@ets.org

Abstract

Automatic content scoring for free-text responses has started to emerge as an application of Natural Language Processing in its own

right, much like question answering or machine translation. The task, in general, is reduced to comparing a student’s answer to a model

answer. Although a considerable amount of work has been done, common benchmarks and evaluation measures for this application do

not currently exist. It is yet impossible to perform a comparative evaluation or progress tracking of this application across systems – an

application that we view as a textual entailment task. This paper concentrates on introducing an Educational Testing Service-built test

suite that makes a step towards establishing such a benchmark. The suite can be used as regression and performance evaluations both

intra-c-rater® or inter automatic content scoring technologies. It is important to note that existing textual entailment test suites like

PASCAL RTE or FraCas, though beneficial, are not suitable for our purposes since we deal with atypical naturally-occurring student

responses that need to be categorized in order to serve as regression test cases.

1. Introduction

Automatic content scoring for free-text responses has
started to emerge as an application of Natural Language
Processing (NLP) in its own right, much like question
answering or machine translation. There has been a
considerable amount of work done e.g., (Christie, 1999,
2003; Larkey et al., 1998; Rehder et al., 1998;
Wiemer-Hastings et al., 1999; Ming et al., 2000; Callear
et al., 2001; Rudner & Liang, 2002; Mitchell et al., 2002;
Laham et al., 2002; Mason & Grove-Stephenson, 2002;
Leacock & Chodorow, 2003; Foltz et al., 2003; Rosé et al.,
2003; Sukkarieh et al., 2003; Datar et al., 2004 ;Williams
& Dreher, 2004; Siddiqi & Harrison, 2008; Moehler &
Mihalcea, 2009 and Sukkarieh & Blackmore, 2009).
However, common benchmarks and evaluation measures
for this application do not currently exist. It is yet
impossible to perform a comparative evaluation or
progress tracking of this application across systems.

Existing systems, including c-rater
®
, the Educational

Testing Service (ETS) technology for the automatic

content scoring of short free-text responses, report results

in terms of the scoring agreement between human raters

and systems. There is no common measure used to make

scoring results comparable. Scoring agreement has been

reported in terms of exact or adjacent percentages,

Pearson or Spearman’s correlation, standard deviation,

F-score (precision, recall), false positives/negatives, and

kappa statistics. In addition, no large-scale common

benchmark evaluation set of items exists with which to

compare the results, due mainly to intellectual property

issues. Furthermore, score results are neither very

meaningful (from an NLP point-of-view) nor give any

sense of developmental progress. They may give an

indication that one version of the system is agreeing with

human raters better than another but verifying that this

occurs for the right reasons often means hand-checking

hundreds of cases. Consequently, we have built an

evaluation suite which serves as a diagnostic comparative

and performance evaluation mechanism. In this paper, we

concentrate on introducing this ETS-built evaluation suite

that makes a step towards establishing such a benchmark

which can be used as regression test suite both intra-

c-rater
®
 or inter automatic content scoring technologies.

Note that this is ongoing work that will benefit from

discussions and comments within the automatic

content-scoring community.

We will first examine the task of content scoring for

free-text responses and its relationship to textual

entailment with a high-level description of c-rater
®
. Next,

we will concentrate on presenting the test suite by

describing the requirements, principles or guidelines used,

and what was built at various stages. We also emphasize

the difference between the ETS-suite and existing textual

entailment suites. Finally, we will outline a future plan on

how our effort could mature to advance the automatic

content scoring for free-text responses.

2. Automatic Content Scoring

We consider “content”
1
 to be a set of main points or

concepts predefined by a test developer. Such set forms
the evidence for knowledge which a student needs to
demonstrate in a response. Table 1 shows an example of
an item

2
 with the required content for the response (as

shown by the concepts or main points C1, C2 and C3) and
the recommended rubric for assigning score points.
These score points will be referred to as total scores in the
remainder of this paper. This view of “content” is not
necessarily restricted to short-response items. The task of
knowing whether a set of main points or concepts are
conveyed by a certain text and providing feedback for a
student will have to deal with the same issues reported
here, regardless of the length of the text or the techniques
used to solve this task.

1
 A survey of the literature of automatic content scoring reveals

that “content” means different things to different

researchers/organizations. Elaborating on this is better left for

another occasion.
2
 An item at ETS refers to a question appearing in either a test or

an exam.

3149

Table 1. A test item with the required concepts

Item (Full credit: 2 points)

Stimulus: A reading passage

Prompt:

In the space provided, write the

question that Alice was most

likely trying to answer when

she performed Step B.

Concepts or main points:

C1: How does rain

formation occur in

winter?

C2: How is rain formed?

C3: How does temperature

contribute to the

formation of rain?

Scoring rules:

2 points for C1

1 point for C2 (only if C1 is not present) or for C3 (only if C1 and

C2 are not present)

Otherwise 0 points

We view the task of automatic content scoring as a textual

entailment task as follows:

Given a concept, C, (e.g., C3 in Table 1 “How does

temperature contribute to the formation of rain?”) and a

student response, A, (e.g., either “How does temperature

assist in the formation of rain?” or “Does temperature

affect the way altitude helps in rain formation?”) and the

context of the item, the goal is to check whether C is an

inference or paraphrase of A (in other words, A implies C

and A is true).

The c-rater
®
 technology at ETS tries to tackle such a task.

2.1 c-rater
®

 in brief

There are four main steps in c-rater
®

(See Figure 1). The
first is what we call item-dependent Model Building
(MB), where a set of model responses are generated for
the item at-hand guided by a set of scored student
responses and a set of lexical resources generating similar
lexicon. A scored student response is one where a human
rater highlights what s/he considers to be the portion of
the response that entails a concept labeling the
<Response, Concept> pair with “Present” or the portion
that refutes a concept while labeling the pair by
“Refuted”, otherwise s/he says the response does not
entail the concept and labels the pair “Absent”. We call
{Absent, Present, Refuted} analytic-based scores. The
highlighted portion corresponding to an entailment is
called positive evidence and the one corresponding to a

Figure 1. The four main steps in c-rater
®

refutation is called negative evidence. Second, c-rater
®

automatically processes the model responses and
students’ responses using a set of NLP tools and
resources. In the process, it extracts a set of linguistic
features. This action consists of the following: a response
is processed for spelling corrections in an attempt to
decrease the noise for subsequent NLP tools. In the next
stage, tokenization, parts-of-speech tagging and
parsing are performed (the OpenNLP parser is used
http://opennlp.sourceforge.net). After that, a parse tree is
passed through a feature extractor where
manually-generated rules extract features from the parse
tree and introduce semantic roles. Next, a pronoun
resolution stage is performed where pronouns are
resolved to either an entity in the student’s response or the
question. Finally, a morphology analyzer reduces the
words to their lemmas.

Third, a concept-detector uses the linguistic features
culminated from both MB and NLP to automatically
determine whether a student’s response entails the
predefined concepts.

Finally, c-rater

®
 applies the scoring rules to produce a

total score and feedback that justifies the total score to the
student.

3. A Textual Entailment Test Suite

3.1 Regression Testing in NLP-based applications
The metrics for measuring the functionality of a certain

technology include measuring progress, comparing one

version to another, and monitoring the effect of frequent

modifications. We believe that this proves particularly

challenging due to the nature of the NLP-based

application and the automatic content scoring task. In

most software, the business value is in a working product.

In automatic content-scoring technologies it is not only

about producing a total score but producing one for the

“right” reasons – not due to errors in the linguistic features

obtained. For example, in high-stakes testing, a lawsuit

could be incurred from wrongly-justified scores. Until

recently, comparing versions of c-rater
®
 meant comparing

its total scores to the original human scores without a

sense of the effect of particular changes. Evaluating the

effect of a change often meant hand-checking hundreds of

cases.

To improve monitoring, we have designed a regression test

suite and introduced automated testing. This produces a

finer-grained view of the modules’ performances, increases

our confidence about the “correctness” of our scores and

most importantly provides guidance for product

development.

There is considerable previous work on grammar

development strategies and test suites for grammar-based

systems. For example, Prasad & Sarkar (2000) have

compared corpus-based and test-suite based coverage for

grammar while de Paiva & Holloway King (2008) have

built an entailment suite and used it for a question

answering application. However, we do not find

regression test suites that consist of categorized

3150

http://opennlp.sourceforge.net/

naturally-occurring atypical data
3
.

Atypical data includes noise, unconventional textual

representation and mixed-mode representation. Noise

includes, among others, incomplete sentences,

misspellings, ungrammaticality and random keyboard

indefinite stroking of the same letter. Noise varies from

one grade level to another, from one population to another

and from one content area to another. Unconventional

textual representation includes, among others, symbols,

SMS abbreviations, foreign and slang words. Furthermore,

some content areas require students’ responses in

mixed-mode: visual, textual and mathematical symbolic

language. To date, we only considered a mixed-mode

representation of text, mathematical symbols and

equations.

One would definitely start with having “typical” or

representative well-written English test cases but one

cannot expect anything “typical” in students’ responses.

Hence, a test-suite of naturally-occurring atypical test cases

is needed for a system like an automatic content scoring

technology because the robustness of (or lack thereof) NLP

tools towards atypical data needs to be taken into account.

Though one cannot account for all possibilities of

potentially atypical data, one may be able to predict or

learn a certain model of “behavior” with particular types.

Consequently, one may be able to preempt a behavior by

either pre-processing the data, backing some tool up to

overcome the behavior, or even ignoring it when it has no

effect on the final output.

The existing textual entailment suites were not suitable for

our purposes. In particular, the commonly-used Pascal RTE

suites (http://pascallin.ecs.soton.ac.uk/Challenges/RTE)

were not suitable enough for our purposes because of the

following:

1. As mentioned above we deal with student responses;

hence, data is “atypical”. The RTE data (through

RTE-4) consists of correctly-written English.

2. Our application is different from the focus of RTE to

date. “…even though different applications need

similar models for semantic variability, the problem is

often addressed in an application-oriented manner and

methods are evaluated by their impact on the final

application” (Dagan et al., 2005).

3. Most importantly, we require a systematic diagnostic

evaluation that guides the development of our product

something that the RTE data does not provide.

Furthermore, the FraCas textual entailment test suite

(Cooper et al. 1996) is not suitable enough either. Even

though the suite is categorized into various phenomena and

it has been used to guide the development of a Knowledge

Representation and a deductive textual entailment engine

(Sukkarieh, 2001), the suite is built from artificial test cases

3 For lack of finding a better nomenclature we use “atypical”.

of well-written English. However, we plan to use the

FraCas categorization for further extension of c-rater’s

semantic capability.

3.2 c-rater® Test Suite: Description
The suite is built from naturally-occurring real student

responses collected from various assessment programs and

varying content areas that c-rater
®
 has processed. It

currently has about 350 items.

The c-rater
®

suite consists of 6-tuples in the form of

<Test_Id, Text, Hypothesis, Human_Label, c-rater_Label,

Category> that can be further extended by the user to a

7-tuple suite where the 7
th

 argument is

List_of_Modules_Outputs which will be defined in section

3.3.3. In the remainder of the paper, we will refer to a tuple

in the test suite by an “engine test”.

Test_Id is a unique id given to the engine test. Text and

Hypothesis are extracted from c-rater’s database. They will

be further specified in section 3.3. A “Human_Label” is an

analytic-based score i.e. either Present, Refuted, or Absent.

Initially a c-rater_Label for each engine test is “Absent”

which gets replaced by the analytic score that c-rater
®

assigns automatically to the test. A Category can be any of

the following kind.

3.2.1 Linguistic Phenomenon

The suite is mostly driven by linguistic phenomena that
exist in the data, i.e., each linguistic phenomenon
constitutes the criterion that “decides” whether a text
entails a certain concept, does not entail or refutes it. For
example, an ergative verb is the criterion for which “you
could heat bricks” could entail the concept “your bricks
could heat”. The phenomenon could be general too e.g.
“implicit negation” is the criterion for which “clouds
prevented him from seeing the moon” refutes “he can see
the moon”. More than one phenomenon could be at play
when deciding about an entailment.

3.2.2 A module under c-rater’s hood

Another issue that could motivate the inclusion of an

engine test in the suite is an unexpected output of an NLP

module under the hood of c-rater
®
 (including the spelling

corrector and the concept-detector). This either means that

the response was well-written but a module’s output was

unexpected or that the response was noisy and hence the

module did not recover and produced wrong output that

affected the decision of the concept-detector.

3.2.3 Mixed-Mode Representation

This refers to a mixture of modes of representation of a

student response. As we mentioned earlier, to date we only

deal with responses consisting of mixed textual and

mathematical equations or symbols.

3.2.4 Unconventional Textual Representation

This, as mentioned earlier, refers to all kinds of “correct

natural language” but unconventional e.g. foreign lexicon

embedded in English and SMS abbreviations.

3151

http://pascallin.ecs.soton.ac.uk/Challenges/RTE

An engine test could belong to more than one Category. In

the following section, we provide more details for the

arguments of the engine tests as we progressed with them.

Note that this is not a description on how c-rater
®
 was

developed or what can or cannot do. The following is the

progression of thoughts about building a regression test

suite.

3.3 c-rater® Test Suite: Stages, Methodology and
Types of Engine Tests Built at Each Stage

3.3.1 Stage 1
The principle is simple: “we require a set of engine tests
that will make sure that the decision of the
concept-detector does not change from one version to
another.” The method we followed also was simple.
Select a few hundred pairs of <Positive_Evidence,
Concept> from scored student responses across all items.
Hence, the Positive_Evidence is either a complete
response or part of a student response that entails the
Concept. The engine tests in Stage 1 looked as follows:

<Test_Id, Positive_Evidence, Concept, Human_Label,

c-rater_ Label>

where Human_Label is “Present” for all of our test cases.

The testing condition was again simple “If Human_Label

≠ c-rater_Label then Test_Id is flagged automatically” for

a human’s attention. At this stage also, representation in

the suite of morphological variations that do not modify

the part-of-speech (POS) tags was made.

3.3.2 Stage 2

When Test_Id is flagged in Stage 1, the question was then:

Did c-rater
®
 fail because we failed to take into account

some linguistic phenomenon and if so, which one? Also, if

we are concerned about doing the right thing then we ought

to ask whether c-rater
®
 agrees with the human raters for the

right reasons or is it just a guess, a mistake, etc.

Basically, we ask questions about “coverage” just as is

done in developing parsers and grammar-based test suites

(Prasad and Sarkar, 2000):

a) how many linguistic phenomena does the technology

handle? And, b) How many responses in

naturally-occurring student response corpora does the

technology handle? The method we followed was as

follows:

1. Select a syntactic phenomenon of interest (Category)

2. Select a concept as given by the rubric of a test item or

a positive evidence for that concept (Hypothesis)

3. Select a naturally-occurring student response or part of

a response (Text) such that Text entails Hypothesis due

to Category

4. Add engine tests such that Text in <Text, Hypothesis,

Category> considered in 1, 2 and 3 is injected

manually with some variations where Injected_Text

does not entail Hypothesis (Injected_Text is Text with

the injected variations)

In Stage 2, once the “Phenomenon” of interest is selected

then either:

a) It is already covered by the feature extractor and

needs to be tested and in that case we use the

feature extractor to guide us into finding the

relevant student responses and a human rater just

verifies them

b) It is not covered by the feature extractor and in

that case the human rater uses the output of the

parser for some guidance in order to find the

relevant student responses in our database

Consequently, the engine tests looked as follows in Stage

2, where Category is a syntactic phenomenon (including

derivational morphology with a change of POS):

<Test_Id, Text, Hypothesis, Human_Label, c-rater_ Label,

Category>

The engine tests under each category are further

categorized, similarly to the ones found in de Paiva &

Holloway King (2008) i.e. in order of processing

complexity. Some examples follow. The Hypothesis is

underlined for clarity.

Type 1: Sanity Check Engine Tests

These are entailments that look too trivial not to perform.

However, one should emphasize, these are not as trivial as

they look when dealing with noisy data.

(1) <Test_Id1, “The animal is infected”, “The

animal is infected”, Present, _, Identical>

Type 2: Single Phenomenon Single Sentence Engine

Tests

These are engine tests where both the Hypothesis and the

Text consist of single sentences and where the entailment is

due to a single phenomenon.

(2) <Test_Id2, “The bill should not be passed

because psychologists do not have the training of

medical doctors to know when drugs should and

should not be prescribed, how different drugs

work together, what types of side effects occur,

and how to deal with these effects when they do

occur.”, “Psychologists are not trained”,

Present, _, Nom_to_Verb>

where Nom_to_Verb denotes “nominalization to tensed

clause” defined by Vanderwende et al. (2006).

Type 3: Single Phenomenon Multi-Sentence Engine

Tests

These are engine tests where either the Hypothesis or the

Text consists of multi-sentences and where the entailment

3152

is due to a single phenomenon.

(3) <Test_Id3, “The fish populations will proball

decreas a lot. If they constantly have to breath

likd that then it will over stress their body killing

them”, “This will decrease the fish populations”,

Present, _, Ergative>

Type 4: Multi-Phenomena Single Sentence Engine Tests

These are engine tests where an entailment is due to more

than one phenomenon and both Text and Hypothesis are

single sentences. Such an engine test will appear under

more than one Category.

(4) <Test_Id4,“The gasses make the fish fight for air

and make the fish needs to breathe more fast to

get more oxygen than before. ”, “The gas makes

the fish need to breath faster to get more oxygen”,

Present,_, Category>

Ignoring that there is a need for spelling-correction, there is

a need to at least a) recognize that gases and gas have the

same lemma, b) distribute the conjunction so that “the

gases make the fish …” and c) comparative use i.e.

recognize that “more fast” and “faster” are the same.

Type 5: Multi-Phenomena Multi-Sentence Engine

Tests

These are tests where an entailment is due to more than one

phenomenon and either Text or Hypothesis consists of

multi-sentences.

(5) <Test_Id5, “It is supposed to show that presient

Johnson knows how to do the job and that he

wants to fix the problems for the common worker

and American. It also shows how Gladwater

believes that draft si a waste and that people who

join voluntarily join the military will be better

then those who are forced to”, “Gladwater

believes people should join the army

voluntarily”, Present,_, Category>

At least, the distributive property and the properties of

dependent/relative clauses are at play in Test_Id5.

Type 6: Manually-Injected Variations of Engine Tests

As mentioned earlier, we also, manually, inject Text in

some engine tests with some variations for their entailment

to fail. These were devised purposely to avoid false

positives. An example under the passives Category

follows.

(6) <Test_Id6,“The animal was infected by the

doctor”, “The animal infects the doctor”, Absent,

_, Passives>

where the original Text is: “The doctor was infected by the

animal”.

336 engine tests were devised at this stage. The Hypotheses

in all the tests were single sentences. However, we have

considered an initial set of around 800 responses that the

336 tests were selected from.

3.3.3 Stage 3

As textual entailment obviously is not due to syntactic

phenomena only, at this stage one requirement was not only

to extend the kinds of syntactic categories considered in

Stage 2 but also to include “lexical semantics” categories

and “semantics beyond lexicon” in the test suite. We also

needed to start categorizing the negative evidence or why a

Hypothesis is Refuted. Verifying whether one or more

phenomenon is at play becomes a more daunting task.

Consequently, another requirement was to have two human

annotators instead of one as it was the case up until Stage 2.

Furthermore, an additional requirement over Stage 2

included another kind of semantics for a Category; one

which deals with an unexpected output by any

pre-processing tool or any of the NLP tools (e.g. the parser).

Finally, we needed to automate parts of the process or make

it less demanding for humans.

A Category at this stage then can be a) one considered at

Stage 2, b) a name of a tool/module X meaning

“unexpected output of tool X”. X can be, e.g., pre-parser,

parser, pronoun-resolver, feature-extractor, or

concept-detector or c) an extended set of linguistic

phenomena that we describe next.

The phenomena for “Present” are divided into “Syntactic,”

“Lexical,” and “Semantics beyond lexicon.” The syntactic

categories include phenomena like “Passives,” “Ergative,”

“Partitives,” “Possessives,” “Comparatives and Super-

latives,” “Phrasal Verbs,” “Appositives,” “Dependent

Clauses other than appositives,” “Interrogatives”,

“Extraposition,” and “Adverb final and non final”. Some

additional categories were driven by those in Vanderwende

et al. (2006) like “Nominalization to Tensed Clause” and

“Finite to Non-finite Constructions.” We also have a

category “None of the syntactic categories above.”

Lexical categories include phenomena like “Exact Lexical

Overlap,” “Direct Synonymy Replacement” (not including

compound synonymy), “Compound Synonymy,” “Lexical

Inference,” and “Compounds_Other.” So far, there is only

one category labeled “Semantics_Beyond_Lexicon.”

Engine tests with Human_Label of “Refuted” are

categorized to date into three categories: “Explicit

Negation,” “Implicit Negation,” and “Contradictory

Information (other than negation).”

Engine tests with labels of “Absent” are not categorized.

The selection of a certain category is often guided by the

rubrics of a certain item. For example, if in a particular

pilot we noticed that all items require some kind of

proportional reasoning which translates into using some

3153

sort of comparatives then concentration on “comparatives”

takes priority.

The engine tests have the following format at this stage:

<Test_Id, Text, Hypothesis, Human_Label, c-rater_ Label,

Category, List_of_Modules_Outputs>

where List_of_Modules_Outputs is optionally displayed

and consists of the list of these self-explanatory elements:

[Text_after_Spelling_Correction,

Hypothesis_after_Spelling_Correction,

Text_Parser_Output,

Hypothesis_Parser_Output,

Text_Feature_Extractor_Output,

Hypothesis_Feature_Extractor_Output,

Text_Morphology_Module_Output,

Hypothesis_Morphology_Module_Output,

Concept_Detection_Module_Output]

The method followed to generate the suite is:

1. Build an annotation tool that gets fed

automatically from the c-rater
®
 database to

facilitate the work for a human rater.

2. Extract automatically a random set of 1600 pairs

of student responses and concepts or model

responses from the c-rater
®
 database. No reason

for selecting 1600 except that it is double the size

considered when devising engine tests for fewer

categories. Using only 1600, there is no guarantee

there will be a balance in the representation of

categories
4
 or the Human_Label. However, we

have a large size of additional data in our database

in order to reach a balance.

3. Two humans are asked to annotate the engine

tests. A human rater is to click one of three radio

buttons to provide a Human_Label and click on

one or more radio buttons where each button

corresponds to a Category. If a Text is more than

one sentence long then the annotator is provided

first with <Sentence, Hypothesis> pairs for each

sentence and then with <Text, Hypothesis> for

annotation. An adjudicated annotation by a third

human is used when there is a disagreement.

When the three human raters cannot decide on a

given engine test, it is discarded and replaced by

another pair.

We have so far completed tasks 1 and 2 above. Task 3 is

still in progress but a training step towards it was

completed. Two human raters were asked to label a random

set of 330 engine tests without consulting each other and

without selecting a Category. They disagreed on 107

engine tests. A discussion followed this phase and the fact

is: it is a non-trivial task particularly because the context of

the item is not provided with the engine tests.

4
 Additional categories might be noted too.

Figure 2. A snapshot of comparative results

In addition, one human rater painstakingly looked at a

random list of responses in c-rater’s database where the

total scores generated by c-rater
®
 were different from the

original human scores and annotated 120 engine tests for

the Category meaning “tool X” mentioned earlier. In the

following, we report some statistics corresponding to

engine tests built at Stage 2 and in this last step of Stage 3.

4. Score Report

The test suite is used for regression testing i.e. the

systematic diagnostic and comparative evaluation for

c-rater’s performance. The task here is to maintain the

consistency of c-rater
®
. When new additions or

modifications are made to c-rater
®
, we automatically

verify that earlier analyses have not been contradicted.

Currently, any change to the agreement/disagreement

between Human_Label and c-rater_Label from one

version to another is flagged automatically and

corresponding engine tests are displayed for a human to

verify. The suite helps us identify missing phenomena,

which phenomena c-rater
®
 fails to capture, and account

for rare phenomena (similar to parsers’ evaluations).

A web-based report is produced automatically when a new

version of the system is built. Figure 2 shows a snapshot of

the display when the results of the engine tests change.

Only the Category where a change occurs is shown with a

list of Test_Ids whose results have changed. In the figure,

only one test has changed under each Category. The

change can be seen in the values of the Failure column i.e.

{YES, NO}. YES means c-rater_Label ≠ Human_Label

and NO means they are the same. A human can click to see

the engine test in details. The version numbers are

displayed too (in the figure 7.1.25.1-1 and 7.1.25.2-1 are

compared).

Another use for the suite is benchmark performance

evaluation for the same version of the system. The question

here is for how many engine tests extracted from

naturally-occurring corpora does c-rater
®

(and potentially,

all other similar technologies) produce a correct decision?

This is evaluated in terms of agreement with a human rater.

Some statistics like: quadratic kappa statistics, confusion

matrices, precision and recall are produced automatically

to represent this agreement
5
.

5
 Performance evaluation over the total scores of a set of

approximately 350 benchmark items is also performed.

3154

In total, we will report results on 456 engine tests. First, it

is worth mentioning the following statistics for these tests:

 Hypothesis Text

Avg. # Sentences per test 1.00 1.49

Avg. #Tokens per test 7.65 26.86

Avg. #Tokens per test w/out

end punctuation

6.64 25.38

Table 2 shows the results of agreement between c-rater and

the human rater in terms of confusion matrices
6
 over some

of the syntactic categories we have to date. The matrix

represents:

 c-rater

 Absent Present

Human Absent N1 N2

Present N3 N4

AdjVerbs denotes the verbs considered as adjectives like

“infected”. We assume that the reader is familiar with the

rest of the categories in the table.

Table 2. c-rater_Label vs. Human_Label for Phenomenon

Category #Tests #Failure Confusion Matrix

AdjVerbs 14 0 0 0

0 14

Appositives 14 3 0 0

3 11

Comparatives 38 28 6 28

0 4

Dependent

Clauses

 73 28 3 6

22 42

Ergative 122 58 51 28

30 13

Nom_to_Verb 9 5 0 2

3 4

Distributive

Property

 22 8 2 0

8 12

Mixed-Mode 6 2 4 0

2 0

Negation 6 2 4 0

2 0

Partitives 11 3 2 1

2 6

Passives 21 3 2 1

2 16

Total 336 140 74 66

74 122

There are 140 engine tests labeled “Absent” by a Human

and 196 labeled “Present”. c-rater fails to agree with the

Human on 140 engine tests.

6 Though there is enough evidence that kappa statistics is the

best measure to evaluate agreement with humans, kappa

statistics are not meaningful for such a small size of engine tests

built so far. Hence, we only display confusion matrices.

Table 3 shows the results of agreement between c-rater and

the human rater for some of the “tool X” categories.

Table 3. c-rater_Label vs. Human_Label for “tool X”

Category #Tests #Failure Confusion

Matrix

Concept-detector 71 10 21 2

8 40

Feature_Extractor 17 1 0 0

1 16

Pronoun_Resolver 2 2 0 0

2 0

Parser 27 12 1 1

11 14

Pre-Parser 3 1 1 0

1 1

Total 120 26 23 3

23 71

c-rater fails to agree with the human rater on 26 engine tests.

When a larger size suite is built, agreement between

humans and c-rater will be reported in terms of quadratic

kappa statistics.

5. Summary and Future Plans

ETS is a leading organization in educational assessment.

Automatic content scoring is a fast-growing application

of NLP. We have described a test suite that depends on

the performance of c-rater. This work is in progress and

more results will be shared in the future. There are many

questions to deal with e.g. how to automate further parts

of the process as to make it less demanding to generate

engine tests and if that was the case how does one ensure

balance between “Absent”, “Present” and “Negated”

under each category?

In addition, a lot can be drawn from work done by the

grammar development researchers and the FraCas

categories to further our development and regression

evaluation. We would like to look for opportunities where

we can share the use of the annotation tool and the test

suite
7
 as well as collaborate with other researchers so that

we can collectively agree and progress can be tracked and

compared. We would like to foster collaboration among

researchers and organizations that are specifically

working on automatic content scoring.

Furthermore, adequacy evaluation is important,

i.e., clients should be able to compare available

technologies and decide which technology is best for their

purposes or add value to their practice. For example,

teachers at schools may want to verify how adequate a

technology is to score and provide feedback on students’

homework. Hence, we need to look into ways to allow a

client to perform such an evaluation.

7
 As long as neither the items nor the context of the items are

shared without the permission of the assessment programs at

ETS.

3155

6. References

Callear, D., Jerrams-Smith, J. & Soh, V. (2001) CAA of

short nonMCQ answers. In the Proceedings of the 5th

International Computer Assisted Assessment

Conference, Loughborough.

Cooper, R., Crouch, D., van Eijck, J., Fox, C. van

Genabith, J., Jaspars, J., Kamp, H., Milward, D., Pinkal,

M., Poesio, M. & Pulman, S. (1996). The FraCas

Consortium, Deliverable D16. With additional

contributions from Briscoe, T., Maier, H. and Konrad,

K.

Christie, J. R. (1999). Automated essay marking for both

content and style. In Proceedings of the 3rd

International Computer Assisted Assessment

Conference. Loughborough University. Loughborough,

UK.

Christie, J. R. (2003). Automated essay marking for

content- does it work ? In Proceedings of the 7th

International Computer Assisted Assessment

Conference. Loughborough University. Loughborough,

UK.

Dagan I., Glickman O., & Magnini B. (2005). The

PASCAL Recognising Textual Entailment Challenge.

In Proceedings of the PASCAL Challenges Workshop

on Recognizing Textual Entailment.

de Paiva, V. & Holloway King T. (2008). Designing

Testsuites for Grammar-based Systems in

Applications. In Proceedings of the Coling 2008

Workshop on Gammar Engineering Across

Frameworks, pages 49-56.

Foltz, P.W., Laham, D. & Landauer, T.K. (2003).
Automated essay scoring. Applications to
Educational technology.
http://www-psych.nmsu.edu/%7Epfoltz/reprints/Ed
media99.html

Laham, D., Bennett, W., & Derr, M. (2002). Latent

Semantic Analysis for career field analysis and

information operations. Paper presented at

Interservice/Industry, Simulation and Eduation

Conference (I/ITSEC), December 2-5, 2002. Orlando,

FL.

Larkey, L. S. (1998) Automatic Essay Grading Using Text

Categorization Techniques, in Proceedings of

SIGIR-98, 21st ACM International Conference on

Research and Development in Information Retrieval.

ACM Press, 1998.

Leacock, C. & Chodorow, M. (2003) C-rater : Automated

Scoring of Short-Answer Questions. Computers and

Humanities. Pp. 389-405.

Mason, O. & Grove-Stephenson, I. (2002) Automated

free text marking with paperless school. In M. Danson

(Ed.), Proceedings of the sixth International Computer

Assisted Assessment Conference, Loughborough

University, Loughborough, UK.

Ming, Y. Mikhailov A., & Kuan T. L. (2000). Intelligent

Essay Marking System. Learners Together, NgeeANN

Polytechnic, Singapore.

Mitchell, T. & Russell, T., Broomhead, P. & Aldridge, N.

(2002) Towards robust computerised marking of

free-text responses. Proceedings of the 6th

International Computer Assisted Assessment

Conference.

Mohler, M. & Mihalcea R. (2009). Text-to-text Semantic

Similarity for Automatic Short Answer Grading.

Proceedings of the European Chapter of the

Association for Computational Linguistics, Athens,

Greece.

Prasad, R. & Sarkar A. (2000). Comparing test-suite

based evaluation and corpus-based evaluation of a

wide-coverage grammar for English. In LREC-00,

Athens.

Rehder, B. Schreiner, M. E. Wolfe, B. W., Laham, D,

Landauer, T. K., & Kintsch, W. (1998). Using Latent

Semantics Analysis to assess knowledge : Some

technical considerations. Discourse Processes, 25,

337-354.

Rosé, C. P., Roque, A., Bhembe, D. & VanLehn, K. (2003)

A hybrid text classification approach for analysis of

student essays. Proceedings of the HLT-NAACL 03

Workshop on Educational Applications of NLP.

Rudner, L. M., & Liang, T. (2002). Austomated Essay

Scoring Using Bayes’ Theorem. In Proceedings of the

annual meeting of the National Council on

Measurement in Eduation.

Siddiqi, R. & Harrison, C. (2008). A systematic approach

to the automated marking of short answer questions.

Multitopic Conference, 2008. INMIC 2008. IEEE

International.

Sukkarieh, J. Z. & Blackmore, J. (2009). c-rater :

Automatic Content Scoring for Short Constructed

Responses. Proceedings of the 22nd International

Conference for the Florida Aritifical Intelligence

Research Society, Florida, USA.

Sukkarieh, J. Z., Pulman, S. G. & Raikes, N. (2003).

Auto-marking : using computational linguistics to

score short, free text responses. Proceedings of the

international association of educational assessment,

Manchester, UK.

Sukkarieh, J. Z. (2001). Natural Language for Knowledge

Representation. Ph.D Thesis. University of Cambridge,

Cambridge, England.

Vanderwende, K. and Dolan W. B. (2006). What Syntax

can Contribute in the Entailment Task. In MLCM 2005,

LNAI 3944, pp. 205-216. J. Quinonero-Candela et al.

(eds., Springer-Verlag).

Williams,R. & Dreher, H. (2004). Automatically Grading

Essays with Markit©. Proceedings of Informing

Science 2004 Conference, Rockhampton, Queensland,

Australia, June 25-28, 2004.

Wiemer-Hastings, P., Wiemer-Hastings, K. & Graesser, A.

(1999). Improving an intelligent tutor’s comprehension

of students with Latent Semantic Analysis. In S. P.

Lajoie and M. vivet, Artificial Intelligence in Education

pp. 535-542. Amsterdam: IOS Press.

3156

http://www-psych.nmsu.edu/~pfoltz/reprints/Edmedia99.html
http://www-psych.nmsu.edu/~pfoltz/reprints/Edmedia99.html

