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Abstract  

Automatic content scoring for free-text responses has started to emerge as an application of Natural Language Processing in its own 

right, much like question answering or machine translation. The task, in general, is reduced to comparing a student’s answer to a model 

answer. Although a considerable amount of work has been done, common benchmarks and evaluation measures for this application do 

not currently exist. It is yet impossible to perform a comparative evaluation or progress tracking of this application across systems – an 

application that we view as a textual entailment task. This paper concentrates on introducing an Educational Testing Service-built test 

suite that makes a step towards establishing such a benchmark. The suite can be used as regression and performance evaluations both 

intra-c-rater® or inter automatic content scoring technologies. It is important to note that existing textual entailment test suites like 

PASCAL RTE or FraCas, though beneficial, are not suitable for our purposes since we deal with atypical naturally-occurring student 

responses that need to be categorized in order to serve as regression test cases.  

1. Introduction 

Automatic content scoring for free-text responses has 
started to emerge as an application of Natural Language 
Processing (NLP) in its own right, much like question 
answering or machine translation. There has been a 
considerable amount of work done e.g., (Christie, 1999, 
2003; Larkey et al., 1998; Rehder et al., 1998; 
Wiemer-Hastings et al., 1999; Ming et al., 2000; Callear 
et al., 2001; Rudner & Liang, 2002; Mitchell et al., 2002; 
Laham et al., 2002; Mason & Grove-Stephenson, 2002; 
Leacock & Chodorow, 2003; Foltz et al., 2003; Rosé et al., 
2003; Sukkarieh et al., 2003; Datar et al., 2004 ;Williams 
& Dreher, 2004; Siddiqi & Harrison, 2008; Moehler & 
Mihalcea, 2009 and Sukkarieh & Blackmore, 2009). 
However, common benchmarks and evaluation measures 
for this application do not currently exist. It is yet 
impossible to perform a comparative evaluation or 
progress tracking of this application across systems. 

Existing systems, including c-rater
®
, the Educational 

Testing Service (ETS) technology for the automatic 

content scoring of short free-text responses, report results 

in terms of the scoring agreement between human raters 

and systems. There is no common measure used to make 

scoring results comparable. Scoring agreement has been 

reported in terms of exact or adjacent percentages, 

Pearson or Spearman’s correlation, standard deviation, 

F-score (precision, recall), false positives/negatives, and 

kappa statistics. In addition, no large-scale common 

benchmark evaluation set of items exists with which to 

compare the results, due mainly to intellectual property 

issues. Furthermore, score results are neither very 

meaningful (from an NLP point-of-view) nor give any 

sense of developmental progress. They may give an 

indication that one version of the system is agreeing with 

human raters better than another but verifying that this 

occurs for the right reasons often means hand-checking 

hundreds of cases. Consequently, we have built an 

evaluation suite which serves as a diagnostic comparative 

and performance evaluation mechanism.  In this paper, we 

concentrate on introducing this ETS-built evaluation suite  

 

that makes a step towards establishing such a benchmark 

which can be used as regression test suite both intra- 

c-rater
®
 or inter automatic content scoring technologies. 

Note that this is ongoing work that will benefit from 

discussions and comments within the automatic 

content-scoring community. 

We will first examine the task of content scoring for 

free-text responses and its relationship to textual 

entailment with a high-level description of c-rater
®
.  Next, 

we will concentrate on presenting the test suite by 

describing the requirements, principles or guidelines used, 

and what was built at various stages. We also emphasize 

the difference between the ETS-suite and existing textual 

entailment suites. Finally, we will outline a future plan on 

how our effort could mature to advance the automatic 

content scoring for free-text responses.  

 

2. Automatic Content Scoring 

We consider “content”
1
 to be a set of main points or 

concepts predefined by a test developer. Such set forms 
the evidence for knowledge which a student needs to 
demonstrate in a response. Table 1 shows an example of 
an item

2
 with the required content for the response (as 

shown by the concepts or main points C1, C2 and C3) and 
the recommended rubric for assigning score points.  
These score points will be referred to as total scores in the 
remainder of this paper. This view of “content” is not 
necessarily restricted to short-response items. The task of 
knowing whether a set of main points or concepts are 
conveyed by a certain text and providing feedback for a 
student will have to deal with the same issues reported 
here, regardless of the length of the text or the techniques  
used to solve this task.  

                                                           
1
 A survey of the literature of automatic content scoring reveals 

that “content” means different things to different 

researchers/organizations. Elaborating on this is better left for 

another occasion.  
2
 An item at ETS refers to a question appearing in either a test or 

an exam.  
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Table 1.  A test item with the required concepts 

Item (Full credit: 2 points) 

Stimulus: A reading passage 

 

Prompt:  

In the space provided, write the 

question that Alice was most 

likely trying to answer when 

she performed Step B. 

Concepts or main points: 

C1: How does rain 

formation occur in 

winter? 

C2: How is rain formed? 

C3: How does temperature 

contribute to the 

formation of rain? 

 

Scoring rules:  

2 points for C1  

1 point for C2 (only if C1 is not present) or for C3 (only if C1 and 

C2 are not present)  

Otherwise 0 points 

 

We view the task of automatic content scoring as a textual 

entailment task as follows: 

  

Given a concept, C, (e.g., C3 in Table 1 “How does 

temperature contribute to the formation of rain?”) and a 

student response, A, (e.g., either “How does temperature 

assist in the formation of rain?” or “Does temperature 

affect the way altitude helps in rain formation?”) and the 

context of the item, the goal is to check whether C is an 

inference or paraphrase of A (in other words, A implies C 

and A is true).  

 

The c-rater
®
 technology at ETS tries to tackle such a task.  

2.1 c-rater
®

 in brief 

There are four main steps in c-rater
® 

(See Figure 1). The 
first is what we call item-dependent Model Building 
(MB), where a set of model responses are generated for 
the item at-hand guided by a set of scored student 
responses and a set of lexical resources generating similar 
lexicon. A scored student response is one where a human 
rater highlights what s/he considers to be the portion of 
the response that entails a concept labeling the 
<Response, Concept> pair with “Present” or the portion 
that refutes a concept while labeling the pair by 
“Refuted”, otherwise s/he says the response does not 
entail the concept and labels the pair “Absent”. We call 
{Absent, Present, Refuted} analytic-based scores. The 
highlighted portion corresponding to an entailment is 
called positive evidence and the one corresponding to a  
 
 
 

Figure 1. The four main steps in c-rater
®

 
                                                                              

refutation is called negative evidence. Second, c-rater
®

 
automatically processes the model responses and 
students’ responses using a set of NLP tools and 
resources. In the process, it extracts a set of linguistic 
features. This action consists of the following: a response 
is processed for spelling corrections in an attempt to 
decrease the noise for subsequent NLP tools. In the next 
stage, tokenization, parts-of-speech tagging and 
parsing are performed (the OpenNLP parser is used 
http://opennlp.sourceforge.net). After that, a parse tree is 
passed through a feature extractor where 
manually-generated rules extract features from the parse 
tree and introduce semantic roles. Next, a pronoun 
resolution stage is performed where pronouns are 
resolved to either an entity in the student’s response or the 
question. Finally, a morphology analyzer reduces the 
words to their lemmas.  
 
Third, a concept-detector uses the linguistic features 
culminated from both MB and NLP to automatically 
determine whether a student’s response entails the 
predefined concepts.  
 
Finally, c-rater

®
 applies the scoring rules to produce a 

total score and feedback that justifies the total score to the 
student.   

3. A Textual Entailment Test Suite 

3.1 Regression Testing in NLP-based applications 
The metrics for measuring the functionality of a certain 

technology include measuring progress, comparing one 

version to another, and monitoring the effect of frequent 

modifications. We believe that this proves particularly 

challenging due to the nature of the NLP-based 

application and the automatic content scoring task. In 

most software, the business value is in a working product. 

In automatic content-scoring technologies it is not only 

about producing a total score but producing one for the 

“right” reasons – not due to errors in the linguistic features 

obtained. For example, in high-stakes testing, a lawsuit 

could be incurred from wrongly-justified scores. Until 

recently, comparing versions of c-rater
®
 meant comparing 

its total scores to the original human scores without a 

sense of the effect of particular changes. Evaluating the 

effect of a change often meant hand-checking hundreds of 

cases.  

To improve monitoring, we have designed a regression test 

suite and introduced automated testing. This produces a 

finer-grained view of the modules’ performances, increases 

our confidence about the “correctness” of our scores and 

most importantly provides guidance for product 

development. 

 

There is considerable previous work on grammar 

development strategies and test suites for grammar-based 

systems. For example, Prasad & Sarkar (2000) have 

compared corpus-based and test-suite based coverage for 

grammar while de Paiva & Holloway King (2008) have 

built an entailment suite and used it for a question 

answering application. However, we do not find 

regression test suites that consist of categorized 
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naturally-occurring atypical data
3
.  

 

Atypical data includes noise, unconventional textual 

representation and mixed-mode representation. Noise 

includes, among others, incomplete sentences, 

misspellings, ungrammaticality and random keyboard 

indefinite stroking of the same letter. Noise varies from 

one grade level to another, from one population to another 

and from one content area to another. Unconventional 

textual representation includes, among others, symbols, 

SMS abbreviations, foreign and slang words. Furthermore, 

some content areas require students’ responses in 

mixed-mode: visual, textual and mathematical symbolic 

language. To date, we only considered a mixed-mode 

representation of text, mathematical symbols and 

equations. 

 

One would definitely start with having “typical” or 

representative well-written English test cases but one 

cannot expect anything “typical” in students’ responses. 

Hence, a test-suite of naturally-occurring atypical test cases 

is needed for a system like an automatic content scoring 

technology because the robustness of (or lack thereof) NLP 

tools towards atypical data needs to be taken into account. 

Though one cannot account for all possibilities of 

potentially atypical data, one may be able to predict or 

learn a certain model of “behavior” with particular types. 

Consequently, one may be able to preempt a behavior by 

either pre-processing the data, backing some tool up to 

overcome the behavior, or even ignoring it when it has no 

effect on the final output.    

 

The existing textual entailment suites were not suitable for 

our purposes. In particular, the commonly-used Pascal RTE 

suites (http://pascallin.ecs.soton.ac.uk/Challenges/RTE ) 

were not suitable enough for our purposes because of the 

following: 

  

1. As mentioned above we deal with student responses; 

hence, data is “atypical”. The RTE data (through 

RTE-4) consists of correctly-written English.  

2. Our application is different from the focus of RTE to 

date. “…even though different applications need 

similar models for semantic variability, the problem is 

often addressed in an application-oriented manner and 

methods are evaluated by their impact on the final 

application” (Dagan et al., 2005). 

3. Most importantly, we require a systematic diagnostic 

evaluation that guides the development of our product 

something that the RTE data does not provide.     
 

Furthermore, the FraCas textual entailment test suite 

(Cooper et al. 1996) is not suitable enough either. Even 

though the suite is categorized into various phenomena and 

it has been used to guide the development of a Knowledge 

Representation and a deductive textual entailment engine 

(Sukkarieh, 2001), the suite is built from artificial test cases 

                                                           
3 For lack of finding a better nomenclature we use “atypical”.  

of well-written English. However, we plan to use the 

FraCas categorization for further extension of c-rater’s 

semantic capability.  

 

3.2 c-rater® Test Suite: Description 
The suite is built from naturally-occurring real student 

responses collected from various assessment programs and 

varying content areas that c-rater
®
 has processed. It 

currently has about 350 items.    

 

The c-rater
® 

suite consists of 6-tuples in the form of 

<Test_Id, Text, Hypothesis, Human_Label, c-rater_Label, 

Category> that can be further extended by the user to a 

7-tuple suite where the 7
th

 argument is 

List_of_Modules_Outputs which will be defined in section 

3.3.3.  In the remainder of the paper, we will refer to a tuple 

in the test suite by an “engine test”. 

 

Test_Id is a unique id given to the engine test. Text and 

Hypothesis are extracted from c-rater’s database. They will 

be further specified in section 3.3. A “Human_Label” is an 

analytic-based score i.e. either Present, Refuted, or Absent. 

Initially a c-rater_Label for each engine test is “Absent” 

which gets replaced by the analytic score that c-rater
®
 

assigns automatically to the test. A Category can be any of 

the following kind.   

 

3.2.1 Linguistic Phenomenon  

The suite is mostly driven by linguistic phenomena that 
exist in the data, i.e., each linguistic phenomenon 
constitutes the criterion that “decides” whether a text 
entails a certain concept, does not entail or refutes it. For 
example, an ergative verb is the criterion for which “you 
could heat bricks” could entail the concept “your bricks 
could heat”. The phenomenon could be general too e.g. 
“implicit negation” is the criterion for which “clouds 
prevented him from seeing the moon” refutes “he can see 
the moon”.  More than one phenomenon could be at play 
when deciding about an entailment. 

 

3.2.2 A module under c-rater’s hood 

Another issue that could motivate the inclusion of an 

engine test in the suite is an unexpected output of an NLP 

module under the hood of c-rater
®
 (including the spelling 

corrector and the concept-detector). This either means that 

the response was well-written but a module’s output was 

unexpected or that the response was noisy and hence the 

module did not recover and produced wrong output that 

affected the decision of the concept-detector.  

 

3.2.3 Mixed-Mode Representation 

This refers to a mixture of modes of representation of a 

student response. As we mentioned earlier, to date we only 

deal with responses consisting of mixed textual and 

mathematical equations or symbols.   

 

3.2.4 Unconventional Textual Representation 

This, as mentioned earlier, refers to all kinds of “correct 

natural language” but unconventional e.g. foreign lexicon 

embedded in English and SMS abbreviations.  
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An engine test could belong to more than one Category. In 

the following section, we provide more details for the 

arguments of the engine tests as we progressed with them. 

Note that this is not a description on how c-rater
®
 was 

developed or what can or cannot do. The following is the 

progression of thoughts about building a regression test 

suite.  

 

3.3 c-rater® Test Suite: Stages, Methodology and 
Types of Engine Tests Built at Each Stage 
 
3.3.1 Stage 1 
The principle is simple: “we require a set of engine tests 
that will make sure that the decision of the 
concept-detector does not change from one version to 
another.” The method we followed also was simple. 
Select a few hundred pairs of <Positive_Evidence, 
Concept> from scored student responses across all items. 
Hence, the Positive_Evidence is either a complete 
response or part of a student response that entails the 
Concept. The engine tests in Stage 1 looked as follows: 
 

<Test_Id, Positive_Evidence, Concept, Human_Label, 

c-rater_ Label> 

 

where Human_Label is “Present” for all of our test cases. 

The testing condition was again simple “If Human_Label 

≠ c-rater_Label then Test_Id is flagged automatically” for 

a human’s attention. At this stage also, representation in 

the suite of morphological variations that do not modify 

the part-of-speech (POS) tags was made. 

 

3.3.2 Stage 2 

When Test_Id is flagged in Stage 1, the question was then: 

Did c-rater
®
 fail because we failed to take into account 

some linguistic phenomenon and if so, which one? Also, if 

we are concerned about doing the right thing then we ought 

to ask whether c-rater
®
 agrees with the human raters for the 

right reasons or is it just a guess, a mistake, etc. 

 
Basically, we ask questions about “coverage” just as is 

done in developing parsers and grammar-based test suites 

(Prasad and Sarkar, 2000):   

a) how many linguistic phenomena does the technology 

handle? And, b) How many responses in 

naturally-occurring student response corpora does the 

technology handle?  The method we followed was as 

follows: 

 

1. Select a syntactic phenomenon of interest (Category) 

2. Select a concept as given by the rubric of a test item or 

a positive evidence for that concept (Hypothesis) 

3. Select a naturally-occurring student response or part of 

a response (Text) such that Text entails Hypothesis  due 

to Category 

4. Add engine tests such that Text in <Text, Hypothesis, 

Category> considered in 1, 2 and 3 is injected 

manually with some variations where Injected_Text 

does not entail Hypothesis (Injected_Text is Text with 

the injected variations) 

 

In Stage 2, once the “Phenomenon” of interest is selected 

then either: 

      

a) It is already covered by the feature extractor and 

needs to be tested and in that case we use the 

feature extractor to guide us into finding the 

relevant student responses and a human rater just 

verifies them 

b) It is not covered by the feature extractor and in 

that case the human rater uses the output of the 

parser for some guidance in order to find the 

relevant student responses in our database   

Consequently, the engine tests looked as follows in Stage 

2, where Category is a syntactic phenomenon (including 

derivational morphology with a change of POS): 

 

<Test_Id, Text, Hypothesis, Human_Label, c-rater_ Label, 

Category> 

 

The engine tests under each category are further 

categorized, similarly to the ones found in de Paiva & 

Holloway King (2008) i.e. in order of processing 

complexity. Some examples follow. The Hypothesis is 

underlined for clarity. 

 

Type 1: Sanity Check Engine Tests 

These are entailments that look too trivial not to perform. 

However, one should emphasize, these are not as trivial as 

they look when dealing with noisy data. 

   

(1) <Test_Id1, “The animal is infected”, “The 

animal is infected”, Present, _, Identical> 

 

Type 2: Single Phenomenon Single Sentence Engine 

Tests  

These are engine tests where both the Hypothesis and the 

Text consist of single sentences and where the entailment is 

due to a single phenomenon. 

 

(2) <Test_Id2, “The bill should not be passed 

because psychologists do not have the training of 

medical doctors to know when drugs should and 

should not be prescribed, how different drugs 

work together, what types of side effects occur, 

and how to deal with these effects when they do 

occur.”, “Psychologists are not trained”, 

Present, _, Nom_to_Verb> 

 

where Nom_to_Verb denotes “nominalization to tensed 

clause” defined by Vanderwende et al. (2006). 

 

Type 3: Single Phenomenon Multi-Sentence Engine 

Tests 

These are engine tests where either the Hypothesis or the 

Text consists of multi-sentences and where the entailment 
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is due to a single phenomenon.  

 

(3) <Test_Id3, “The fish populations will proball 

decreas a lot. If they constantly have to breath 

likd that then it will over stress their body killing   

them”, “This will decrease the fish populations”, 

Present, _, Ergative> 

 

Type 4: Multi-Phenomena Single Sentence Engine Tests 

These are engine tests where an entailment is due to more 

than one phenomenon and both Text and Hypothesis are 

single sentences. Such an engine test will appear under 

more than one Category. 

 

(4) <Test_Id4,“The gasses make the fish fight for air 

and make the fish needs to breathe more fast to 

get more oxygen than before. ”, “The gas makes 

the fish need to breath faster to get more oxygen”, 

Present,_, Category> 

 

Ignoring that there is a need for spelling-correction, there is 

a need to at least a) recognize that gases and gas have the 

same lemma, b) distribute the conjunction so that “the 

gases make the fish …” and c) comparative use i.e. 

recognize that “more fast” and “faster” are the same.  

 

Type 5:  Multi-Phenomena Multi-Sentence Engine 

Tests 

These are tests where an entailment is due to more than one 

phenomenon and either Text or Hypothesis consists of 

multi-sentences.  

 

(5) <Test_Id5, “It is supposed to show that presient 

Johnson knows how to do the job and that he 

wants to fix the problems for the common worker 

and American. It also shows how Gladwater 

believes that draft si a waste and that people who 

join voluntarily join the military will be better 

then those who are forced to”, “Gladwater 

believes people should join the army 

voluntarily”, Present,_, Category> 

 

At least, the distributive property and the properties of 

dependent/relative clauses are at play in Test_Id5.  

 

Type 6: Manually-Injected Variations of Engine Tests 

As mentioned earlier, we also, manually, inject Text in 

some engine tests with some variations for their entailment 

to fail. These were devised purposely to avoid false 

positives. An example under the passives Category 

follows. 

 

(6) <Test_Id6,“The animal was infected by the 

doctor”, “The animal infects the doctor”, Absent, 

_, Passives> 

 

where the original Text is: “The doctor was infected by the 

animal”. 

 

336 engine tests were devised at this stage. The Hypotheses 

in all the tests were single sentences. However, we have 

considered an initial set of around 800 responses that the 

336 tests were selected from. 

 

3.3.3 Stage 3   

As textual entailment obviously is not due to syntactic 

phenomena only, at this stage one requirement was not only 

to extend the kinds of syntactic categories considered in 

Stage 2 but also to include “lexical semantics” categories 

and “semantics beyond lexicon” in the test suite. We also 

needed to start categorizing the negative evidence or why a 

Hypothesis is Refuted. Verifying whether one or more 

phenomenon is at play becomes a more daunting task. 

Consequently, another requirement was to have two human 

annotators instead of one as it was the case up until Stage 2. 

Furthermore, an additional requirement over Stage 2 

included another kind of semantics for a Category; one 

which deals with an unexpected output by any 

pre-processing tool or any of the NLP tools (e.g. the parser). 

Finally, we needed to automate parts of the process or make 

it less demanding for humans.  

 

A Category at this stage then can be a) one considered at 

Stage 2, b) a name of a tool/module X meaning 

“unexpected output of tool X”. X can be, e.g., pre-parser, 

parser, pronoun-resolver, feature-extractor, or 

concept-detector or c) an extended set of linguistic 

phenomena that we describe next. 

 

The phenomena for “Present” are divided into “Syntactic,” 

“Lexical,” and “Semantics beyond lexicon.” The syntactic 

categories include phenomena like “Passives,” “Ergative,” 

“Partitives,” “Possessives,” “Comparatives and Super- 

latives,” “Phrasal Verbs,” “Appositives,” “Dependent 

Clauses other than appositives,” “Interrogatives”, 

“Extraposition,” and “Adverb final and non final”. Some 

additional categories were driven by those in Vanderwende 

et al. (2006) like “Nominalization to Tensed Clause” and 

“Finite to Non-finite Constructions.” We also have a 

category “None of the syntactic categories above.”   

 

Lexical categories include phenomena like “Exact Lexical 

Overlap,” “Direct Synonymy Replacement” (not including 

compound synonymy), “Compound Synonymy,” “Lexical 

Inference,” and “Compounds_Other.” So far, there is only 

one category labeled “Semantics_Beyond_Lexicon.”   

 

Engine tests with Human_Label of “Refuted” are 

categorized to date into three categories: “Explicit 

Negation,” “Implicit Negation,” and “Contradictory 

Information (other than negation).”    

 

Engine tests with labels of “Absent” are not categorized.  

 

The selection of a certain category is often guided by the 

rubrics of a certain item. For example, if in a particular 

pilot we noticed that all items require some kind of 

proportional reasoning which translates into using some 
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sort of comparatives then concentration on “comparatives” 

takes priority.  

 

The engine tests have the following format at this stage: 

 

<Test_Id, Text, Hypothesis, Human_Label, c-rater_ Label, 

Category, List_of_Modules_Outputs> 

 

where List_of_Modules_Outputs is optionally displayed 

and consists of the list of these self-explanatory elements:  

 

[Text_after_Spelling_Correction,  

Hypothesis_after_Spelling_Correction, 

Text_Parser_Output, 

Hypothesis_Parser_Output, 

Text_Feature_Extractor_Output, 

Hypothesis_Feature_Extractor_Output, 

Text_Morphology_Module_Output, 

Hypothesis_Morphology_Module_Output, 

Concept_Detection_Module_Output] 

 

The method followed to generate the suite is: 

 

1. Build an annotation tool that gets fed 

automatically from the c-rater
®
 database to 

facilitate the work for a human rater. 

2. Extract automatically a random set of 1600 pairs 

of student responses and concepts or model 

responses from the c-rater
®
 database. No reason 

for selecting 1600 except that it is double the size 

considered when devising engine tests for fewer 

categories. Using only 1600, there is no guarantee 

there will be a balance in the representation of 

categories
4
 or the Human_Label. However, we 

have a large size of additional data in our database 

in order to reach a balance.  

3. Two humans are asked to annotate the engine 

tests. A human rater is to click one of three radio 

buttons to provide a Human_Label and click on 

one or more radio buttons where each button 

corresponds to a Category. If a Text is more than 

one sentence long then the annotator is provided 

first with <Sentence, Hypothesis> pairs for each 

sentence and then with <Text, Hypothesis> for 

annotation. An adjudicated annotation by a third 

human is used when there is a disagreement. 

When the three human raters cannot decide on a 

given engine test, it is discarded and replaced by 

another pair. 

We have so far completed tasks 1 and 2 above. Task 3 is 

still in progress but a training step towards it was 

completed. Two human raters were asked to label a random 

set of 330 engine tests without consulting each other and 

without selecting a Category. They disagreed on 107 

engine tests. A discussion followed this phase and the fact 

is: it is a non-trivial task particularly because the context of 

the item is not provided with the engine tests.  

                                                           
4
 Additional categories might be noted too. 

Figure 2. A snapshot of comparative results 

 

In addition, one human rater painstakingly looked at a 

random list of responses in c-rater’s database where the 

total scores generated by c-rater
®
 were different from the 

original human scores and annotated 120 engine tests for 

the Category meaning “tool X” mentioned earlier. In the 

following, we report some statistics corresponding to 

engine tests built at Stage 2 and in this last step of Stage 3.       

4. Score Report 

The test suite is used for regression testing i.e. the 

systematic diagnostic and comparative evaluation for 

c-rater’s performance. The task here is to maintain the 

consistency of c-rater
®
. When new additions or 

modifications are made to c-rater
®
, we automatically 

verify that earlier analyses have not been contradicted. 

Currently, any change to the agreement/disagreement 

between Human_Label and c-rater_Label from one 

version to another is flagged automatically and 

corresponding engine tests are displayed for a human to 

verify. The suite helps us identify missing phenomena, 

which phenomena c-rater
®
 fails to capture, and account 

for rare phenomena (similar to parsers’ evaluations).   

 

A web-based report is produced automatically when a new 

version of the system is built. Figure 2 shows a snapshot of 

the display when the results of the engine tests change.  

 

Only the Category where a change occurs is shown with a 

list of Test_Ids whose results have changed. In the figure, 

only one test has changed under each Category. The 

change can be seen in the values of the Failure column i.e. 

{YES, NO}. YES means c-rater_Label ≠ Human_Label 

and NO means they are the same. A human can click to see 

the engine test in details. The version numbers are 

displayed too (in the figure 7.1.25.1-1 and 7.1.25.2-1 are 

compared).              

 

Another use for the suite is benchmark performance 

evaluation for the same version of the system. The question 

here is for how many engine tests extracted from 

naturally-occurring corpora does c-rater
® 

(and potentially, 

all other similar technologies) produce a correct decision? 

This is evaluated in terms of agreement with a human rater. 

Some statistics like: quadratic kappa statistics, confusion 

matrices, precision and recall are produced automatically 

to represent this agreement
5
. 

 

                                                           
5
 Performance evaluation over the total scores of a set of 

approximately 350 benchmark items is also performed. 
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In total, we will report results on 456 engine tests. First, it 

is worth mentioning the following statistics for these tests:  

 

 Hypothesis Text 

Avg.  # Sentences per test 1.00   1.49 

Avg.  #Tokens per test 7.65 26.86 

Avg. #Tokens per test w/out 

end punctuation 

6.64 25.38 

Table 2 shows the results of agreement between c-rater and 

the human rater in terms of confusion matrices
6
 over some 

of the syntactic categories we have to date. The matrix 

represents: 

 

  c-rater 

  Absent Present 

Human Absent N1 N2 

Present N3 N4 

 

AdjVerbs denotes the verbs considered as adjectives like 

“infected”. We assume that the reader is familiar with the 

rest of the categories in the table.  

   
Table 2. c-rater_Label vs. Human_Label for Phenomenon  

Category #Tests #Failure Confusion Matrix 

AdjVerbs   14 0 0 0 

0 14 
 

Appositives   14 3 0 0 

3 11 
 

Comparatives   38 28 6 28 

0 4 
 

Dependent 

Clauses 

  73 28 3 6 

22 42 
 

Ergative 122 58 51 28 

30 13 
 

Nom_to_Verb     9 5 0 2 

3 4 
 

Distributive 

Property 

  22 8 2 0 

8 12 
 

Mixed-Mode     6 2 4 0 

2 0 
 

Negation     6 2 4 0 

2 0 
 

Partitives   11    3 2 1 

2 6 
 

Passives   21     3 2 1 

2 16 
 

Total 336 140 74 66 

74 122 
 

 

 
There are 140 engine tests labeled “Absent” by a Human 

and 196 labeled “Present”. c-rater fails to agree with the 

Human on 140 engine tests.  

                                                           
6 Though there is enough evidence that kappa statistics is the 

best measure to evaluate agreement with humans, kappa 

statistics are not meaningful for such a small size of engine tests 

built so far. Hence, we only display confusion matrices. 

Table 3 shows the results of agreement between c-rater and 

the human rater for some of the “tool X” categories. 

 
Table 3. c-rater_Label vs. Human_Label for “tool X” 

Category #Tests #Failure Confusion 

Matrix 

Concept-detector  71 10 21 2 

8 40 
 

Feature_Extractor  17   1 0 0 

1 16 
 

Pronoun_Resolver    2   2 0 0 

2 0 
 

Parser  27 12 1 1 

11 14 
 

Pre-Parser    3   1 1 0 

1 1 
 

Total  120 26 23 3 

23 71 
 

c-rater fails to agree with the human rater on 26 engine tests. 

When a larger size suite is built, agreement between 

humans and c-rater will be reported in terms of quadratic 

kappa statistics. 

5. Summary and Future Plans 

ETS is a leading organization in educational assessment. 

Automatic content scoring is a fast-growing application 

of NLP.  We have described a test suite that depends on 

the performance of c-rater.  This work is in progress and 

more results will be shared in the future. There are many 

questions to deal with e.g. how to automate further parts 

of the process as to make it less demanding to generate 

engine tests and if that was the case how does one ensure 

balance between “Absent”, “Present” and “Negated” 

under each category? 

 

In addition, a lot can be drawn from work done by the 

grammar development researchers and the FraCas 

categories to further our development and regression 

evaluation. We would like to look for opportunities where 

we can share the use of the annotation tool and the test 

suite
7
 as well as collaborate with other researchers so that 

we can collectively agree and progress can be tracked and 

compared.  We would like to foster collaboration among 

researchers and organizations that are specifically 

working on automatic content scoring. 

 

Furthermore, adequacy evaluation is important,  

i.e., clients should be able to compare available 

technologies and decide which technology is best for their 

purposes or add value to their practice. For example, 

teachers at schools may want to verify how adequate a 

technology is to score and provide feedback on students’ 

homework. Hence, we need to look into ways to allow a 

client to perform such an evaluation.   

                                                           
7
 As long as neither the items nor the context of the items are 

shared without the permission of the assessment programs at 

ETS.  
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