
Resource Creation for Training and Testing of Transliteration Systems for

Indian Languages

Sowmya V.B.

*
, Monojit Choudhury

*
, Kalika Bali

*
, Tirthankar Dasgupta, Anupam Basu

*
Microsoft Research Lab India, Bangalore, India

Society for Natural language Technology Research, Kolkata, India

E-mail: {t-sowmyv, monojitc, kalikab}@microsoft.com, {iamtirthankar, anupambas}@gmail.com

Abstract

Machine transliteration is used in a number of NLP applications ranging from machine translation and information retrieval to input
mechanisms for non-roman scripts. Many popular Input Method Editors for Indian languages, like Baraha, Akshara, Quillpad etc,
use back-transliteration as a mechanism to allow users to input text in a number of Indian language. The lack of a standard dataset to
evaluate these systems makes it difficult to make any meaningful comparisons of their relative accuracies. In this paper, we describe
the methodology for the creation of a dataset of ~2500 transliterated sentence pairs each in Bangla, Hindi and Telugu. The data was
collected across three different modes from a total of 60 users. We believe that this dataset will prove useful not only for the
evaluation and training of back-transliteration systems but also help in the linguistic analysis of the process of transliterating Indian
languages from native scripts to Roman.

1. Introduction

Transliteration refers to the process of writing the text of

one language using the script of another language

whereby the sound of the text is preserved as far as

possible (Knight and Graehl, 1998). Transliteration can

be classified into two types: forward and backward.

Forward transliteration refers to the process of

representation of a word (in our context, Indian language

word) using a non-native script (in this case, Roman

script). For example, Roman string “Sachin” might be

generated by forward transliteration from the original

Hindi word “सचिन" which is in the Devanagari script.

Back transliteration, on the other hand, is the reverse

process whereby one can obtain the native script

representation back from the transliterated word. Thus,

backward transliteration will generate the Devanagari

string “सचिन" from the Roman string “Sachin”.

Automatic transliteration is useful in various NLP

applications including monolingual and cross-lingual

Information Retrieval and Machine Translation. Apart

from these, back transliteration in particular can also be

employed as a mechanism for text input especially for

non-roman scripts. Transliteration as a mechanism for

text input has also been discussed in (Sandeva et al,

2008) for Sinhalese and (Ehara and Kumiko, 2008) for

multi lingual text entry. It has also been used for other

applications like identifying cross-lingual spelling

variations in names (Scott McCarley, 2009) and named

entity recognition (Animesh et al, 2008). We observe

that Roman transliterations of Indian language text are

very common on the web especially in blogs, instant

messaging and emails. The absence of standard

keyboards for Indian languages, difficulty in learning

existing keyboards, coupled with the familiarity with

QWERTY keyboard, Roman script and English language

for most of the Indian internet users, make the use of

Roman transliterations of Indian languages fairly

widespread.

While the study of transliteration of native words into

Roman is linguistically interesting and useful in

understanding the correspondence between the two

scripts, this is also important for building forward and

backward transliteration engines between Indian

languages and English. Among other applications, a

back-transliteration system from English to Indian

languages can also be used as an Indian language input

mechanism. In fact, to this end, there have been several

back-transliteration systems for Indian languages. Some

of them are used as desktop Input Method Editors

(IMEs), like Baraha
1
 while others are used as web

applications, like Google Indic Transliterate
2
 (currently

supports 11 Indian languages), Quillpad
3
 (currently

supports 10 Indian languages). Microsoft Indic Language

Input Tool
4
 (currently available in 10 languages)

provides both a desktop as well as a web-based version

of transliteration based IME. All these systems follow

different approaches to perform back-transliteration but

without a standard dataset it is difficult to evaluate these

systems on common grounds to make any meaningful

comparisons.

The recently conducted NEWS workshop (Li et al, 2009)

hosted a shared task of transliteration of named entities

for eight language pairs, including three Indian

languages namely Hindi, Tamil and Kannada. The

dataset prepared for this task was restricted to named

entities of various origins on either side, and therefore, is

not exclusively designed and neither is it appropriate for

1 www.baraha.com
2 http://www.google.com/transliterate/indic
3 http://quillpad.com/
4
 http://specials.msn.co.in/ilit/

2902

http://www.google.com/transliterate/indic
http://quillpad.com/
http://specials.msn.co.in/ilit/

training and evaluation of back transliteration systems,

especially the Roman script based input mechanisms for

Indian languages.

In this paper, we describe the creation and some initial

analysis of a dataset of Indian language words

transliterated into English words. Through various user

experiments, we have created about 2500 pairs of

transliterated sentences, totalling to approximately

25,000 words, in each of the three languages – Bangla,

Hindi and Telugu. We believe that this dataset is useful

for the linguistic study of the process of transliteration of

native words from Indian languages to Roman script, and

evaluation as well as training of back transliteration

systems.

The rest of this paper is organized as follows: Section 2

explains our methodology for data collection and

transcription. Section 3 presents an initial analysis of the

data for all the three languages. Section 4 concludes the

paper indicating future directions.

2. Methodology

We chose three languages – Bangla, Hindi and Telugu

for the data collection process, primarily to study the

effect of linguistic typology on the transliteration

process. Bangla and Hindi belong to the Indo-Aryan

family, while Telugu is a Dravidian language. Telugu is a

highly agglutinative language, whereas Hindi is

inflectional in nature. In terms of the extent of

agglutination, Bangla falls somewhere in the middle. We

also note that Hindi, Bangla and Telugu are amongst the

largest Indian languages, having approximately 325

million, 196 million, and 74 million speakers

respectively.
5

The three sets of experiments conducted for each of

these languages to collect transliteration data under

natural settings are described in the following sections.

2.1 Mode of collection

The objective of the experiment was to collect natural

Roman transliterations of Indian language sentences such

as “anand shatranj tournament jeet
liya” and then pair them up with the underlying

original Hindi, Bangla and Telugu sentences, such as

“आनॊद शतरॊज टोननमेंट जीत लऱया ” for Hindi. It was

essential to obtain the most natural manner in which the

user transliterated their language as we wanted to

account for the variations across users as well as valid

variations for the same user. A number of ascii-

transliteration schemes such as ITRANS
6
 and Baraha are

available for Indian languages, and in the collection of

this dataset it was necessary to ensure that the users did

5
http://en.wikipedia.org/wiki/List_of_languages_by_num

ber_of_native_speakers
6
 http://www.aczoom.com/itrans/

not follow any such pre-decided scheme. As described

below, we have obtained the user transliterated data

under controlled and uncontrolled settings.

In the controlled setting, the text that the user enters is
decided a priori and user does not have control over the
choice of vocabulary. This mode has been chosen to
ensure language coverage, i.e., covering as many vowel
and consonant combinations as possible. Data was
collected by performing a dictation experiment, where
users were given some speech files with Indian language
sentences and were asked to listen and transcribe these
sentences in Roman script. This process was adopted
instead of “look and type” interface, to avoid the
influence of the native spelling of the word that the
visual presence of the original word might have on the
transliteration. This ensured that the users used the
transliteration scheme that came to them most naturally.

In the uncontrolled setting, the users were allowed to

construct sentences of their own choice under two

different modes: scenario and chat. While the scenario

mode mimics blogging and emailing, the chat mode was

designed to collect chat data. One major difference

between these two modes is that while in the former the

user has the luxury to read and edit his/her input, in the

latter, the pressure to communicate in real time leaves no

room for intensive editing.

In the scenario writing task, the users were asked to

choose from a set of scenarios and write around 100

words each on any two of them using Roman script. The

topics ranged from popular movies to current news

items. In the chat with the user task, the users were asked

to chat with a researcher, in their native language, using

Roman script. These were general informal chat sessions

on topics like the weather, the plan of the day, likes-

dislikes of the users etc., which lasted for about ten

minutes. Around 75 words per user were collected in this

manner.

2.2 Dataset Preparation

For the controlled setting experiment, a set of 550

sentences were collected for each language from various

sources ranging from news corpus to blogs and other

web content. We ensured that the selected sentences

covered as many of the valid letter-letter combinations

for that particular language as possible. The chosen

sentences were recorded by native speakers of the

language. In all the three languages, every user was

given 75 sentences for transcription. Of these, 50

sentences were common to all users and 25 were unique

to a given user. This division was made such that the

common sentences could be used for studying spelling

variation patterns for a given word across individuals,

while the unique sentences ensured coverage across the

entire set of users.

2.3 User Selection

We have collected data from 18-20 users for each

language. The users chosen were native speakers of the

2903

http://en.wikipedia.org/wiki/List_of_languages_by_number_of_native_speakers
http://en.wikipedia.org/wiki/List_of_languages_by_number_of_native_speakers
http://www.aczoom.com/itrans/

language, who use Roman script to type in Indian

languages regularly for chatting, mailing etc. In India,

Hindi is spoken and used quite frequently as a lingua

franca by speakers of other Indian languages. Thus, for

the Hindi experiments, in addition to native speakers,

users with near-native like competence were chosen from

other of regions and language groups of India.

2.4 Transcriptions

The collected user data needed to be back-transliterated
into the respective Indian language scripts. This was
done manually. The transcribers were instructed to mark
instances of code-mixing and numerals. The transcribed
unicode data was collected and aligned word by word
with the users’ Roman script data in a semi automatic
process. This process involved checking the number of
words in each sentence pair from users and transcribers.
The cases of mismatch were understood as non-aligned
and they were aligned manually by means of a simple
user-interface.

3. Data Analysis

Table 1 describes the size of the dataset in terms of
number of words.

We have collected various statistics on patterns of word
and letter usage in the collected data. However, for
paucity of space, here we report only two major
observations: spelling variations in the Roman
transliterations and the extent of code mixing, that is, the
usage of English words within an Indian language text.

Mode of data
collection

Bangla

Hindi Telugu

Dictation (common) 6427 12934 13360

Dictation (unique) 4016 6592 6030

Scenario Data 3377 4044 4279

Chat Data 2648 2698 2276

Total 16468 26268 25945

Table 1: Size of the collected datasets (in words)

3.1 Spelling Variations

The data was analyzed for possible spelling variations
during transliteration. We observed that for all the
languages a large proportion of the words had only one
spelling. However, there were also a number of words
with a large number of variations.

Figure 1 compares the number of observed variations of
a word (x-axis) plotted on a logarithmic scale with
number of words found to have that many variations (y-
axis). The trend is very similar across the three
languages: we observe that most of the words exhibit
very few spelling variations, whereas only very few
words have a large number of variants (as large as 20) in
the dataset. One reason behind this observation is the
frequency distribution of the words themselves. A
corollary of the Zipf’s law says that frequency of a word
is inversely proportionate to the number words having

that frequency raised to certain positive power. In other
words, there are few words with very high frequency and
large number of words with one or two occurrences in
the corpus. If we assume that the probability of
observing a new spelling variation is almost fixed for
every new occurrence of that word encountered in the
corpus, then it implies that the number of variants of
high frequency words will be large, whereas that of the
low frequency words will be fewer. Since high (low)
frequency words are rarer (abundant), so words with
large (fewer) number of variations are also rarer
(abundant).

 Although this explanation holds to a good extent, apart
from frequency, there are several other factors that
determine the number of variants of a word. For
instance, it is possible as well as typical to represent
vowels and especially diphthongs using various Roman
letter sequences. On the other hand, usually there are
one-to-one mapping between the scripts for consonants.
Therefore, the actual character sequence of a word also
plays a significant role in determining the number of
observed variants. This fact is illustrated in Table 2,
which shows some sample words and their variations.
Indeed, it clearly shows that two of the common reasons
for spelling variations are:

 Ambiguity in vowel representation (like राज
being written raja, raaja)

 Aspirated consonants (like ప్రభుత్వం being
written as prabhutvam, prabutvam,
prabhuthvam etc.)

These variations are not surprising as in the process of
transliteration, a user is trying to map a large character
set of Indian languages (more than 50 graphemes) to a
relatively smaller set of English alphabet (26 letters).
Further, certain conventions are region specific, for
example, the aspiration in consonants in the Northern
part of the country (or for speakers of Indo-Aryan
languages) is represented by the addition of “h” to the
consonant. Thus, the character for aspirated voiceless
dental plosive “थ” in Hindi is mainly transliterated as
“th”. In the Southern part of the country (or for speakers
of Dravidian languages), “h” is mainly used to indicate
“dental” place of articulation, rather than aspiration. It is
beyond the scope of this paper to go into the details of
the linguistic basis of such conventions.

3.2 Code Mixing

Code-mixing, or the interspersing of English words in

Indian language, is frequently observed in chat, blog and

email texts. From the data, we studied the extent of code

mixing across users in all the languages. Consider the

Hindi sentence: यह क्रिकेट ब ाऱ है (Translation: This is a

cricket ball). A possible transliteration for this sentence

is: “yaha kriket ball hai”. In this example,

यह and है are Indian origin words. On the other hand,

क्रिकेट (cricket) and ब ाऱ (ball) are of English origin.

Therefore, somebody could potentially type in the

English spellings of these words instead of transliterating

them. In the example at hand, clearly kriket has been

transliterated, whereas in ball, the original spelling has

2904

been retained. We consider the latter as a genuine case of

code-mixing, while both of them as a potential case of

code mixing.

Figure 2 and Figure 3 show the cumulative distribution

across users of the percentage of genuine code-mixing

and ratio of genuine to potential cases of code-mixing

respectively. The x-axes of the plots show the percentage

of code-mixing, while the y-axes show the number of

subjects who were observed to have a code-mixing

propensity smaller than or equal to a specific percentage.

From Figure 2 we observe that all the users for Bangla,

Hindi and Telugu have respectively exhibited at most

8%, 11% and 12% genuine code-mixing. However, only

very few subjects actually show this high propensity. A

lot of users (13 for Bangla, 15 for Hindi and 16 for

Telugu) actually show less than 6% genuine code-

mixing.

Figure 3 has to be interpreted in a similar fashion, except

for the fact that here x-axis represent the percentage of

genuine-to-potential cases of code-mixing. It is

interesting to note that around 10 users for Hindi and 2

for Telugu had 100% genuine-to-potential code-mixing.

This means that lot of users for these languages type the

actual English spelling whenever there is a scope for

doing so.

From this analysis of code-mixing across languages, we
have made the following observations:

1. Chat data had more cases of genuine code mixing
compared to scenario data – across all languages.
This can imply that people tend to perform more
code mixing during conversations than otherwise.

2. The extent of genuine code-mixing across users
have a similar trend for all the languages, though on
an average, Telugu and Bangla users had more code-
mixing compared to Hindi users.

3. On the other hand, the ratio of genuine to potential
code-mixing is less than 50% for a considerable
number of Bangla users. This indicates that there is a
high tendency for Bangla users to type in non-
English sound-based spellings for English words.

4. Conclusion

In this paper, we have described the creation of a dataset

for Indian language transliteration data for Bangla, Hindi

and Telugu, which we believe will be useful in

developing and evaluation of Roman script based input

mechanisms for Indian languages, and also, in general,

Indian language to English transliteration systems. We

believe that our methodology though designed for Indian

languages, is generally applicable to the collection of any

transliterated data where it is essential to obtain data in

natural form to ensure coverage and user-variation. It is

possible that the methodology may prove useful for other

domains of data-collection, like spoken language data

and transcriptions.

An initial analysis of the data collected across the

languages indicates that there are specific linguistic and

socio-linguistic phenomena that need to be dealt with to

account for variation across users. It is essential for any

transliteration based system, especially IMEs, to take

care of variations in spellings for higher accuracies and

wider applicability.

Currently we are collecting similar data for two more

Indian languages – Tamil and Kannada. We are also

studying the characteristics of the dataset and working on

understanding the effects of various features on the user

data.

5. References

Ehara, Y.,Tanaka-Ishii, K. (2008). Multilingual text entry

using automatic language detection. In Proceedings of

IJCNLP 2008, pp. 441 – 448.

Goonetilleke, S., Hayashi, Y., Itoh,Y., Kishino, F.

(2008). SriShell Primo: A Predictive Sinhala Text

Input System. In Proceedings of IJCNLP 2008

workshop on NLP for less privileged languages. pp.

43 – 50.

Knight, K. and Graehl J. (1998). Machine

Transliteration. Computational Linguistics, 24(4), pp.

599 – 612.

Li, H., Kumaran, A., Zhang, M., Pervouchine, V. (2009).

Report of NEWS 2009 Machine Transliteration

Shared Task. In Proceedings of ACL-IJCNLP 2009

Named Entities Workshop. pp. 1 – 18.

McCarley, J.S. (2009), Cross language name matching.

In Proceedings of ACM-SIGIR 2009, pp. 660 – 661.

Nayan, A., Rao, B.R.K., Singh, P., Sanyal, S., Sanyal, R.

(2008). Named Entity Recognition for Indian

Languages. In Proceedings of IJCNLP 2008 workshop

on NER for South and South-East Asian languages.

pp. 97 – 103.

2905

Word Pronunciation
(in IPA)

Variations Example Variations

Bangla

নিজস্ব niʤoʃʃo 14 nijosho;nijoso;nijoshwa;nijoswo;nijoshsho;nijoshyo;nijoswa;

ধিাঢ্য dhɔnaddho 17 dhonadhoi;dhanadhya;dhonyadhyo;dhonadyo;dhannaddho;

অভ্যযস obbheʃ 20 ovesh;obbhes;abhyash;abhyesh;abhyes;abhyas;avyas;obbhesh;

সহ্য ʃoʤʤho 13 sojho;sahya;sojhyo;sojjho;sojhjho;sajhya;shojjo;sajya;

হ্ওয়ার hɔoar 11 hoyar;haoar;hoar;hayoar;houar;howar;hoyoar;

Hindi

राजस्व raʤǝsvǝ 16 rajasva;raajasav; rajaswa;rajsva; rajsv;raajasva;raajaswa;

बढ़ोत्तरी bǝɽhotrI 15 badhotri; bhadhotri;badotri;badhottree;badothri;badhottari;

गाॉव gãv 13 gaaw;gaon;gav;gaanv;gaaon; gaav;gaun;gaao;

इकाइयों ikaijõ 12 ikaayio;ikaaiyon;ekaiyon;ekaion;ikaiyon; ikaiyo;ikayiyo;ikayiyon

Telugu

ప్రభుత్వం prǝbhutvǝm 8 prabhutvam;prabhuthvam;prabhuthavam;prbhutvam; prabutvam;

నిర్ణయంచార్ు nirŋǝiɲʧaru 7 nirnayinchaaru;nirnyincharu;nirnayinchaaaru;nirnayimcharu;

ఉన్ాాయ unnaji 10 unnayi;unnai;vunnayi;vunnavi;unnay;

అయతే aite 10 ayithe;aite;ite;ayite;ayyite;aithe;aaite;

త్ర్ువాత్ tǝruvata 9 taruvaata;taaruvaata;tarvata;taruvata;taruvatha;

Table 2: Spelling variations across languages

Figure 1: Number of words Vs Number of variations

2906

Figure 2: Cumulative Distribution of the % of genuine code-mixing across users

Figure 3: Cumulative Distribution of the ratio of genuine to potential code-mixing

2907

