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Abstract 

We developed a search tool for ngrams extracted from a very large corpus (the current system uses the entire Wikipedia, which has 
1.7 billion tokens). The tool supports queries with an arbitrary number of wildcards and/or specification by a combination of token, 
POS, chunk (such as NP, VP, PP) and Named Entity (NE). It outputs the matched ngrams with their frequencies as well as all the 
contexts (i.e. sentences, KWIC lists and document ID information) where the matched ngrams occur in the corpus. It takes a fraction 
of a second for a search on a single CPU Linux-PC (1GB memory and 500GB disk) environment. 
 

 

1. Introduction 
We developed a search tool for ngrams extracted from a 
very large corpus (the current system uses the entire 
Wikipedia, which has 1.7 billion tokens). The tool 
supports queries with an arbitrary number of wildcards 
and/or specification by a combination of token, POS, 
chunk (such as NP, VP, PP) and Named Entity (NE). It 
outputs the matched ngrams with their frequencies as 
well as all the contexts (i.e. sentences, KWIC lists and 
document ID information) where the matched ngrams 
occur in the corpus. It takes a fraction of a second for a 
search on a single CPU Linux-PC (1GB memory and 
500GB disk) environment.  
This system is an extension of the previously published 
ngram search engine system (Sekine 08). The previous 
system can only handle tokens and unrestricted 
wildcards in the query, such as “* was established in *”. 
However, being able to constrain the wildcards by POS, 
chunk or NE is quite useful to filter out noise. For 
example, the new system can search for 
“NE=COMPANY was established in POS=CD”. This 
finer specification reduces the number of outputs to less 
than half and avoids the ngrams which have a comma or 
a common noun at the first position or location 
in-formation at the last position. 
The new system can output information on the 
documents from which the matching ngrams are 
extracted. In the current system, which uses the 
Wikipedia, the document information is the title of the 
Wikipedia page. For example, we can often find the 
person name in the title for the matched ngram for “He 
was born in *”. Also, it is useful to have a back pointer 
to the entire article containing the matched ngrams to see 
the wider contexts. 
The structure of the index is completely changed from 
the trie structure of the earlier system to an inverted 
index structure combined with an additional checking 
mechanism. The index size has been reduced greatly, 

from 2.4TB to 500GB, with a minor sacrifice in search 
speed. 
 

2. Background 
Large-scale linguistic knowledge discovery is needed to 
support semantic analysis for NLP applications. This is 
the so-called “knowledge bottleneck” problem and many 
researchers have tried to solve the problem using 
statistical methods on a large corpus (Hearst 92) (Collins 
and Singer 99) (Brin 99) (Hasegawa et al. 04). For 
example, a lexico-syntactic pattern, like “NP such as NP” 
can extract hyponym relationships (Hearst 92), and 
contexts between two named entities can indicate a 
relationship between those names (Hasegawa et al. 04). 
Now, one of the major problems is the search. We need a 
capability for searching for patterns in a large corpus 
which is both fast and as flexible as possible. One of the 
solutions is to segment the entire corpus into small 
pieces and assign a CPU to each segment to search for 
the pattern, and gather the results in a map/reduce 
paradigm. However, this approach requires a very large 
number of machines, which is not affordable for many 
academic researchers. 
Another solution to the problem is to use available 
search programs, such as Lucene. However, we need 
flexibility, for example, we need the capability to exactly 
match a query ngram with wildcards, and the capability 
to provide additional information, such as POS, chunk 
and/or NE. We found that it is possible to modify Lucene 
in order to achieve our goal, but we concluded that it was 
necessary to develop our own search system in order to 
allow for future extensions. 
Resnik’s system (Resnik 03) has similar functionalities 
to the functionalities provided in this system, but we 
believe we have improved on it in terms of scalability 
and speed. The demo and the project web page are no 
longer available. 
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Figure 1. Query page 

 
 

 
Figure 2. Output Page (ngram) 

 
 
 
 
 
 
 

 
 
 

 

 
Figure 3. Output Page (KWIC with Doc ID) 
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3. Snapshot 
The Figures 1, 2 and 3 show a snapshot of the system. 
Figure 1 is the query page. Figure 2 is the output page of 
ngram output and Figure 3 is the output page of KWIC 
output with document ID (i.e. Wikipedia entry title). 
 In the query page (Figure 1), the user types the query 
ngram with tokens, POS’s, chunk or NE information up 
to 7gram. The user can also specify the number of 
outputs, the frequency threshold (the minimum 
frequency to be displayed), the output style (sentence, 
KWIC or ngram), the output type (token, POS, chunk, 
NE and/or document information in case of sentence or 
KWIC output) and the print format (in text or table). The 
output will be displayed according to the specifications. 
 

4. Data and Search Algorithm 

4.1 Data 
 
We used Wikipedia as the target corpus in the current 
system. Google Ngram can also be used, but because it 
doesn’t contain the original sentences, we chose 
Wikipedia and create ngram data out of it by ourselves in 
order to show the original data from where the ngrams 
are extracted. It is static html documents of Wikipedia as 
of 18:12, June 8, 2008 version, provided at the following 
URL http://static.wikipedia.org/downloads/2008-06/en/. 
It has 1.7 billion tokens, 200 million sentences and 2.4 
million articles. The sentences were tagged by the 
Stanford POS tagger and NE tagger (Stanford tagger), 
and assigned chunks by the OAK system (OAK system). 
The same data (actually, the current data available at the 
site has more annotations than the data explained here) 

 
 

is available at the following URL:  
    http://nlp.cs.nyu.edu/wikipedia-data. 
 
The numbers of distinct ngrams are shown in Table 1. 
The numbers are comparable to the Google ngram data, 
as we have no frequency threshold. We made up to 
7grams instead of 5grams in Google ngram. We did not 
collapse the digits unlike Google Ngram data. 
 

Table 1. Number of distinct ngrams 
N Wikipedia 

ngrams 
Google 
ngram 

1 8M 13M 
2 93M 315M 
3 377M 977M 
4 733M 1,314M 
5 1,006M 1.176M 
6 1,173M - 
7 1,266M - 
# 0 30 

     #: frequency threshold 
 

4.2 Algorithm Overview 
 
Figure 3 shows the overview of the steps in the ngram 
search engine and the data. Basically, there are three 
steps in the search, 1) searching candidates, where the 
system search candidate ngrams which matches to the 
query using tokens, 2) filtering, where the candidate 
ngrams are filtered using the constraint of additional 
information (POS, chunk and NE), and 3) displaying the 
results to the user. In the following subsections, we will 
describe each step and data in detail. 
 

1. Search 
candidates 

2. Filtering 
3. Display 

Wikipedia text 

Wikipedia 
POS, chunk, NE 

N-gram data 

Inverted index  
for n-gram data 

Suffix array 
for text 

POS, chunk, NE 
for 

N-gram data 

Search 
request 

Figure 3.  Data and Algorithm Overview 
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4.3 Search Candidate 
 
Searching candidates is the first step in the search. It tries 
to make a list of matched ngrams using an inverted index 
for the tokens given in the query. Because of this, the 
query needs to have at least one token. Inverted index is 
a standard technique to search items. In our case, the 
inverted index is created for tokens at each position of all 
length of ngrams (note that we have unigram to 7gram in 
the data). The inverted index essentially contains a set of 
ngramIDs that have a certain token at a certain location 
of certain length of ngram. Because the number of 
ngrams for each index are varid (from 55 million which 
is the number of “,” at a certain position, to the number 
of very infrequent (e.g. singleton) tokens, such as 
“Mizuk” or “consiety”. In order to save time and disk 
space, we used three types of posting list (inverted index 
for tokens) implementations; bitmap, list of ngram IDs 
and encoding into pointer in the case of singletons.  
The bit map technique is used only those whose 
frequency is more than 1% of all the ngrams. For 
example, the number of distinct 7grams is 1.27 billions, 
tokens whose frequencies are more than 12.7 million use 
this strategy. Because of the implementation time 
limitation, we did not use any compression technique. 
We used 1.27 billion bits in case of 7gram, and the bit 
corresponding to a certain ngramID is on (1), if the 
ngram has the token at the certain position. Looking up 
the information is very fast, despite the length of the 
inverted index for the token.  
If the frequency of the token is one (singleton), we put 
the information in the area of pointer by setting up the 
top bit on (Note that the maximum number of ngram, 
1.27 billions can be expressed by 31 bits).  
Otherwise, we use a list. Because the list can be created 
in advance, we can use the static list, instead of dynamic 
link list which needs more space.  
When there are more than two tokens in the query, we 
have to match the lists. Matching two lists of length n 
and m can be implemented in min(O(n+m), O(n log(m)), 
O(m log(n))). Unless n or m is very small, we need to 
use the matching algorithm by looking at the list 
sequentially in time O(n+m), which is not very fast even 
we can sort the index in advance. In order to speed up 
the index matching, we implemented “look ahead” 
algorithm (Moffat and Zobel 96). Once we find a match, 
we skip some of the elements in the list and jump to the 
element at a certain distance. If the new element found 
by jumping is still smaller than the element we are 
currently looking for, we can earn the time of looking the 
skipped elements. If the jumped element is bigger than 
the one we are looking for, we will go back to the 
original position and searching continues from the next 
element. It wastes only one look up. Based on the 
algorithm, it is empirically most efficient to look ahead 
the square root of the index size when you advance the 
pointer at the index matching. 
 

4.4 Filtering 
 
The second step, filtering, is needed to match the ngram 
to the requested POS, chunk and/or NE information. If 
we implement all those information for each ngram using 
one byte each, we need 21 extra bytes in case of 7gram. 
It results in 27GB. So, we encoded the information by 
combining the information from the individual tokens of 
each ngram. For example, for 7grams, the POS 
information for the 7 tokens takes 7 bytes, if we record 
the POS information for a single token in 1 byte. 
However, the actual number of combinations of 7 POS’s 
is not that large, because there are many ngrams that 
have the same POS patterns. For example, the number of 
POS pattern for 7gram is 125 million and the number of 
POS patterns for 3gram is 61 thousand, which can be 
encoded in less than 4 bytes, yielding a large reduction in 
disk size (in total 200MB) . 
We check if the candidate ngram can match the query by 
finding the POS, chunk or NE information satisfy the 
query, if such information is requested. 
 

4.5 Display 
 
The third step, display, is done once the ngrams to be 
displayed are found. The use can specify the following 
information in addition to the ngram query. 
 
! Number of output (default 1000) 
! Frequency threshold (default 3) 
! Output style: sentence, KWIC or Ngram 
! Output type: token, POS, chunk, NE, DocID  
     User can specify multiple types 
     DocID can work only for sentence and KWIC 
! Print format: text, table (html-table) 
 
Display will be done according to the choice of those 
options. 
 
The ngrams is sorted in the order of frequency in 
advance so that it can easily display the ngrams in the 
order of frequency. The suffix array is used to display 
the sentence and KWIC list quickly. Each ngram has 
information of the starting position and ending position 
in the suffix array it matches, so it can find the matched 
sentences very quickly. The POS, chunk and NE 
information is stored in parallel to the text information so 
that it can be displayed quickly when it is requested. 
Document information, including the title of the 
document (in our case the title of Wikipedia page) is 
displayed using the offset information in the text. 
 

4.6 Data Size 
 
We use 6 kinds of data as shown in Figure 6. Inverted 
index is used in the candidate search and its size is 
108GB. It contains bit map index and list index. The 
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ngram data, including the token information and the 
position in the suffix array is 260GB. It is POS, chunk 
and NE information for unigram to 7gram, which is used 
in the filtering, is 100GB. As is explained in section 4.4, 
the information is compressed. The size of suffix array 
and text data is 8GB each (as each token and pointer is 
encoded in 4 bytes and the total text is 1.7 billion) and 
the size of POS, chunk and NE information is 2GB each 
(as each information is encoded in 1 byte). The size of 
other information, such as document information, 
dictionary information, POS, chunk and NE label 
information etc, is 40GB. So, the total data size of the 
system is about 500GB. We understand the size can be 
reduced easily without a big loss of the speed and 
usability. 

 
Figure 4. Data size 

 

5. Evaluation and Demo System 
In order to evaluate the accuracy and the speed of the 
system, we created 600 sample queries and test the 
system. The samples are extracted from existing ngrams, 
replacing zero to two tokens by wildcards, POS, chunk 
or NE randomly and seeing if the original ngram is 
included in the searched results. Note that it is possible 
to include extra ngrams because of generalization, but it 
should not be judged as error. The system runs without 
any incorrect output and the average runtime for each 
query was 0.34 second. The demo system is avail-able at 
the following URL. We have already received requests 
to index different corpora (including Open American 
National Corpus). 
 
Demo URL:  http://nlp.cs.nyu.edu/nsearch. 
 

6. Future Work 
The future work includes the following: 
 
1. Including other information 
We are planning to implement a search engine using 
structured data, such as dependency or parse. For 

example, “tgrep” in Penn Treebank provides this 
functionality, but we believe our implementation can 
improve the scalability and the search speed. 
 
2. Longer ngrams 
Our current implementation can be extended to longer 
ngram search, compared to the previous implementation 
using trie structure. The longer queries are desirable for 
semantic knowledge discovery. 
 
3. Smaller index 
We have observed that the index can be reduced without 
great loss of speed. For example, the bitmap 
implementation is can be compressed by a standard 
compression technique, but also ngram data and other 
data can be candidates of more compression. 
 
4. Reduce the indexing requirements 
The current index creation needs a machine with a large 
memory. We used a machine with 96GB memory. This 
is not desirable if people want to use this search engine 
on many different corpora. We would like to find method 
for indexing in smaller memory machine. 
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