
A Use Case for Controlled Languages as Interfaces to Semantic Web
Applications

Pradeep Dantuluri, Brian Davis, Siegfried Handschuh

Digital Enterprise Research Institute
National University of Ireland Galway

pradeep.varma, brian.davis, siegfried.handschuh@deri.org

Abstract
Although the Semantic web is steadily gaining in popularity, it remains a mystery to a large percentage of Internet users. This can be
attributed to the complexity of the technologies that form its core. Creating intuitive interfaces which completely abstract the technologies
underneath, is one way to solve this problem. A contrasting approach is to ease the user into understanding the technologies. We propose
a solution which anchors on using controlled languages as interfaces to semantic web applications. This paper describes one such
approach for the domain of meeting minutes, status reports and other project specific documents. A controlled language is developed
along with an ontology to handle semi-automatic knowledge extraction. The contributions of this paper include an ontology designed
for the domain of meeting minutes and status reports, and a controlled language grammar tailored for the above domain to perform
the semi-automatic knowledge acquisition and generate RDF triples. This paper also describes two grammar prototypes, which were
developed and evaluated prior to the development of the final grammar, as well as the Link grammar, which was the grammar formalism
of choice.

1. Introduction
The Semantic web1 aims to simplify the process of building
knowledge-based applications by enabling a web of inter-
operable and machine-readable data. This is done by for-
malizing the descriptions of the structure and semantics of
the data available on the web. The linked data initiative2

is a positive step in that direction, exposing huge amounts
of data for further analysis and use by other applications.
However creating and exposing linked data is a task that
requires thorough knowledge of various technologies. A
solution to this is to create technologies which would en-
able the average internet user to annotate and embedd data
in his/her own textual resources. This paper aims to ex-
plore the possibility of using controlled natural languages
(hereby referred to as CNL) as an interface to semantic web
applications, specifically targeting the domain of project
documents like meeting minutes, status reports, etc. The
major goal was to enable novice users to author and anno-
tate text documents using a controlled language. Further-
more, these documents can be parsed to extract the implicit
knowledge contained, due to the enforcement of a fixed
grammar and vocabulary. The authors have previously used
this approach to build an annotation tool along with proto-
types of the grammar and ontologies for the meeting min-
utes domain (Davis et al., 2009).
CLANN (Controlled Language for ANNotation)3 builds on
the experiences gained from the previous work, by incorpo-
rating redesigned versions of the grammar and the domain
ontology. CLANN is designed to be an end-to-end seman-
tic web application complete with a domain ontology, a per-
sistent layer based on RDF4 and a user interface for editing

1http://www.w3.org/2001/sw/
2http://linkeddata.org/
3In this document CLANN refers to the annotation platform as

well as controlled grammar
4Resource Description Framework - http://www.w3.

and authoring documents. The domain was expanded to
include all the documents in a project specific setting (for
example, meeting minutes, status reports, etc).
The main contributions of the paper include an designing
an ontology for the domain of project documents and the
design and implementation of the CLANN grammar and
its previous prototypes.

2. Controlled languages as an interface
Rolf Schwitter5 defines a CNL as ,

”Controlled Natural Languages are subsets of
natural languages whose grammars and dictio-
naries have been restricted in order to reduce or
eliminate both ambiguity and complexity.”

Traditionally, CNLs fall into two major categories: those
that improve the readability for human readers, in particu-
larly for non-native speakers, and those that improve the
computational processing of a text. CNLs have already
been applied to ontology authoring and population (Smart,
2008Unpublished). Previous work by the authors (Davis
et al., 2009) focussed on applying CNLs to semantic an-
notation. The process of semantic annotation according to
(Handschuh, 2005) involves addition or association of se-
mantic data or meta-data to the content, according to an
agreed-upon ontology.

3. The CLANN grammar
CLANN is designed to facilitate knowledge capture from
every-day, repetitive, domain-specific texts. To better ex-
plore the applicability, two independent prototypes of the
grammar were developed(Davis et al., 2009) focusing al-
ternatively on usability and expressivity. This work has

org/RDF/
5http://sites.google.com/site/

controllednaturallanguage/

3867

Table 1: Excerpt of CLANN I grammar with examples

Sentence Pattern Example Parsed pattern
<NP><VP><NP>(<PP>+) Ambrosia to submit "her PhD

Proposal" during "the next
week".

(Ambrosia <NP>)
(to submit <VP>)
(her PhD Proposal <NP>)
(during (the next week
<NP>)<PP>).

Table 2: Excerpt of CLANN II grammar with examples

Sentence Pattern Example
<text>[is a <Class>]. Dirk[is a Person].

Creates an object of the class Person with label Dirk. Note the the label is taken
from the document content.

<text>[is a subclass of
<Class>].

Proposal[is a subclass of Document] or [Proposal is a
subclass of Document].
Creates a new class with label Proposal as a subclass of the class Document.

<text>[<property>
<object>].

Dirk[toComplete "PhD Proposal"] or [Dirk toComplete "PhD
Proposal"].
Creates a triple which links the instances of Dirk and PhD Proposal with the prop-
erty toComplete.

eventually led to the CLANN grammar, which is essentially
a merge between the former two grammars, incorporating
most of the advantages, albeit a few changes.
CLANN-prototype1 is designed with a major focus on us-
ability. Each sentence adhered to one of the syntactic rules
and used a lenient vocabulary. This domain vocabulary was
derived by corpus analysis using Word Smith tools 6 on
the document corpus. This ensured that most of the sen-
tences resembled normal English sentences. An example
of such a syntactic construct is given in Table 1. CLANN-
prototype1 is grammatically lax in comparision to typical
CNL approaches to knowledge creation.
A modified shallow parser, built in GATE7 using JAPE8

rules, is then used to parse the text, extract the knowledge
and instantiate the ontology.
CLANN-prototype2 was designed with a major focus on
expressivity. It differs from the conventional notion of
CNL, whereby the entire document is written in CNL,
rather it allows the user to add snippets of CNL text, en-
closed in "[]", to the document or associate them to a
particular text in the document. These snippets should ad-
here to a Subject-Verb-Object syntax, where the subject is
either specified in the snippet or taken from the free text.
The vocabulary for CLANN-prototype2 also includes the
vocabulary of the ontology, thereby allowing the user to
represent any kind of relational meta-data. This approach
was inspired by the CLOnE9 Language (Funk et al., 2007).
The syntactic constructs of CLANN-prototype2 along with

6http://www.lexically.net/wordsmith/
version5/index.html

7General Architechture for Text Engineering - http://
www.gate.ac.uk

8Java Annotation Patterns Engine - http://gate.ac.uk/
sale/tao/splitch8.html#chap:jape

9CLOnE - Controlled Language for Ontology Editing

examples are shown in Table 2.
The finer details of design and implementation of these
grammars are described in (Davis et al., 2009). Both gram-
mars use a common template, described above, which is
initially parsed to extract the inherent meta data of the doc-
ument (in this case, meeting minutes). A detailed compari-
sion of the two approaches is shown in the Table 3.
The CLANN grammar is essentially a combination of the
previous prototypes, incorporating the snippets of CLANN-
prototype2 into controlled text of CLANN-prototype1.
This is currently in the development. For other sample doc-
uments, demos and information please refer to the project
home page11. The CLANN grammar makes use of three
diffrent techniques to encode knowledge into the text. They
are the templates, the CL snippets (controlled language
snippets) and controlled english. Each of these are detailed
below along with examples.

3.1. Templates
Conventionally, work on semantic annotation focused on
two-step approaches where the authoring of a document has
to precede the annotation of the same. This problem can
be overcome by adopting a latent annotation(Davis et al.,
2009) approach by the use of controlled languages, which
merges both the authoring and annotation steps into one.
The information is encoded in the restricted vocabulary and
grammatical structure of the controlled language. However,
preliminary evaluations suggest that annotating every piece
of information using a CNL makes the task quite verbose,
thereby demotivating the users. A simple solution to this
is to supplement the CNL by using templates which encode
implicit domain information, an example of which is shown
below.

11http://smile.deri.ie/projects/clann

3868

Table 3: Comparision of CLANN1 and 2 grammars

Feature CLANN1 CLANN2
Pre-requisite knowledge
for the user

Does not require any knowledge of on-
tologies, basic training enough to get
started

Requires the knowledge of the domain
ontology and the priciples behind it.

Domain dependence The syntactic rules and vocabulary are
heavily domain-dependent

Syntactic rules are domain-independent
but the vocabulary is dependent on the
ontology

Expresiveness Not very expressive, can only generate
ABox10 statements from the restrictive
syntax

Very Expressive, can generate both TBox
and ABox statements

Ease of Use Consice and easy to write, provided you
know the grammar

Potential to become very verbose, owing
to the expressiveness needed.

Project Name: <String>
Group Name: <String>
Date: <Date>
Chair: <String>
Attendees: <String>(,<String>)+
Scribe: <String>
Action Item:<String>:<String>(:<String>)?
(<CNL))+
Agenda: <String> (<CNL>)+
Poll:<String>:<String>
(<String>:<String>)+

These templates were constructed by analysing a collection
of in-house meeting minutes and status reports of the Nepo-
muk project12. This approach combines the benefits of the
two by using templates for mundane information annota-
tion and CNL for other non-mundane information, conse-
quently minimising the effort and enhancing the user expe-
rience.

3.2. CL Snippets
Controlled Language snippets are used to explicity add an-
notation to words in the text. Snippets of text (enclosed in
"[]") can be appended to words in the document to ex-
plicitly add annotations to the document. These snippets
should adhere to a subject-verb-object syntax, where the
subject is either specified in the snippet or taken from the
free text. An example of the snippets is shown below.
Let us consider the sentence below
Brian went to Dublin for the weekend.

More information about ”Brian” and ”Dublin” can be added
by using CL Snippets.
Brian[is a Person] went to Dublin[is a
City] for the weekend.

Further new resources and links between existing resources
can be defined.
[City is a subclass of Place].
[Brian livesIn Dublin].13

12http://dev.nepomuk.semanticdesktop.org/
wiki/WikiStart

13assuming livesIn is a property between Person and City al-
ready defined in the domain ontology

Brian[is a Person] went to Dublin[is a
City] for the weekend.

The vocabulary for CLANN-prototype2 also includes the
vocabulary of the ontology, thereby allowing the user to
represent any kind of relational meta-data. This approach
was inspired by the CLOnE Language (Funk et al., 2007).
The syntactic constructs of CLANN-prototype2 along with
examples are shown in Table 2.

3.3. Controlled English
The controlled english, developed during the process,
forms the core of the CLANN grammar. This is inspired
mostly from the efforts of CLANN-prototype1. The struc-
ture of sentences of the controlled english are restiricted by
a simple set of desgin principles described below.

• Every sentence should be declarative and in active
voice.

• Every verb used should be either an infinitive (to -
verb : to denote tasks) or simple past tense (to denote
reports)

• Every sentence should follow the Subject-Verb-Object
pattern.

• Only prepositional clauses (prep NP : ”by next week”,
etc) can be used to append nouns.

• Include ”snippets” inline to add extra annotations

– Pradeep[is a Student]...

The above guidelines are only easy-to-read restrictions of
the grammar/ for a more complete specification fo the
grammar please refer to http://smile.deri.ie/
projects/clann

4. Implementation of the Grmammer
The previous prototypes of the grammar were developed
using JAPE rules in GATE. JAPE(Java Annotation Patterns
Engine) provides finite state transduction over annotations
based on regular expressions(Cunningham et al., 2000).14

14Elaborating JAPE is out of scope of this paper. For more
information on the subject the reader is referred to http://
gate.ac.uk/sale/tao/splitch8.html#chap:jape

3869

The ease of writing rules in Jape coupled with the extensive
support of the GATE platform immensely helped in devel-
oping and testing rapid prototypes of the grammar. How-
ever adding support for auto-completion, based on Jape
rules proved to be much harder. So we decided to explore
other grammar formalisms which woud take advantage of
the restricted vocabulary of the grammar to produce efficent
parses along with support for auto-completion.
Various grammar formalisms have been used over the years
for understanding natural language. Phrase structure gram-
mars (PSG), the most widely used formalism, model the
inherent structure of the sentences of a language by break-
ing it into different phrases. They belong to the class of
generative grammars and are composed of a set of produc-
tions or rules which break-up the sentences into meaning-
ful phrases. Dependency grammars(DG), however, concen-
trate on the links between words without paying attention to
the word order. Structure of a sentence is not broken down
into phrases, but determined by adding relations between
a head word and its dependent words. There have been
many variations of gramamar formalisms that stemmed out
of both PSGs and DGs. The next few sections describe one
such variation of the dependency grammar, the Link gram-
mar, and justifies its selection.

4.1. Link Grammar
Link grammars, introduced by (Sleator et al., 1991), are
a variation of dependency grammars. Similar to DGs, the
link grammars use realtions between words to generate a
structure for a sentence. However, unlike DGs, the links
also encode information about directionality and distance.
Moreover, they do not enforce a head-dependent relation-
ship like the DGs.
(Sleator et al., 1991) defines link grammar as follows:

A sequence of words is a sentence of the language
if there is a way to draw links between words in
such a way that

• the linking requirements of all the words are
satisfied,

• the links do not cross, and

• the words form a connected graph

The linking requirements of each word are specified as a
dictionary, which forms the basis of the link grammar. Each
entry in the dictionary consistes of a word or a group of
words belonging to the same grammatical category, ap-
pended on the right-hand-side with its linking require-
ments. The linking requirements are a series of connectors
joined by the logical operators & and or. Each connector
denotes the type and direction of the link. It is a label fol-
lowed by +/- . + denotes a link to the right and - denotes
a link to the left. For illustration purposes, an example of
a sentence parsed using a very simple link grammar is pro-
vided in Figure 1, and an explanation of the same is pro-
vided below.
The D+ connector on the word the denotes that the is ex-
pecting a D link to its right. So It can connect to any word
which has a D- connector, which, in this case, is either boy
or apple. The word ate has an & operand on S- and O+.

words linking requirements
the D+
small A+
ate S- & O+
boy apple (A- & D- & S+) or (D- & O-)

+-----D------+ +----O-----+
| +---A--+--S--+ +--D--+
| | | | | |
the small boy ate the apple

Figure 1: A sample Link grammar and parse structure.

This means, for the word ate to be part of a valid sentence,
it should connect to both an S connector to its left and an O
connector to its right. The case for the nouns boy and ap-
ple is more interesting. They have two expressions joined
by the or operand. On closer observation, the first one, (A-
& D- & S+), models the behavior of a subject noun and
the second one, (D- & O-), models that of an object noun.
The reader should also note that the order of the connectors
is also valuable. The expression (A- & D- & S+) also de-
clares the order of linking. So an A link should be made to
a word closer than the D link. This is illustrated in the parse
structure shown in Figure 1.

4.2. Why Link Grammar?
The main design principles for the CLANN grammar are
ease of use and the ability to extend the ontology. However,
the develpoment of the grammar posed different challenges.
One major priority was to extract RDF tripples from the
sentences. This works very well with the link grammar
parse, because the the tripples can directly be extracted by
mapping the links. In the example shown in Figure 1, the
tripple boy ate apple, can be easily extracted from the left
and right links of the word ate. This is not the case with
phrase structure grammars, where extracting dependencies
requires detailed ananlysis of the tree structure.
Another major priority was to develop an intelligent editor
on top of the grammar, which supports auto-suggestion and
sentence-completion. An intuitive editor which assists the
user while writing the CNL sentences, goes a long way in
helping him to quickly learn the restrictions of the grammar.
This requires an ability to predict text and check the gram-
matical correctness of partial sentences. The dictionaries
of the link grammar provide valuable information about all
the words of the language, which can be exploited for the
purpose.

5. The PDO ontology
The domain of meeting minutes and status reports was
used to engineer an ontology for the purpose of knowl-
edge management. The initial CLANN prototype was
bootstrapped using the the Nepomuk(Decker, 2006) on-
tologies15 and later extended by MEMO(Meeting Min-

15http://www.semanticdesktop.org/
ontologies/

3870

Figure 2: Overview of the PDO ontology

utes Ontology). However, the MEMO ontology was only
used as a proof-of-concept implementation of the domain.
Later, this was completely redesigned and a new ontology
PDO (Project Document ontology) was developed in accor-
dance with proper ontology design principles, specifically
the METHONTOLOGY approach outlined by (Fernández-
López et al., 1997). The PDO ontology, described using
RDFS16 and OWL-DL17, models the inherent structure and
concepts of various documents in a project-specific setting,
like meeting minutes, status reports etc. The scope of this
ontology was limited to modelleing the discourse structure
of various project documents like meeting minutes, status
reports, final reports, deliverables, etc. The content of these
documents is not modelled, in order to make the ontology
very flexible and interoperable. Care was taken to ensure
that other domain ontologies can be easily linked. So, for
instance, a meeting minute note might talk about anything
from software projects to movie reviews but still be mod-
elled by the ontology, while using the respective domain
ontolgies of software projects and movies.
A pictorial representation of the ontology is shown in Fig-
ure 2. Document is the central class which is subclassed
by Minutes and StatusReport. Artefact is the main place-
holder class for various arefacts contained in a document,
like AgendaItem, Poll, ActionItem, TravelReport, etc. A

16RDFSchema http://www.w3.org/TR/rdf-schema
17OWL (Web Ontology Language) has three flavours, OWL

Lite, OWL DL and OWL Full. http://www.w3.org/TR/
owl-features/OWL DL is named so becase of its correspon-
dence with Description Logics. This flavour of OWL is neither too
strict nor too simple.

partial instantiation of the ontology is described in Turtle18

syntax in the Figure 3. For a complete specification of the
PDO ontology please refer to http://ontologies.
smile.deri.ie/pdo#.

6. Conclusion and Future Work
In conclusion, we have set out to explore the possibility of
using controlled languages as interfaces to semantic web
applications. We decided to narrow down the domain to
meeting minutes and status reports, and designed an on-
tology representing the domain. We have developed the
CLANN system for knowledge acquisition along with the
CLANN grammar and experimented with a few flavours of
the grammar. Furthermore, we are currently working on
implementing the ideas presented for the CLANN3 gram-
mar.
Future work will involve developing a smart CNL text edi-
tor for novice users, as well as packaging the CLANN mod-
ule as an extension to the Semantic MediaWiki. We also
plan to evaluate our work against othe semantic wikis, to
judge the feasibility of the approach.

Acknowledgements
The work presented in this paper has been funded in
part by Science Foundation Ireland under Grant No.
SFI/08/CE/I1380 (Lı́on-2).

18Turtle is an easy, human-readable serialization of RDF.
http://www.w3.org/TeamSubmission/turtle/

3871

:x1 a pdo:Minutes;

 pdo:hasAttendee :Brian, :Siggi, :Pradeep;

 pdo:hasAbsentee :Tudor;

 ...

 ...

 pdo:contains [

 a pdo:ActionItem;

 pdo:hasComment "Brian to complete the task";

 pdo:hasOwner :Brian;

 pdo:hasEndDate "2010-03-10"^^xsd:Date];

 ...

 ...

 pdo:contains [

 a pdo:Poll;

 pdo:hasComment "Who is attending the conference?";

 pdo:hasOption [pdo:hasComment "I am";

 pdo:hasSupportor :Brian];

 pdo:hasOption [pdo:hasComment "I am not";

 pdo:hasSupportor :Pradeep, :Siggi]].

 ...

 ...

Figure 3: Using the PDO Ontology

7. References
H. Cunningham, D. Maynard, and V. Tablan. 2000. JAPE:

a Java Annotation Patterns Engine (Second Edition). Re-
search Memorandum CS–00–10, Department of Com-
puter Science, University of Sheffield, November.

Brian Davis, Pradeep Varma, Siegfried Handschuh, Laura
Dragan, and Hamish Cunningham. 2009. On designing
controlled natural languages for semantic annotation.

S. Decker. 2006. The social semantic desktop: Next gener-
ation collaboration infrastructure. Information Services
and Use, 26(2):139–144.

Mariano Fernández-López, Asunción Gómez-Pérez, and
Natalia Juristo. 1997. Methontology: from ontological
art towards ontological engineering. In Proceedings of
the AAAI97 Spring Symposium, pages 33–40, Stanford,
USA, March.

A. Funk, V. Tablan, K. Bontcheva, H. Cunningham,
B. Davis, and S. Handschuh. 2007. Clone: Controlled
language for ontology editing. In ISWC/ASWC, pages
142–155.

Siegfried Handschuh. 2005. Creating Ontology-based
Metadata by Annotation for the Semantic Web. Ph.D.
thesis.

Daniel D. K. Sleator, C Fl Daniel Sleator, and Davy Tem-
perley. 1991. Parsing english with a link grammar. In In
Third International Workshop on Parsing Technologies.

P. R. Smart. 2008,(Unpublished). Controlled natural lan-
guages and the semantic web. Technical report, School
of Electronics and Computer Science, University of
Southampton.

3872

