
Proceedings of the
4th Web as Corpus Workshop (WAC-4)

Can we beat Google?

Edited by Stefan Evert, Adam Kilgarriff and Serge Sharoff

Marrakech, Morocco
1 June 2008

Workshop Programme

9.15 – 9.30 Welcome & Introduction

Session 1: Can we do better than Google?
9.30 – 10.00 Reranking Google with GReG

Rodolfo Delmonte, Marco Aldo Piccolino Boniforti
10.00 – 10.30 Google for the Linguist on a Budget

András Kornai, Péter Halácsy

10.30 – 11.00 Coffee break

Session 2: Cleaning up the Web
11.00 – 11.30 Victor: the Web-Page Cleaning Tool

Miroslav Spousta, Michal Marek, Pavel Pecina
11.30 – 12.00 Segmenting HTML pages using visual and semantic information

Georgios Petasis, Pavlina Fragkou, Aris Theodorakos, Vangelis Karkaletsis,
Constantine D. Spyropoulos

12.00 – 12.45 Star Talk: Identification of Duplicate News Stories in Web Pages
John Gibson, Ben Wellner, Susan Lubar

12.45 – 13.30 Group discussion on The Next CLEANEVAL

13.30 – 15.00 Lunch break

Session 3: Compilation of Web corpora
15.00 – 15.30 GlossaNet 2: a linguistic search engine for RSS-based corpora

Cédrick Fairon, Kévin Macé, Hubert Naets
15.30 – 16.00 Collecting Basque specialized corpora from the web:

language-specific performance tweaks and improving topic precision
Igor Leturia Azkarate, Iñaki San Vicente, Xabier Saralegi, Maddalen Lopez de Lacalle

16.00 – 16.30 Coffee break

Session 3 (cont’d)
16.30 – 17.15 Star Talk: Introducing and evaluating ukWaC, a very large Web-derived corpus of English

Adriano Ferraresi, Eros Zanchetta, Silvia Bernardini, Marco Baroni

Session 4: Technical applications of Web data
17.15 – 17.45 RoDEO: Reasoning over Dependencies Extracted Online

Reda Siblini, Leila Kosseim

17.45 – 18.15 General discussion

18.15 Wrap-up & Conclusion

i

Workshop Organisers

Stefan Evert, University of Osnabrück

Adam Kilgarriff, Lexical Computing

Serge Sharoff, University of Leeds

Programme Committee

Silvia Bernardini, U of Bologna, Italy

Massimiliano Ciaramita, Yahoo! Research Barcelona, Spain

Jesse de Does, INL, Netherlands

Katrien Depuydt, INL, Netherlands

Stefan Evert, U of Osnabrück, Germany

Cédrick Fairon, UCLouvain, Belgium

William Fletcher, U.S. Naval Academy, USA

Gregory Grefenstette, Commissariat à l’Énergie Atomique, France

Péter Halácsy, Budapest U of Technology and Economics, Hungary

Katja Hofmann, U of Amsterdam, Netherlands

Adam Kilgarriff, Lexical Computing Ltd, UK

Igor Leturia, Elhuyar Fundazioa, Basque Country, Spain

Phil Resnik, U of Maryland, College Park, USA

Kevin Scannell, Saint Louis U, USA

Gilles-Maurice de Schryver, U Gent, Belgium

Klaus Schulz, LMU München, Germany

Serge Sharoff, U of Leeds, UK

Eros Zanchetta, U of Bologna, Italy

ii

Contents

Preface iv

1 Reranking Google with GReG
Rodolfo Delmonte, Marco Aldo Piccolino Boniforti 1

2 Google for the Linguist on a Budget
András Kornai and Péter Halácsy 8

3 Victor: the Web-Page Cleaning Tool
Miroslav Spousta, Michal Marek, Pavel Pecina 12

4 Segmenting HTML pages using visual and semantic information
Georgios Petasis, Pavlina Fragkou, Aris Theodorakos, Vangelis Karkaletsis,
Constantine D. Spyropoulos 18

5 Identification of Duplicate News Stories in Web Pages
John Gibson, Ben Wellner, Susan Lubar 26

6 GlossaNet 2: a linguistic search engine for RSS-based corpora
Cédrick Fairon, Kévin Macé, Hubert Naets 34

7 Collecting Basque specialized corpora from the web:
language-specific performance tweaks and improving topic precision
Igor Leturia Azkarate, Iñaki San Vicente, Xabier Saralegi, Maddalen Lopez de Lacalle 40

8 Introducing and evaluating ukWaC, a very large Web-derived corpus of English
Adriano Ferraresi, Eros Zanchetta, Silvia Bernardini, Marco Baroni 47

9 RoDEO: Reasoning over Dependencies Extracted Online
Reda Siblini, Leila Kosseim 55

iii

Preface

We want the Demon, you see, to extract from the dance of atoms only information that is
genuine, like mathematical theorems, fashion magazines, blueprints, historical chronicles, or
a recipe for ion crumpets, or how to clean and iron a suit of asbestos, and poetry too, and
scientific advice, and almanacs, and calendars, and secret documents, and everything that ever
appeared in any newspaper in the Universe, and telephone books of the future . . .

Stanisław Lem (1985). The Cyberiad, translated by Michael Kandel.

Can we beat Google? It is a big question.

First, it is as well to remember that Google is the non plus ultra of Internet startups. It is amazing. It is an
outrageous fantasy come true, in terms of both speed and accuracy and the fabulous wealth accruing to its
founders. If the Internet has fairy tales, this is it. We don’t even think of it as an Internet startup any more:
it transcended that long ago,1 as it entered the lexicons of the world,2 changed the way we live our lives,
and diverted a substantial share of the world’s advertising spend through its coffers.

Their success is no accident. What they do, they do very well. It would be a bad idea to compete head-on.
The core of their business is to index as much of the Web as possible, and make it available very very
quickly to people who want to find out about things or – better, from Google’s point of view – buy things.
And, of course, to carry advertisements and thereby to make oodles of money. In order to do that, they
address a large number of associated tasks, including finding text-rich Web pages, finding the interesting
text in a Web page, partitioning and identifying duplicates, near-duplicates and clusters.

Much of what they do overlaps with much of what we do, as Web corpus collectors with language technol-
ogy and linguistic research in mind. But the goals are different, which opens up a space to identify tasks
that they perform well from their point of view but that is different to ours, and others that they do, but are
not central to their concerns and we can do better.

An example of the first kind is de-duplication. In an impressive study of different methods, Monika Hen-
zinger, formerly Director of Research at Google, discusses pages from a UK business directory that list in
the centre the phone number for a type of business for a locality. Two such pages differ in five or less tokens
while agreeing in about 1000. From Google’s point of view they should not be classified as near-duplicates.
From ours, they should. The paper by Gibson et al. in this volume addresses duplication from a WAC point
of view.

The two biggest languages in the world, one of which is Google’s home language, don’t have much, or any,
inflectional morphology, which may be why Google doesn’t consider it so important for search. Speakers of
most of the world’s languages might give it a higher priority. In general, Google’s spectacular performance
relates to the languages where they have applied most effort, notably English. For Basque (for which the
Web is not so large, and which has ample inflectional morphology) Leturia and colleagues clearly do beat
Google on a number of counts.

We know that Google must do lots of text cleaning, as they succeed in finding terms for indexing and also
are able to provide, for example, HTML versions of PDF or Word pages. But they do not publish details,
so how might we find out what they do, and how it compares to what we do?

1As far as anything is long ago in its ten-year life. It was not yet a company when Tony Blair became UK Prime Minister, and was
only a two-year-old when George W. Bush arrived in the White House.

2Most of Google’s 6570 hits for googlant are for the present participle of the French verb; most of the 57,900 for googlest are for
the second person singular of the German verb; most of the 66,400 hits of ãóãëèòü are for the infinitive of the Russian verb.

iv

One way to explore the question is by looking at Web1T, a remarkable resource that Google generously
provided for academic research in 2006 which lists all 1-, 2-, 3-, 4- and 5-grams occurring more than 40
times on the Google-indexed English Web. According to the brief description of the resource that is all that
is provided, it is based on a trillion words. It seems likely that the counts are from de-duplicated pages. The
text in the pages has clearly been identified as text (in contrast to images, formatting, etc), tokenised, and
has had its language identified.

This resource can be compared to results used in the WaC community3 and to traditional corpora, such
as the BNC. Preliminary results show that our corpora are not worse than the results of Google. Web1T
unigrams and bigrams contain more boilerplate (unsubscribe, rss, forums), business junk (poker, viagra,
collectibles) as well as porn (porn, lingerie). There are reasons why this information is kept by Google: it
is necessary to keep them as relevant keywords if someone is searching for a forum, poker or pornography.

However, we are different: we are searching constructions, not products. So we need different tools and re-
sources, which cannot be provided by Google. Submissions to this volume show that the tools and resources
can be provided by us.

Adam Kilgarriff, Serge Sharoff, Stefan Evert

3Sharoff in http://wackybook.sslmit.unibo.it/ or Ferraresi et al. in this volume

v

RERANKING GOOGLE WITH GReG

Rodolfo Delmonte, °Marco Aldo Piccolino Boniforti

° University of Cambridge
marcoaldo.piccolinoboniforti@poste.it

Department of Language Sciences

Università Ca’ Foscari – Ca’ Bembo
30123, Venezia, Italy

delmont@unive.it

Abstract

We present an experiment evaluating the contribution of a system called GReG for reranking the snippets returned by Google’s search
engine in the 10 best links presented to the user and captured by the use of Google’s API. The evaluation aims at establishing whether
or not the introduction of deep linguistic information may improve the accuracy of Google or rather it is the opposite case as
maintained by the majority of people working in Information Retrieval and using a Bag Of Words approach. We used 900 questions
and answers taken from TREC 8 and 9 competitions and execute three different types of evaluation: one without any linguistic aid; a
second one with tagging and syntactic constituency contribution; another run with what we call Partial Logical Form. Even though
GReG is still work in progress, it is possible to draw clearcut conclusions: adding linguistic information to the evaluation process of
the best snippet that can answer a question improves enormously the performance. In another experiment we used the actual associated
to the Q/A pairs distributed by one of TREC’s participant and got even higher accuracy.

1. Introduction

We present an experiment run using Google API and a
fully scaled version of GETARUNS, a system for text
understanding [1;2], together with a modified algorithm
for semantic evaluation presented in RTE3 under the
acronym of VENSES [3]. The aim of the experiment and
of the new system that we called GReG (GETARUNS
ReRANKS Google), is that of producing a reranking of
the 10 best candidates presented by Google in the first
page of a web search. Reranking is produced solely on the
basis of the snippets associated to each link – two per link.
GReG uses a very “shallow” linguistic analysis which
nonetheless ends up with a fully instantiated sentence level
syntactic constituency representation, where grammatical
functions have been marked on a totally bottom-up
analysis and the subcategorization information associated
to each governing predicate – verb, noun, adjective. More
on this process in the sections below.
At the end of the parsing process, GReG produces a
translation into a flat minimally recursive Partial Logical
Form (hence PLF) where besides governing predicates –
which are translated into corresponding lemmata – we use
the actual words of the input text for all linguistic relations
encoded in the syntactic structure.
The idea behind the experiment was this:
- given the recurrent criticisms raised against the
possibility to improve web searches by means of
information derived from linguistic representations we
intended to test the hypothesis to the contrary;
- to this aim we wanted to address different levels
of representations – syntactic and (quasi) logical/semantic,
and measure their contribution if any in comparison to a
simple (key) word-based computation;

- together with linguistic representation, we also
wanted to use semantic similarity evaluation techniques
already introduced in RTE challenges which seem
particularly adequate to measure the degree of semantic
similarity and also semantic consistency or non-
contradictoriness of the two linguistic descriptions to
compare.

The evaluation will focus on a subset of the questions used
in TREC [4] made up of 900 question/answers pairs and
produces the following data:
- how many times the answer is contained in the 10
best candidates retrieved by Google;
- how many times the answer is ranked by Google
in the first two links – actually we will be using only
snippets (first two half links);
- as a side-effect, we also know how many times
the answer is not contained in the 10 best candidates and is
not ranked in the first two links;
- how many times GReG finds the answer and
reranks it in the first two snippets;
- how much contribution is obtained by the use of
syntactic information;
- how much contribution is obtained by means of
LF, which works on top of syntactic representation;
- how much contribution is obtained by modeling
the possible answer from the question, also introducing
some Meta operator – se use OR and the *.
Eventually, we compute accuracy measures by means of
the usual Recall/Precision formula.

2. The Parser

The architecture of the parser is shown in Fig. 1 below and
will be commented in this section. It is a quite common

1

pipeline and all the code runs in Prolog and is made up of
manually built symbolic rules.
We defined our parser “mildly bottom-up” because the
structure building process cycles on a procedure that
collects constituents. This is done in three stages: at first
chumks are built around semantic heads – verb, noun,
adjective. Then prepositions and verb particles are lumped
together. In this phase, also adjectives are joined to the
nominal head they modify. In a third phase, sentential
structure information is added at all levels – main, relative
clauses, complement clauses. In presence of conjunction
different strategies are applied according to whether they
are coordinating or subordinating conjunctions.
An important linguistic step is carried out during this pass:
subcategorization information is used to tell complements
– which will become arguments in the PLF – and adjuncts
apart. Some piece of information is also offered by linear
order: SUBJect NPs will usually occur before the verb and
OBJect NP after. Constituent labels are then substituted by
Grammatical Function labels. The recursive procedure has
access to calls collecting constituents that identify
preverbal Arguments and Adjuncts including the Subject if
any: when the finite verb is found the parser is hampered
from accessing the same preverbal portion of the
algorithm and switches to the second half of it where
Object NPs, Clauses and other complements and adjuncts
may be parsed. Punctuation marks are also collected
during the process and are used to organize the list of
arguments and adjuncts into tentative clauses.
The clause builder looks for two elements in the input list:
the presence of the verb-complex and punctuation marks,
starting from the idea that clauses must contain a finite
verb complex: dangling constituents will be adjoined to
their left adjacent clause, by the clause interpreter after
failure while trying to interpret each clause separately.
The clause-level interpretation procedure interprets clauses
on the basis of lexical properties of the governing verb.
This is often non available in snippets. So in many cases,
sentence fragments are built.
If the parser does not detect any of the previous structures,
control is passed to the bottom-up/top-down parser, where
the recursive call simulates the subdivision of structural
levels in a grammar: all sentential fronted constituents are
taken at the CP level and the IP (now TP) level is where
the SUBJect NP must be computed or else the SUBJect

NP may be in postverbal position with Locative Inversion
structures, or again it might be a subjectless coordinate
clause. Then again a number of ADJuncts may be present
between SUBJect and verb, such as adverbials and
parentheticals. When this level is left, the parser is
expecting a verb in the input string. This can be a finite
verb complex with a number of internal constituents, but
the first item must be definitely a verb. After the
(complex) verb has been successfully built, the parser
looks for complements: the search is restricted by lexical
information. If a copulative verb has been taken, the
constituent built will be labelled accordingly as XCOMP
where X may be one of the lexical heads, P,N,A,Adv.
The clause-level parser simulates the sentence typology
where we may have verbal clauses as SUBJect, Inverted
postverbal NPs, fronted that-clauses, and also fully
inverted OBJect NPs in preverbal position.

2.1 Parsing and Robust Techniques
The grammar is equipped with a lexicon containing

a list of fully specified inflected word forms where each
entry is followed by its lemma and a list of morphological
features, organized in the form of attribute-value pairs.
However, morphological analysis for English has also been
implemented and used for Out of Vocabulary (hence
OOV) words. The system uses a core fully specified
lexicon, which contains approximately 10,000 most
frequent entries of English. Subcategorization is derived
from FrameNet, VerbNet, PropBank and NomBank. These
are all consulted at runtime. Eventually the semantics from
the WordNet and other sources derived from the web make
up the encyclopaedia. In addition to that, there are all
lexical forms provided by a fully revised version of
COMLEX. In order to take into account phrasal and
adverbial verbal compound forms, we also use lexical
entries made available by UPenn and TAG encoding. Their
grammatical verbal syntactic codes have then been adapted
to our formalism and is used to generate an approximate
subcategorization scheme with an approximate aspectual
and semantic class associated to it. Semantic inherent
features for OOV words , be they nouns, verbs, adjectives
or adverbs, are provided by a fully revised version of
WordNet – 270,000 lexical entries - in which we used 75
semantic classes similar to those provided by CoreLex.

2

Figure 1: Pipeline of parsing modules for hybrid (bottomup-topdown) version of GReG

3. The Experiment
As said above, the idea is to try to verify whether
deep/shallow linguistic processing can contribute to
question answering. As will be shown in the following
tables, Google’s search on the web has high accuracy in
general: almost 90% of the answers are present in the
first ten results presented to the user. However, we
wanted to assume a much stricter scenario closer in a
sense to TREC’s tasks. To simulate a TREC task as close

as possible we decided that only the first two snippets –
not links - can be regarded a positive result for the user.
Thus, everything that is contained in any of the following
snippets will be computed as a negative result.
The decision to regard the first two snippets as distinctive
for the experiment is twofold. On the one side we would
like to simulate as close as possible a TREC Q/A task,
where however rather than presenting precise answers,
the system is required to present the sentence/snippet
containing it. The other reason is practical or empirical

3

and is to keep the experiment user centered: user’s
attention should not be forced to spend energy in a
tentative search for the right link. Focussing attention to
only two snippets and two links will greatly facilitate the
user. In this way, GReG could be regarded as an attempt
at improving Google’s search strategies and tools.
In order to evaluate the contribution of different levels of
computation and thus get empirical evidence that a
linguistically-based approach is better than a bag-of-
words approach we organized the experiment into a set
of concentric layers of computation and evaluation as
follows:
- at the bottom level of computation we situated what we
call the “default semantic matching procedure”. This
procedure is used by all the remaining higher level of
computation and thus it is easy to separate its
contribution to the overall evaluation;
- the default evaluation takes input from the first two
processes, tokenization & multiword creation plus
sentence splitting. Again these procedures are quite
standard and straightforward to compute. So we want to
assume that the results are easily reproducible as well as
the experiment itself;
- the following higher level of computation may be
regarded more system dependent but again it also can be
easily reproduced using off-the-shelf algorithms made
available for English by research centers all over the
world. It regards tagging and context-free PennTreebank-
like phrase-structure syntactic representation. Here we
consider not only words, but word-tag pairs and word-as-
head of constituent N pairs.
- the highest level is constituted by what we call Partial
Logical Form, which builds a structure containing a
Predicate and a set of Arguments and Adjuncts each
headed by a different functor. In turn each such structure
can contain Modifiers. Each PLF can contain other PLFs
recursively embedded with the same structure. More on
this below.
We now present three examples taken from TREC8
question/answer set, no. 3, 193, 195, corresponding
respectively to ours 1,2,3. For each question we add the
answer and then we show the output of tagging in
PennTreebank format, then follows our enriched tagset
and then the syntactic constituency structure produced by
the parser. Eventually, we show the Partial Logical Form
where the question word has been omitted. It can be
reinserted in the analysis when the matching takes place
and may appear in the other level of representation we
present which is constituted by the Query in answer form
passed to Google. Question words are always computed
as argument or adjunct of the main predicate, so GReG
will add a further match with the input snippets
constituted by the conceptual substitutes of the wh-
words. One substitute is visible in question no.3 when the
concept “AUTHOR” is automatically added by GReG in
front of the verb and after the star.

(1) What does Peugeot company manufacture? – Cars
(2) Who was the 16th President of the United States? –
Lincoln
(3) Who wrote “Dubliners”? – James Joyce

Here below are the analysis where we highlight the
various levels of linguistic representation relevant for our
experiment only – except for the default word level:

(1) Tagging and Syntactic Constituency
what-wp, does-md, the-dt, Peugeot-nnp, company-nn,
manufacture-vin, ? – pun
 [what-int, does-vsup, the-art, Peugeot-n, company-n,
manufacture-vin, ? - puntint]

cp-[cp-[what], f-[subj-[the, company, mod-[Peugeot]],
ibar-[does, manufacture]], fint-[?]]

Partial Logical Form
pred(manufacture) arg([company, mod([Peugeot])])
adj([[], mod([[]])])

Query launched to Google API
Peugeot company manufacture *

(2) Tagging and Syntactic Constituency
who-wp, was-vbd, the-dt, 16th-cd, President-nnp, of-in,
the-dt, United_States-nnp, ? – pun
 [who-int, was-vc, the-art, 16th-num, President-n, of-p,
the-art, United_States-n, ? - puntint]

fint-[cp-[who], ibar-[was], sn-[the, 16th, President, mod-
[of, the, United_States]], fint-[?]]

Partial Logical Form
 [pred(be) arg([President, mod([united, States, 16th])])
adj([])]

Query launched to Google API
United States 16th President was *

(3) Tagging and Syntactic Constituency
who-wp, wrote-vbd_vbn, "-pun, Dubliners-nns, "-pun, ? -
pun
 [who-int, wrote-vt, "-par, Dubliners-n, "-par, ? - puntint]

cp-[cp-[who], ibar-[wrote], fp-["], sn-[Dubliners], fp-["],
fint-[?]]

Partial Logical Form
pred(write) arg([Dubliners, mod([])]) adj([])

Query launched to Google API
* author wrote Dubliners

4

3.1 Default Semantic Matching Procedure
This is what constitutes the closest process to the BOWs
approach we can conceive of. We compare every word
contained in the Question with every word contained in
each snippet and we only compare content words.
Stopwords are deleted.
We match both simple words and multiwords.
Multiwords are created on the basis of lexical
information already available for the majority of the
cases. The system however is allowed to guess the
presence of a multiword from the information attached to
the adjacent words and again made available in our
dictionaries. If the system recognizes the current word as
a word starting with uppercase letter and corresponding
to one of the first names listed in one of our dictionary it
will try to concatenate this word to the following and try
at first a match. If the match fails the concatenated word
is accepted as a legitimate continuation – i.e. the name –
only in case it starts by uppercase letter. Similar checking
procedures have been set up for other NEs like
universities, research centers, business related institutions
etc. In sum, the system tries to individuate all NEs on the
basis of the information stored and some heuristic
inferential mechanism.
According to the type of NE we will licence a match of a
simple word with a multiword in different ways: person
names need to match at least the final part of the
multiword, or the name institutions, locations etc. need to
match as a whole.

3.2 Tags and Syntactic Heads

The second level of evaluation takes as input the
information made available by the tagger and the parser.
We decided to use the same approach reported in the
challenges called RTE where the systems participating
could present more than one run and use different
techniques of evaluation. The final task was – and is –
that of evaluating the semantic similarity between the
question and the input snippets made available by
Google. However, there is a marked difference to be
taken into account and is the fact that in RTE questions
where turned into a fully semantically complete
assertion; on the contrary, in our case we are left with a
question word to be transformed into the most likely
linguistic description that can be associated with the rest
of the utterance. As most systems participating in TREC
challenge have done, the question has to be rephrased in
order to predict the possible structure and words
contained in the answer, on the basis of the question
word and overall input utterance. Some of the questions
contained in the TREC list do not actually constitute wh-
questions (factoid or list), but are rather imperatives or
iussive utterance, which tell the system – and Google – to
“describe” or to “name” some linguistic item specified in
the following portion of the utterance.

As others have previously done, we classify all wh-
words into semantic types and provide substitute words
to be place in the appropriate sentence position in order
to simulate as close as possible the answer. However, this
is only done in one of the modalities in which the
experiment has been run. In the other modality, Google
receives the actual words contained in the question.
As to experiment itself, and in particular to the matching
procedure we set up, the wh- words is not used to match
with the snippets. Rather we use possible linguistic items
previously associated to the wh- word in a set. We also
use the actual wh- words to evaluated negatively snippets
containing them. In this way, we prevent similar and
identical questions contained in a snippet and pointed by
a link to receive a high score. We noticed that Google is
unable to detect such mismatches.
We decided to use tag-word pairs in order to capture part
of the contextual meaning associated to a given word.
Also in the case of pairs word-as-head-of-
constituent/constituent label we wanted to capture part
of the contextual import of a word in a structural
representation and thus its syntactic and semantic
relevance in the structure. As will be clear in the
following section, this is different from what is being
represented in a Logical Form for how partial it may be.

3.3 Partial Logical Form and Relations

The previous match intended to compare words as part of
a structure of dependencies where heads played a more
relevant role than non-heads, and thus were privileged. In
the higher level match what we wanted to check was the
possible relations intervening between words: in this
case, matching regarded two words at a time. The first
and most relevant word was the PREDicate governing a
given piece of PLF. The PRED can be the actual
predicate governing at sentence level, with arguments
and adjuncts, or it can be just the predicate of any of the
Arguments/Adjuncts which in turn governed their
modifiers.
Matching is at first applied to two predicates and if it
succeeds, it is extended to the contents of the Argument
or the Adjunct. In other words, if it is relations that this
evaluation should measure, any such relations has to
involve at least two linguistic elements of the PLF
representation under analysis.
Another important matching procedure applied to the
snippet is constituted by a check of the verbal complex.
We regard the verbal compound as the carrier of
semantic important information to be validated at
propositional level. However, seen the subdivision of
tasks, we assume that we can be satisfied by applying a
partial match. This verbal complex match is meant to
ascertain whether the question and the answer should be
both containing a positive or a negative polarity – thus
they should not convey contradictory information. It is
also important to check whether the two verbal

5

complexes are factitive or not, in that case they can
contain opaque or modality operators. This second
possibility needs to be matched carefully.

4. Evaluation and Conclusions
Here below we show the output of GReG in relation to
one of the three questions presented above, question n.2

**
google7
Evaluation Score from Words and Tags : 31
Evaluation Score from Syntactic Constituent-Heads : 62
Evaluation Score from Partial Logical Form : 62
62 google8
Evaluation Score from Words and Tags : 35
Evaluation Score from Syntactic Constituent-Heads: 70
Evaluation Score from Partial Logical Form : 0
google9
Evaluation Score from Words and Tags : 33
Evaluation Score from Syntactic Constituent-Heads : 66
Evaluation Score from Partial Logical Form : 66

Snippet No. google9
16th President of the United States (March 4 , 1861 to
April 15 , 1865). Nicknames : “ Honest Abe “ “ Illinois
Rail - Splitter “. Born : February 12 , 1809 , . . .

Snippet No. google7
Abraham Lincoln , 16th President of the United States of
America , 1864 , Published 1901 Giclee Print by Francis
Bicknell Carpenter - at AllPosters . com .

The right answer is : Lincoln

Google's best snippets containing the right answer are:
google8
Who was the 16th president of the united states ?
pissaholic Abraham Lincoln was the Sixteenth
President of the United States between 1861 - 1865 . . .
google7
Abraham Lincoln , 16th President of the United States of
America , 1864 , Published 1901 Giclee Print by Francis
Bicknell Carpenter - at AllPosters . com .

Google's best answer partially coincides with GReG.
**

Passing Questions to Google with GReG’s analysis
produces as a result that only for 642 questions the 10
best links contain the answer. Passing Questions to
Google as is produces as a result that only in 737
questions the 10 best links contain the answer. In other
words, GReG’s analysis of the question that attempts at
producing a model answer to use to trigger best results
from Google, in fact lowers the ability of Google to
search for the answer and select it in the best 10 links.

This should be due to the difficulty in producing the
appropriate answer form, by reordering words of the
question and adding metasymbols in the appropriate
positions. In fact, Google exploits also the linear order of
the words contained in the question. So in case there is
some mismatch the answer is not readily found or perhaps
is available further down in the list of links.

 With GReG’s

preanalysis
Without
GReG’s anal.

Google’s 10 Best
links contain the
answer

755
83.01%

694
77.12%

Google’s 10 Best
links do not contain
the answer

145
16.9%

206
22.8%

Google Rank answer
in first 2 snippets

216
28.61%

168
24.21%

Google Rank answer
not in first 2 snippets

814
90.45%

803
89.23%

Table 1: Google outputs with and without the intervention

of GReG’s question analysis

GReG
reranks the
answer in
first 2
snippets

Only word
match

Tagging and
Syntactic
heads

Partial
Logical
Form

With GReG’s
analysis

375
58.41%

514
68.08%

543
71.92%

Without
GReG’s
analysis

406
55.09%

493
66.89%

495
67.16%

Table 2: GReG’s outputs at different levels of linguistic

complexity

4.2 Comments
The conclusions we may safely draw is the clear
improvements in performance of the system when some
linguistic information is introduced in the evaluation
process. In particular, when comparing the contribution of
PLF to the reranking process we see that there is a clear
improvement: in the case of reranking without GReG’s
question analysis there is a slight but clear improvement
in the final accuracy. Also, when GReG is used to
preanalyse the question to pass to Google the contribution
of PLF is always apparent. The overall data speak in
favour of both preanalysing the question and using more
linguistic processing.
If we consider Google’s behaviour to the two inputs, the
one with actual questions and the one with prospective
answers we see that the best results are again obtained
when the preanalysis is used (28.6 vs. 24.2); also the
number of candidates containing the answer increases
remarkably when using GReG preprocessing (83 vs. 77).

4.3 GReG and Question-Answering from Text

6

In order to verify the ability of our system to extract
answers from real text we organized an experiment which
used the same 900 question run this time again the texts
made available by TREC participants. These texts have
two indices at the beginning of each line indicating
respectively the question number which they should be
able to answer, and the second an abbreviation containing
the initial letters of the newspaper name and the date. In
fact each line has been extracted by means of automatic
splitting algorithms which have really messed up the
whole text. In addition, the text itself has been
manipulated to produce tokens which however do not in
the least correspond to actual words of current
orthographic forms in real newspapers. So it took us quite
a lot of work to normalize the texts (5Mb.) to make them
as close as possible to actual orthography.
Eventually, when we launched our system it was clear
that the higher linguistic component could not possibly be
used. The reason is quite simple: texts are intermingled
with lists of items, names and also with tables. Since there
is no principled way to tell these apart from actual texts
with sentential structure, we decided to use only tagging
and chunking.
We also had to change the experimental setup we used
with Google snippets: in this case, since we had to
manipulate quite complex structures and the choice was
much more noisy, we raised our candidate set from two to
four best candidates. In particular we did the following
changes:

- we choose all the text stretches containing the
answer/s and ranked them according to their
semantic similarity;

- then we compared and evaluated these best
choices with the best candidates produced by our
analyses;

- we evaluated to success every time one of our
four best candidates was contained in the set of
best choices containing the answer;

- otherwise we evaluated to failure.

In total, we ran 882 questions because some answers did
not have the corresponding texts. Results obtained after a
first and only run – which took 4 days to complete on an
HP workstation with 5GB of RAM, 4 Dual Core Intel
processors, under Linux Ubuntu – were quite high in
comparison with the previous ones, and are reported here
below:

GReG finds the
answer in first 4 text
stretches

Tagging and
Syntactic heads

Without GReG’s
analysis

684 / 882
77.55%

Table 3: GReG’s results with TREC8/9 texts

With respect to the favourable results, we need to
consider that using texts provides a comparatively higher
quantity of linguistic material to evaluate and so it favours
better results.

5. Conclusions
We intend to improve both the question translation into
the appropriate format for Google, and the rules
underlying the transduction of the Syntactic Structures
into a Partial Logical Form. Then we will run the
experiments again. Considering the limitations imposed
by Google on the total number of questions to submit to
the search engine per day, we are unable to increase the
number of questions to be used in a single run.
We also intend to run GReG version for text Q/A this
time with question rephrasing. We would also like to
attempt using PLF with all the text stretches, excluding
manually all tables and lists. We are aware of the fact that
this would constitute a somewhat contrived and unnatural
way of coping of unrestricted text processing. At the same
time we need to check whether the improvements we
obtained with snippets are attested with complete texts.
Overall, we believe to have shown the validity of our
approach and the usefulness of linguistically-based
evaluation methods when compared with BOWs
approaches. Structural and relational information
constitutes a very powerful addition to simple tagging or
just word level semantic similarity measures.

6. References
 Delmonte R., (2007), Computational Linguistic Text

Processing – Logical Form, Semantic Interpretation,
Discourse Relations and Question Answering, Nova
Science Publishers, New York, ISBN: 1:60021-700-
1.

Delmonte R., (2005), Deep & Shallow Linguistically
Based Parsing, in A.M.Di Sciullo(ed), UG and
External Systems, John Benjamins,
Amsterdam/Philadelphia, pp.335-374.

Delmonte R., A. Bristot, M.A.Piccolino Boniforti,
S.Tonelli (2007), Entailment and Anaphora
Resolution in RTE3, in Proc. ACL Workshop on
Text Entailment and Paraphrasing, Prague, ACL
Madison, USA, pp. 48-53.

Litkowski, K. C. (2001). Syntactic Clues and Lexical
Resources in Question-Answering. In E. M.
Voorhees & D. K. Harman (eds.), The Ninth Text
Retrieval Conference (TREC-9). NIST Special
Publication 500-249. Gaithersburg, MD., 157-166.

7

Google for the Linguist on a Budget

András Kornai and Péter Halácsy

Budapest University of Technology Media Research Center
{kornai,hp}@mokk.bme.hu

Abstract
In this paper, we present GLB, yet another open source and free system to create and exploit linguistic corpora gathered from the web. A
simple, robust web crawl algorithm, a multi-dimensional information retrieval tool, and a crude parallelization mechanism are proposed,
especially for researchers working in resource-limited environments.

Introduction
The GLB (Google for the Linguist on a Budget)
project grew out of the realization that the current open
source search engine infrastructure, in particular the
nutch/lucene/hadoop effort, is in many ways inad-
equate for the creation, refinement, and testing of language
models (both statistical and rule-based) on large-scale web
corpora, especially for researchers working in resource-
limited environments such as startup companies and aca-
demic departments unlikely to be able to devote hundreds,
let alone thousands, of servers to any project.
Section 1 describes nut, a simple, robust web crawl algo-
rithm designed with the needs of linguistic corpora gath-
ering in mind. Section 2 details luc, an information re-
trieval tool that facilitates querying along multiple dimen-
sions. We leave had, a crude parallelization mechanism
sufficient for load balancing dozens (or perhaps hundreds)
of CPUs and offering fine control over rerunning versions
of different processing steps, to the concluding Section 3.
Many other ways out of the budget predicament have been
proposed, and in the rest of this Introduction we discuss
these briefly, not so much to criticize these approaches as to
highlight the design criteria that emerged from considering
them. First, what do we mean by being on a budget? The
Google search appliance (GSA) starts at $30,000, which
puts it (barely) within reach of grants to individual inves-
tigators, and certainly within the reach of better endowed
academic departments. Unfortunately, the GSA is an en-
tirely closed system, the internals cannot be tweaked by the
investigators, and the whole appliance model is much bet-
ter suited for a relatively static document collection than
for rapid loading of various corpora. Also, the size limi-
tations (maximum of 500k documents) make the GSA too
small for typical corpus-building crawls, and the query lan-
guage is not flexible enough to handle many of the queries
that arise in linguistic practice. There is no breaking out of
separate software and hardware costs in the GSA, and as
our project is providing free (as in beer) and open source
(LGPL) software, our goal was to design algorithms that
run well on any (x86-) 64-bit system with 8-16 GB mem-
ory and 5-10 TB attached storage – today such systems are
available at a quarter of the cost of the GSA.
Another, in many ways more attractive, approach is to rely
on the Google API, Alexa, or some similar easily accessi-
ble search engine cache. Methods of building corpora by
selective querying of major search engines have been pi-

oneered by Ghani (2001), and a set of very useful boot-
strapping scripts was made available by Baroni and Bernar-
dini (2004). But being parasitic on a major search engine
has its own risks. Many of these were discussed in Kilgar-
riff (2007) and require no elaboration here, but there are
issues, in particular integration, query depth, and replica-
bility, which are worth further discussion.
First, there are many corpora which may be licensed to the
researcher but are not available on crawlable pages (and
thus are not indexed by the host engine at all). Such cor-
pora, including purpose-built corpora collected by the re-
searchers themselves, can be extremely relevant to the in-
vestigation at hand, and the integration of results from the
web-based and the internal corpora is a central issue. This
applies to the community-based solution proposed by Kil-
garriff as well, inasmuch as researchers are often bound by
licenses and other contractual obligations that forbid shar-
ing their data with the rest of the community, or even up-
loading it to the Sketch Engine CorpusBuilder.
Second, with the leading search engine APIs, deeper query-
ing of the sort provided by the Linguist’s Search Engine
(Resnik and Elkiss, 2005) or the IMS Corpus Workbench
(see http://www .ims.uni-stuttgart.de
/projekte/CorpusWorkbench) is impossible, a
matter we shall return to in the concluding Section. Finally,
owing to the ever-changing nature of the web, the work
is never replicable. This is quite acceptable for brief
lexicographic safaris where the objective is simply to find
examples, but in the context of system building and re-
gression testing replicability is essential. The main design
requirements for GLB stemming from these considerations
are as follows. The system must

1. run on commodity hardware (less that $15k per node)

2. hold a useful number of pages (one billion per node)

3. provide facilities for logging, checkpointing, repeat-
ing, and balancing subtasks

4. have a useful throughput (one million queries per day)

5. not be a drain on external resources/goodwill

There are various tradeoffs among these requirements that
are worth noting. Trivially, relaxing the budget constraint
(1) could lead to more capable systems in regards to (2)
and (4), but the proposed system is already at the high end

8

of what financially less well endowed researchers, depart-
ments, and startups can reasonably afford. In the other di-
rection, as long as the reliability of storage is taken out of
the equation (a terabyte non-redundant disk space is now
below $1k), memory becomes the limiting factor, and the
same design, deployed on 500m or just 100m items, be-
comes proportionally less memory-intensive, so running
the system on a modern laptop with 4GB memory is fea-
sible. As described in Section 2, GLB does not mandate
storage of web pages as such, the items of interest may also
be sentences or words. For smaller corpora (in the 1m page
range) it may make perfect sense to change the unit of in-
dexing from pages to words and, if disk space is available,
to store more information about a unit than the raw text,
e.g. to precompute the morphological analysis of each word
(or even a full or partial syntactic parse, see some specula-
tive remarks at the end of Section 3). Finally, we note that
the design goal of 1m queries per day (12 queries/sec) may
be too ambitious if all reads are taken on the same non-
redundant disks: while in principle this is well within the
speed and latency capabilities of ordinary disk drives, in
practice a drive may not stand up against sustained use of
this intensity for long. However, those who cannot afford
high quality SANs may also be in less of a need to issue
millions of queries.

1. Nut
Replicability means that pages once crawled and deemed
useful must be kept around forever, otherwise later ver-
sions of some processing step cannot be run on the same
data as the earlier version, which would throw into ques-
tion whether improvements are due to improvements in the
processing algorithm itself or simply to better data. This is
not to say that all pages must be in the scope of all queries,
just that a simple, berkdb-style list of what was included
in which experiment must be preserved. This is in sharp
contrast to full-function crawler databases, which manage
information about when a host and a particular page was
last crawled, when it was created/last changed, how many
in-links it has, etc.
In general, neither link structure nor recency matters a great
deal for a linguistic corpus, as made plain by the fact that
the typical (gigaword) corpora in common use are com-
posed of literary and news text that are entirely devoid of
links and are, for the news portion, several years outdated.
The exhaustiveness of a crawl is also a secondary concern,
since there are far more pages than we can expect to be
able to analyze in any depth. This means that it is suf-
ficient to download any page just once, and we can have
near-zero tolerance toward buggy, intermittent pages: con-
nection timeouts and errorful http responses are sufficient
reason never to go to the page again. Also, the simplest
breadth-first algorithm has as good a chance to turn up lin-
guistically relevant pages as the more complex approaches
taken in large-scale crawlers.
Among the public domain crawlers, heritrix (see
http://crawler.archive.org) has been success-
fully utilized by Baroni and Kilgarriff (2006) to create
high quality gigaword corpora, achieving a crawl through-
put of 35 GB/day. Our own experience with heritrix,

nutch, and larbinwas that sustained rates in this range
are difficult to maintain. We had the best results the WIRE
crawler (Castillo, 2005), 8-10 GB/day sustained throughput
for domains outside .hu and nearly twice that for .hu (the
crawls were run from Budapest, see Halácsy et al 2008).
Our main loop is composed of three stages: management,
fetching, and parsing. Since most of the time is spent fetch-
ing, interleaving the steps could save little, and would en-
tail concurrency overhead. We manage three data sets:
downloaded URLs, forbidden URLs (those that have al-
ready displayed some error), and forbidden hosts (those
with dns resolution error, no route to host, host unreach-
able). We do not manage at all, let alone concurrently, link
data, recency of crawl per host, or URL ordering. This sim-
plifies the code enormously, and eliminates nearly all the
performance problems that plague heritrix, nutch,
larbin and other highly developed crawlers where clever
management of such data is the central effort. To speed up
name resolution (host,ip) pairs already resolved are stored
in a simple hash table, and we ignore issues of hosts with
multiple IPs and the existence of CNAMEs. The three lists
we maintain are read into memory once and written on disk
for the next stage, so nothing is ever overwritten. As a mat-
ter of fact, it is sufficient for the fetcher to simply append to
the list of downloaded URLs on disk, since duplicate elim-
ination (which is not a big issue here) can happen as part of
building the hash table on the next cycle.
The bulk of the time is spent fetching, and the efficiency
of the fetcher is due essentially to the tightly written
ocamlnet library, which was designed for high perfor-
mance from the ground up. We use asynchronous, non-
blocking I/O throughout, with callbacks that mesh well
with the functional paradigm. We keep a maximum of N (in
the range 1000-2000) connections open. Just as the WIRE
and larbin (Ailleret, 2003) crawlers, we use GNU ADNS
(Jackson and Finch, 2006), an asynchronous-capable DNS
client library to resolve IP address of unknown hosts. We
keep every resolved IP cached, ignoring changes and TTL
issues entirely. Asynchronous name resolution improves
speed by a factor of 10. Since the fetcher runs in a single
process (with OS-level callbacks), the downloaded HTML
file is simply appended to the tail of a large batch. In case of
errors (including the case when mime type is not text/html)
the URL is placed on the forbidden list. Because charset-
normalization is a step that cannot always be performed by
standard libraries, we prefer to save out the charset infor-
mation that is given in the http together with the original
text and perform the conversion at a later stage. This facil-
ity would actually be a very useful addition in crawlers like
WIRE or larbin which perform charset-normalization at
download time, especially if the target is a less commonly
taught language where the standard conversion libraries are
not mature.
The parse step locates <a href= and pulls out the fol-
lowing quoted string, normalizing this using the base URL
of the page. URLs containing angled brackets, question
marks, or space/tab/newline are discarded. It is the respon-
sibility of the management stage to detect duplicates, filter
out the forbidden URLs and hosts, and to organize the next
pass search in a manner that puts less load on smaller sites,

9

leveraging the built in ability of ocamlnet to serialize re-
quests to a single host.
Altogether, the effort to tailor the crawl to the need of lin-
guists pays off in notably improved throughput: instead of
the 35 GB/day reported in Baroni and Kilgarriff (2006),
nut has a sustained throughput of over 330 GB/day. This
number is largely delimited by bandwidth availability at the
Budapest Institute of Technology: nut is three times as fast
(over 20 GB/hour) at night than during the day (8 GB/hour).

2. Luc
In search engine work the assumption that the fundamen-
tal unit of retrieval is the document (downloaded page)
is rarely questioned. Yet in many classical IR/IE appli-
cations, books are broken up into chapters to be ranked
(and returned) separately, and in question answering it is
generally necessary to pinpoint information even more pre-
cisely, breaking documents down to the section, paragraph,
or even sentence level. In many linguistic applications the
objects of interest are the sentences, but for purposes of
morphological analysis we are also interested in systems
capable of responding to queries by single words or mor-
phemes. For the smallest elements it is tempting to keep
the entire dataset in main memory, but this would entail a
drastic loss of efficiency for corpora that go beyond a single
DVD: under more realistic query loads the system would
page itself to death.
The luc IR subsystem of GLB stands neutral on the size
or composition of the retrieved unit, but it assumes that in
the typical (non-cached) case it will take at least one disk
seek to get to it. At the 2GHz clock speeds and 10ms seek
latencies typical of contemporary hardware, one can easily
invert a 100x100 matrix the time it takes to fetch a single
disk block. Thus the name of the game is to minimize the
seeks, which means that all information about a retrieval
unit that is relevant for speeding up queries must be pre-
computed and stored in an index kept in memory. Luc lim-
its the size of the indexes to 4GB with the idea that at any
given time two copies (a working copy and one under up-
date/refresh) must stay in main memory. Since a billion
retrieval units (see our goal 2) will require four-byte point-
ers (seek offsets), the 4GB limit on indexes is very tight,
leaving no room for auxiliary indexes or meta-information
stored with the offset. But if such information cannot be
stored with the document pointer, how can it be accessed?
The key idea is to use the pointer itself, or more precisely,
the location of the pointer in memory, to encode this infor-
mation. We assume a small set of k dimensions, each di-
mension taking values in the [0,1] interval. Typical features
that could be encoded in such numbers include the page
rank of a document, the authority of the site it comes from,
the recency of the document, its normalized length, and so
on. In practice, none of these scales requires the granularity
provided by 64-bit floats, and there are many quantization
techniques we can use to arrive at a more compressed but
still useful representation. Without loss of generality, we
can assume that in any dimension values are limited to in-
tegers in the 0 to Mi range for i = 1 . . . k.
There are important retrieval keys, such as the presence of
a word w in a document, which require some encoding to

fit into the luc model. We rank words by DF (and within a
single DF, lexicographically) to arrive at a canonical order-
ing: in a typical gigaword corpus there will be on the order
of a million different words. A single document will be in-
dexed as many times as it has different words, so a gigaword
corpus will require perhaps a hundred million pointers (but
not more, since the per-document token multiplicities are
collapsed).
The entire index is conceptualized as a single k-
dimensional array with static bounds Mi. The main advan-
tage of this view is that pointers to documents that should
come early on the postings list are located close to the ori-
gin, and are accessible as k − 1 dimensional slices of the
original array. For example, if our query involves the terms
plane, of, immanence, it is the last word which has the high-
est IDF, and query execution may begin by fetching the
contents of the subarray that has the kth coordinate fixed
at the value assigned to this word. Since the index array is
very sparse, the key to fast execution is to compress it by
kd-tree techniques.
In the luc model the impact of the different dimensions
of classification on memory usage is similar to the impact
that building a secondary array would have, but this fact
is carefully hidden from the retrieval routines. For exam-
ple, if we wish our posting lists to contain not just words,
but POS-tagged words, the number of pointers per docu-
ment grows (assuming that not every token of a type gets
tagged the same way), and this impacts the size of the tree
that supports the sparse array. Once the meta-information
stored with a retrieval unit grows beyond 4 bytes, either in-
dex size cannot be kept at 4 GB or the number of retrieval
units per node must be curtailed. Either way, the design
aims squarely at what is likely to be the sweet spot in the
memory price/performance curve for the next decade or so,
with 8-16 GB DIMMs already reasonably cheap today and
64-128 GB machines likely to be commodity by 2020.

3. Conclusions
GLB is work in progress. Nut, the best developed com-
ponent, is already in the performance tuning stage. It is
currently capable of 50-200 URLs/sec, (20 MB/s download
bandwidth, more than what our network can sustain), which
we consider satisfactory for a single node, and large-grain
parallelization in had style is not complicated. At the time
of this writing nut still ignores robots.txt, but once
this antisocial behavior is fixed it will be ready for release
(planned by the time of the meeting) under LGPL.
Luc is in a more preliminary stage, especially as we strive
to optimize query execution. The design described above
is really optimized for the situations where the bulk of the
subselection work is carried by the partial ordering that is
encoded in any coordinate dimension. This works well for
IDF, recency, and all other examples described in the main
text, but falls short of the ideal of matching subtree-like
patterns in syntactic descriptions (parse structures) that is
explored in LSE. Realistically, we do not believe we can
keep as much information as a parse tree in memory for
each sentence and still maintain high performance charac-
teristics, but this is largely a question of encoding parse in-
formation efficiently in an array-based system.

10

While our current goal is to first support regular expres-
sion queries composed of lexical entries and POS tags (i.e.
the kind of queries familiar from IMS), and to respond to
the more complex LSE-type queries based on a regexp ‘sta-
pler’ (Bangalore, 1999), it is tempting to speculate how one
would go about supporting complex syntactic queries from
the get-go. The key issue is to encode syntactic relation-
ships in their own dimensions: for example, in a system
where “parse” means identifying the deep cases (Fillmore,
1968; Fillmore, 1977), a separate dimension would be re-
quired for each deep case, and even this would only help
encoding main clause syntax. Encoding subordination and
coordination would require further additions, and so would
modifiers, possessives, and other issues considered criti-
cal in parsing. The effective balance between complicat-
ing the storage structure and query execution time needs to
be tested carefully, and it may well turn out to be the case
that stapling (which amounts to query-time discarding of
false positives) is more effective than precomputing these
relationships at load time.
Finally, had is still in the early design stage. Again, bud-
get considerations are paramount: we expect neither thou-
sands of highly capable processors nor exabyte storage to
be available to GLB users. In fact, we expect no more than
some form of shared disk space (e.g. NFS crossmounts or
AFS). Tasks are expected to run on a single node for no
more than a few hours. Each node will run a demon that
can start a single task, and with the volume of task-related
transactions staying well below a thousand per hour a sin-
gle, central batch distributor is sufficient. We expect a rudi-
mentary but usable system to be available together with the
first release of nut.

Acknowledgments
We thank Dániel Varga (Budapest Institute of Technol-
ogy) for performing measurements on other crawlers, and
the anonymous referees for their penetrating remarks – re-
sponding to the issues they raised improved the draft sig-
nificantly.

4. References
Sebastien Ailleret. 2003. Larbin: Multi-purpose web

crawler.
Srinivas Bangalore. 1999. Explanation-based learning and

finite state transducers: Application for parsing lexical-
ized tree-adjoining grammars. In Andras Kornai, editor,
Extended finite state models of language, pages 160–192.
Cambridge University Press.

Marco Baroni and Silvia Bernardini. 2004. Bootcat: Boot-
strapping corpora and terms from the web. In Proceed-
ings of Language Resources and Evaluation Conference
(LREC04), pages 1313–1316. European Language Re-
sources Association.

Marco Baroni and Adam Kilgarriff. 2006. Large
linguistically-processed Web corpora for multiple lan-
guages. In Companion Volume to Proceedings of the Eu-
ropean Association of Computational Linguistics, pages
87–90, Trento.

Carlos Castillo. 2005. Effective Web Crawling. PhD The-
sis, Department of Computer Science, University of
Chile, Santiago.

Charles Fillmore. 1968. The case for case. In
E. BachandR. Harms, editor, Universals in linguistics
theory, pages 1–90. Holt and Rinehart, New York.

Charles Fillmore. 1977. The case for case reopened. In
P. ColeandJ. M. Sadock, editor, Syntax and Semantics 8:
Grammatical relations, pages 59–82. Academic Press,
New York.

Rayid Ghani. 2001. Combining labeled and unlabeled data
for text classification with a large number of categories.
ICDM, First IEEE International Conference on Data
Mining (ICDM’01), 01:597–.

Péter Halácsy, Andrá1s Kornai, Péter Németh, and Dániel
Varga. 2008. Parallel creation of gigaword corpora for
medium density languages – an interim report. In Pro-
ceedings of Language Resources and Evaluation Con-
ference (LREC08), page to appear. European Language
Resources Association.

Ian Jackson and Tony Finch. 2006. Gnu adns – advanced,
easy to use, asynchronous-capable DNS client library
and utilities.

Adam Kilgarriff. 2007. Googleology is bad science. Com-
putational Linguistics, 33(1):147–151.

Philip Resnik and Aaron Elkiss. 2005. The linguist’s
search engine: an overview. In ACL ’05: Proceedings of
the ACL 2005 on Interactive poster and demonstration
sessions, pages 33–36, Morristown, NJ, USA. Associa-
tion for Computational Linguistics.

11

Victor: the Web-Page Cleaning Tool

Miroslav Spousta, Michal Marek, Pavel Pecina

Institute of Formal and Applied Linguistics,
Charles University, Prague, Czech Republic
{spousta,marek,pecina}@ufal.mff.cuni.cz

Abstract
In this paper we present a complete solution for automatic cleaning of arbitrary HTML pages with a goal of using web data as a corpus
in the area of natural language processing and computational linguistics.We employ a sequence-labeling approach based on Conditional
Random Fields (CRF). Every block of text in analyzed web page is assigned a set of features extracted from the textual content and
HTML structure of the page. The blocks are automatically labeled either ascontent segmentscontaining main web page content, which
should be preserved, or asnoisy segmentsnot suitable for further linguistic processing, which should be eliminated. Our solution is based
on the tool introduced at the CLEANEVAL 2007 shared task workshop. In this paper, we present new CRF features, a handy annotation
tool, and new evaluation metrics. Evaluation itself is performed on a randomsample of web pages automatically downloaded from the
Czech web domain.

1. Introduction
The idea of using “web as a corpus” has been very attrac-
tive for many researchers in computational linguistics, nat-
ural language processing, and related areas, who would re-
ally appreciate having access to such amount of data. The
traditional way of building text corpora is a very expensive
and time-consuming process and does not satisfy current re-
quirements of modern methods. By automatic downloading
of textual data directly from the web we can build extremely
large corpus with relatively low cost and within short period
of time.
Creating such a corpus comprises two steps: a)web crawl-
ing – automatic browsing the web and keeping a copy of
visited pages and b)cleaningthe pages to be included in the
corpus. While there is a number of suitable web crawlers
available (e.g. Heritrix1, Holmes2 or Egothor (Galamboš,
2006)), challenging task to clean up acquired web pages re-
mains. Apart from main (linguistically valuable) content,
a typical web page contains also material of no linguistic
interest, such as navigation bars, panels and frames, page
headers and footers, copyright and privacy notices, adver-
tisements and other uninteresting data (often calledboiler-
plate). The general goal is to detect and remove such parts
from an arbitrary web page.
In this paper we describe a complete set of tools that en-
ables transformation of a large number of web pages down-
loaded from the Internet into a corpus usable for NLP and
computational linguistic research. The basis of our solu-
tion is the web-page cleaning tool first introduced at the
CLEANEVAL 2007 shared task workshop (Marek et al.,
2007). In order to approach structure of traditional corpora,
we significantly modified the cleaning requirements and re-
stricted the set of possible labels totextandheaderfor con-
tent segmentsto be preserved andother for noisy segments
to be eliminated.
First, we review the cleaning algorithm and its features,
then we introduce an annotation tool developed for our pur-
pose to prepare data for training and evaluation, and finally

1http://crawler.archive.org/
2http://www.ucw.cz/holmes/

we present several experiments and their results. Our fo-
cus on the Czech language (mainly in the evaluation sec-
tion) is induced by an intention to create a large Czech cor-
pus, comparable to the largest corpora currently available.
Needless to say, our tools are language independent and can
be used for any language.

2. Related Work

Most of the work related to web page cleaning originated
in the area of web mining and search engines, e.g. (Coo-
ley et al., 1999) or (Lee et al., 2000). In (Bar-Yossef and
Rajagopalan, 2002), a notion of pagelet determined by the
number of hyperlinks in the HTML element is employed to
segment a web page; pagelets whose frequency of hyper-
links exceeds a threshold are removed. (Lin and Ho, 2002)
extract keywords from each block content to compute its
entropy, and blocks with small entropy are identified and
removed. In (Yi et al., 2003) and (Yi and Liu, 2003), a
tree structure is introduced to capture the common presenta-
tion style of web pages and entropy of its elements is com-
puted to determine which element should be removed. In
(Chen et al., 2006), a two-stage web page cleaning method
is proposed. First, web pages are segmented into blocks
and blocks are clustered according to their style features.
Second, the blocks with similar layout style and content are
identified and deleted.

Many new approaches to web page cleaning were encour-
aged by the CLEANEVAL 2007 contest3 organized by
ACL Web as Corpus interest group. Competitors used
heuristic rules as well as different machine learning meth-
ods, including Support Vector Machines (Bauer et al.,
2007), decision trees, genetic algorithms and language
models (Hofmann and Weerkamp, 2007). Although meth-
ods are fundamentally different, many of them employ sim-
ilar set of mostly language-independent features such as av-
erage length of a sentence or ratio of capitalized words in a
page segment.

3http://cleaneval.sigwac.org.uk/

12

3. Victor the Cleaner
3.1. System Overview
Our system for web page cleaning, first described in (Marek
et al., 2007), is based on a sequence labeling algorithm with
CRF++4 implementation of Conditional Random Fields
(Lafferty et al., 2001). It is aimed at cleaning arbitrary
HTML pages by removing all text except headers and main
page content. Continuous text sections (sections not in-
cluding any HTML tags) are considered a singleblock that
should be marked by a label as a whole.
The cleaning process consists of several steps:

1) Filtering invalid documents
Text from input documents is extracted and simple n-gram
based classification is applied to filter out documents not in
a target language (Czech in our case) as well as documents
containing invalid characters (caused mainly by incorrect
encoding specified in HTTP or HTML header).

2) Standardizing HTML code
The raw HTML input is passed through Tidy5 in order to
get a valid and parsable HTML tree. During development,
we found only one significant problem with Tidy, namely
interpreting JavaScript inside the<script> element, and
employed a simple workaround for it in our system. Except
for this particular problem which occurred only once in our
training data, Tidy has proved to be a good choice.

3) Precleaning
Afterwards, the HTML code is parsed and parts that are
guaranteed not to carry any useful text (e.g. scripts, style
definitions, embedded objects, etc.) are removed from the
HTML structure. The result is valid HTML code.

4) Text block identification
In this step, the precleaned HTML text is parsed again
with a HTML parser and interpreted as a sequence of text
blocksseparated by one or more HTML tags. For exam-
ple, the snippet“<p>Hello world!</p>”
would be split into three blocks,“Hello” , “world” , and
“!” . Each of the blocks is then a subject of the labeling
task and cleaning.

5) Feature extraction
In this step, a feature vector is generated for each block.
The list of features and their detailed description is pre-
sented in the next section. All features must have a finite
set of values6. The mapping of integers and real numbers
into finite sets was chosen empirically and is specified in
the configuration. Most features are generated separately
by independent modules. This allows for adding other fea-
tures and switching between them for different tasks.

6) Learning
Eachblockoccurring in our training data was manually as-
signed one of the following labels:header, text (content
blocks) or other(noisy blocks).

4http://crfpp.sourceforge.net/
5http://tidy.sourceforge.net/
6This is a limitation of the CRF tool used.

The sequence of feature vectors including labels extracted
for all blocks from the training data are then transformed
into the actual features used for training the CRF model ac-
cording to offset specification described in a template file.

7) Cleaning
Having estimated parameters of the CRF model, an arbi-
trary HTML file can be passed through steps 1–4, and its
blocks can be labeled with the same set of labels as de-
scribed above. These automatically assigned labels are then
used to produce a cleaned output. Blocks labeled asheader
or text remain in the document, blocks labeled asotherare
deleted.

3.2. Feature Descriptions
Features recognized by the system can be divided by their
scope into three subsets: features based on the HTML
markup, features based on textual content of the blocks, and
features related to the document.

Markup-based Features
container.p, container.a, container.u, container.img,

container.class-header,
container.class-bold, container.class-italic,

container.class-list, container.class-form

For each parent element of a block, a corresponding
container.*feature will be set to 1, e.g. a hyperlink in-
side a paragraph will have the featurescontainer.pand
container.aset to 1. This feature is especially useful
for classifying blocks: For instance a block contained
in one of the<hx> elements is likely to be a header,
etc. Thecontainer.class-*features refer to classes of
similar elements rather than to elements themselves.

split.p, split.br, split.hr, split.class-inline, split.class-block

For each opening or closing tag encountered since the
last block, we generate a correspondingsplit.* feature.
This is needed to decide, whether a given block con-
nects to the text of the previous block (classified as
continuation) or not. Also, the number of encountered
tags of the same kind is recorded in the feature. This
is mainly because of the
 tag; a single line break
does not usually split a paragraph, while two or more

 tags usually do. Thesplit.class-*features again
refer to classes of similar elements.

Content-based Features
char.alpha-rel, char.num-rel, char.punct-rel, char.white-

rel, char.other-rel

These features represent the absolute and relative
counts of characters of different classes (letters, dig-
its, punctuation, whitespace and other) in the block.

token.alpha-rel, token.num-rel, token.mix-rel, token.other-
rel token.alpha-abs,

token.num-abs, token.mix-abs, token.other-abs

These features reflect counts distribution of individual
classes of tokens7. The classes are words, numbers,
mixture of letters and digits, and other.

7Tokens being sequences of characters separated by whites-
pace for this purpose.

13

sentence.count

Number of sentences in a block. We use a naive algo-
rithm basically counting periods, exclamation marks
and question marks, without trying to detect abbrevi-
ations. Given that the actual count is mapped into a
small set of values anyway, this does not seem to be a
problem.

sentence.avg-length

Average length of a sentence, in words.

sentence-begin, sentence-end

These identify text blocks that start or end a sentence.
This helps recognizing headers (as these usually do
not end with a period) as well as continuation blocks
(sentence-end=0in the previous blocks andsentence-
start=0 in the current block suggest a continuation).

first-duplicate, duplicate-count

The duplicate-countfeature counts the number of
blocks with the same content (ignoring white space
and non-letters). The first block of a group of twins is
then marked withfirst-duplicate. This feature serves
two purposes: On pages where valid text interleaves
with noise (blogs, news frontpages, etc), the noise of-
ten consists of some phrases like “read more...”, “com-
ments”, “permalink”, etc, that repeat multiple times on
the page.

regexp.url, regexp.date, regexp.time

While we try to develop a tool that works inde-
pendently of the human language of the text, some
language-specific features are needed nevertheless.
The configuration defines eachregexp.*feature as an
array of regular expressions. The value of the feature
is the number of the first matching expression (or zero
for no match). We use two sets of regular expressions:
to identify times and dates and URLs.

div-group.word-ratio, td-group.word-ratio

The layout of many web pages follows a similar pat-
tern: the main content is enclosed in one big<div> or
<td> element, as are the menu bars, advertisements
etc. To recognize this feature and express it as a num-
ber, the parser groups blocks that are direct descen-
dants of the same<div> element (<td> element re-
spectively). A direct descendant in this context means
that there is no other<div> element (<td> element
respectively) in the tree hierarchy between the parent
and the descendant. For example in this markup

<div> a <div> b c </div> d <div> e
f </div> g </div>

the div-groups would be (a, d, g), (b,c) and (e, f).
Thediv-group.word-ratioandtd-group.word-ratioex-
press the relative size of the group in number of words.
To better distinguish between groups with noise (e.g.
menus) and groups with text, only words not enclosed
in <a> tags are considered.

langid1, langid2

These new features represent a probability that a text
block is in given language (Czech in our experiment).
We used our own implementation of two Language ID
approaches: (Beesley, 1988) and (Cavnar and Trenkle,
1994).

Document-related features

position

This feature reflects a relative position of the block
in the document (counted in blocks, not bytes). The
rationale behind this feature is that parts close to the
beginning and the end of documents usually contain
noise.

document.word-count, document.sentence-count,
document.block-count

This feature represents the number of words, sen-
tences and text blocks in the document.

document.max-div-group, document.max-td-group

The maximum over alldiv-group.word-ratioand a
maximum over alltd-group.word-ratiofeatures. This
allows us to express “fragmentation” of the document
– documents with a low value of one of these features
are composed of small chunks of text (e.g. web bul-
letin boards).

4. The Annotation Tool
In order to enable fast and efficient annotation of the web
page text blocks we developed a new annotation tool. Our
aim was to offer a possibility to see the web page in a simi-
lar fashion to regular web browsing. This greatly simplifies
the process of selection of the most important parts of given
web page and distinguishing important text passages from
other page sections.
Our annotation tool is a client–server based application us-
ing common web browser and JavaScript for the web page
annotation on the client side and PHP based server applica-
tion for serving pages to the client and storing current user
annotation judgments.
The tool accepts either a list of HTML pages for annotation
or a list of URLs to be downloaded and annotated. A simple
pre-processing is applied for every web page before it can
be annotated: all JavaScript is stripped and links are dis-
abled so that annotator cannot accidently exit current web
page.
The annotation process is quite straightforward (see Fig-
ure 1): user chooses a label selecting appropriate button
and marks text blocks by clicking on the beginning and end
of the text section to be marked. Different colors are used
for every annotation label. Current annotation mark-up is
stored on the server and can be easily retrieved and merged
into the original HTML document when the annotation is
finished.
We found that using a web browser for annotation signif-
icantly improves the annotation speed compared to using
word processor or simple text based selection tool. The ma-
jor speed up is due to the fact that not all the blocks must be

14

Figure 1: The annotation tool: browser window is split into two parts: narrow upper frame is used for annotation control,
lower frame contains the page to be annotated. Current annotation is shown using different colors for every label.

judged and annotated — remaining unannotated blocks are
implicitly classified asother. Our volunteer annotator was
able to achieve speed of 200 web pages per hour.

5. Evaluation
5.1. Data preparation

In order to perform the cleaning task, we have to train the
Conditional Random Fields algorithm on the data from pre-
annotated web pages. For training and evaluation purposes,
we selected a random sample of 2 000 web pages from the
data set downloaded using the Egothor search engine robot
(Galamboš, 2006) from the Czech web domain (.cz).
Large proportion of downloaded pages contains only
HTML mark-up with none or very small amount of tex-
tual information (root frames, image gallery pages, etc.).
In addition, many pages use invalid character encoding or
contain large passages in a language different from our tar-
get language. In order to exclude such pages from further
processing, we apply a Language ID filter. Each page is as-
signed a value which can be interpreted as a probability of
the page being in Czech. Pages not likely to be in Czech are
discarded. We used our own implementation of Language
ID methods by Beesley (1988) and Cavnar and Trenkle
(1994). Out of 2 000 web pages, only 907 were accepted
as reasonable documents containing non-trivial amount of
Czech text.
All documents were annotated using our HTML annota-
tion tool described in the previous section. We provided
only short annotation guidelines, discouraging a markup of
short, incomplete sections of the text (product descriptions,
lists of items, discussions) and only marking headlines be-
longing to already selected text sections. All non-annotated

text blocks are considered to be labeled asother.
According to the annotation, only 271 (29.9%) documents
contained text blocks with useful content (text and headers)
to be preserved. Complete overview of the label distribu-
tion can be found in Table 1.

label count %

header 1 009 1.14
text 5 571 6.32
other 81 528 92.53
total 88 108 100.00

Table 1: Label distribution in the development data set.

5.2. Experiments and Results

Following our experience from the CLEANEVAL 2007 we
found that computation of Levensthein algorithm for eval-
uation of cleaning results is usually very expensive. Our
approach of labeling consequent text blocks suggests an
accuracyas a measure of success for our task – the ratio
of correctly assigned labels. If we do not want differentiate
between blocks labeled astext or header(they are equally
good for our purposes and we would like them to be in-
cluded in our corpus) we can use alsounlabeled accuracy.
In our first experiment we used 271 manually annotated
pages containing at least one content block (labeled either
as text or header). Running a 10-fold cross-evaluation on
such data we were able to achieve accuracy of 91.13% and
unlabeled accuracy of 92.23%. This number, however, does
not tell much about quality of cleaning because of the dis-
crepancy in proportion of content (text, header) and noise

15

(other) blocks in our data (see table 1) which could be ex-
pected also in real pages downloaded from the web. A triv-
ial algorithm assigningother label to all blocks performs
with accuracy even higher (92.53)%.

Precision and Recall

In such cases, usingprecisionandrecall measures would be
more appropriate. We do not differentiate between blocks
labeled astextor header(they are equally good for our pur-
poses and we would like them to be included in our corpus)
and defineprecisionandrecall as follows:

Precision=

THcorrect

THlabeled

Recall=
THcorrect

THannotated

whereTHcorrect refers to a number of correctly labeled con-
tent blocks8, THlabeled is the total number of labeled con-
tent blocks andTHannotatedis the total number of all blocks
annotated as content blocks (textor header).
Precision and recall scores of our first experiment are
shown in the first column of the table bellow. We can expect
the pages to be cleaned with 80.75% precision and 79.88%
recall, i.e. 19.25% of blocks in the cleaned data are noise
and we miss 21.12% of content blocks that should be pre-
served.

using LangID no yes

Text/Header/Other
Accuracy 91.13 90.82
Text+Header/Other
Accuracy 92.23 91.84
Precision 80.75 83.80
Recall 79.88 72.95

Table 2: Effect of Language ID features.

Language ID features

In the next experiment we evaluated the Language ID fea-
tures newly used by the CRF component of our system and
representing probability that a text block is in given lan-
guage (see section 3.2.). As it can be seen in the second
column of Table 2, using these features we were able to
increase the precision up to 83.8%.

Balancing Precision and Recall

The huge number of texts available on the web even for
relatively rare languages such as Czech, enables us to focus
on acquisition of high quality data only. In other words, we
prefer high-precision cleaning procedure to the high-recall
one.
While CRF algorithm does not offer a direct method to fine-
tune precision and recall trade-off, we propose an alterna-
tive approach to achieve this. For every block, it is possible

8Textblocks mislabeled asheaderand vice versa are counted
too.

to obtain marginal probability assigned to all possible la-
bels. In common sequence-labeling scenario, the label with
highest probability wins, not matter what is a distribution
of other labels’ probabilities. In order to achieve higher
precision, we only allowtext andheaderlabels to win if
probability ofother label is under given threshold. Figure 2
illustrates, that we are really able to achieve arbitrary pre-
cision by giving preference to theother label.

0.0 0.1 0.2 0.3 0.4 0.5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

’Other’ threshold

Precision
Recall

Figure 2: Precision and recall graph obtained by setting
the threshold value ofother label in the interval [0, 0.5].
Default value of the threshold is 0.5.

training data size (documents) 271 907

Text/Header/Other
Accuracy 91.13 95.92
Text+Header/Other
Accuracy 92.23 96.15
Precision 80.75 74.78
Recall 79.88 66.95

Table 3: Results of 10-fold cross-evaluation on 271 anno-
tated documents (containing at least one block marked as
textor header) and entire set of 907 annotated documents.

The last experiment we performed was a comparison of two
systems: the one as in the first experiment trained on the
271 manually annotated pages containing at least one con-
tent block (labeled either astext or header) and the other
(more real) one trained on all 907 manually annotated pages
that passed the Language ID test. The performance of these
two systems can be compared only in terms of precision and
recall (the number of content blocks remains the same, but
number of the noise blocks is much higher for the latter sys-
tem). As it is shown in Table 3 the additional low quality
data added to the second systems significantly hurt its per-
formance. Precision dropped from 80.75% to 74.78% and
recall from 79.88% to 66.95%. We can conclude that the
precleaning step where the low-quality web pages (naviga-

16

tional, image-only, etc.) are removed completely, should be
improved.
The speed of the cleaning tool is about 3.5 pages (80 kB)
per second. Approximate time for cleaning entire web data
set we have (30 million web pages) is 10 days on 10 com-
mon CPU cores. We didn’t perform this task yet, though.

6. Conclusion and Further Work
We presented a complete solution for cleaning the web
pages content, including annotation tool and evaluation
metrics. However, this is still an ongoing work and we
will continue in research of this challenging task. Cur-
rent versions of our tools are available for download at
http://ufal.mff.cuni.cz/victor/ .
In the near future, we would like to focus also on real ap-
plications – to compare traditional corpora with our web-
based corpus using a task that requires large textual data.
For Czech, we propose an experiment to compare perfor-
mance of Czech part-of-speech tagger trained using unsu-
pervised training (Spoustová, 2008) on the data obtained
from the cleaned web pages and data from the Czech Na-
tional Corpus (Institute of Czech National Corpus, 2005).

Acknowledgments
This work has been supported by the Ministry of Education
of the Czech Republic, project MSM 0021620838 and the
Czech Science Foundation, project 201/05/H014.
We would like to thank Dr. Leo Galamboš for allowing
us to obtain the web data and our anonyMouse volunteer
annotators for their effort.

7. References
Ziv Bar-Yossef and Sridhar Rajagopalan. 2002. Template

detection via data mining and its applications. InWWW
’02: Proceedings of the 11th international conference on
World Wide Web.

Daniel Bauer, Judith Degen, Xiaoye Deng, Priska Herger,
Jan Gasthaus, Eugenie Giesbrecht, Lina Jansen, Christin
Kalina, Thorben Krüger, Robert Märtin, Martin Schmidt,
Simon Scholler, Johannes Steger, Egon Stemle, and Ste-
fan Evert. 2007. Fiasco: Filtering the internet by au-
tomatic subtree classification. InProceedings of the
Web as Corpus Workshop (WAC3), Cleaneval Session,
Louvain-la-Neuve, Belgium.

K. Beesley. 1988. Language identifier: A computer pro-
gram for automatic natural-language identification on
on-line text.

William B. Cavnar and John M. Trenkle. 1994. N-gram-
based text categorization. InProceedings of SDAIR-94,
3rd Annual Symposium on Document Analysis and Infor-
mation Retrieval, Las Vegas, US.

Liang Chen, Shaozhi Ye, and Xing Li. 2006. Template de-
tection for large scale search engines. InSAC ’06: Pro-
ceedings of the 2006 ACM symposium on Applied com-
puting, Dijon, France.

Robert Cooley, Bamshad Mobasher, and Jaideep Srivas-
tava. 1999. Data preparation for mining world wide web
browsing patterns.Knowledge and Information Systems.

Leo Galamboš. 2006. Egothor, full-featured text search en-
gine written entirely in java. http://www.egothor.org/.

Katja Hofmann and Wouter Weerkamp. 2007. Web corpus
cleaning using content and structure. InProceedings of
the Web as Corpus Workshop (WAC3), Cleaneval Ses-
sion, Louvain-la-Neuve, Belgium.

Institute of Czech National Corpus. 2005.Český národní
korpus – SYN2005. http://ucnk.ff.cuni.cz/.

John Lafferty, Andrew McCallum, and Fernando Pereira.
2001. Conditional random fields: Probabilistic models
for segmenting and labeling sequence data. InProc. 18th
International Conf. on Machine Learning. Morgan Kauf-
mann, San Francisco, CA, USA.

Mong-Li Lee, Tok Wang Ling, and Wai Lup Low. 2000.
Intelliclean: a knowledge-based intelligent data cleaner.
In Knowledge Discovery and Data Mining.

Shian-Hua Lin and Jan-Ming Ho. 2002. Discovering in-
formative content blocks from web documents. InPro-
ceedings of the ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining (KDD-2002),
Edmonton, Alberta, Canada.

Michal Marek, Pavel Pecina, and Miroslav Spousta. 2007.
Web page cleaning with conditional random fields. In
Proceedings of the Web as Corpus Workshop (WAC3),
Cleaneval Session, Louvain-la-Neuve, Belgium.

Drahomíra "johanka" Spoustová. 2008. Combining statis-
tical and rule-based approaches to morphological tag-
ging of czech texts.To appear in Prague Bulletin of
Mathematical Linguistics, 89.

Lan Yi and Bing Liu. 2003. Web page cleaning for web
mining through feature weighting. InProceedings of
Eighteenth International Joint Conference on Artificial
Intelligence (IJCAI-03), Acapulco, Mexico.

Lan Yi, Bing Liu, and Xiaoli Li. 2003. Eliminating noisy
information in web pages for data mining. InProceed-
ings of the ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining (KDD-2003),
Washington, DC, USA.

17

Segmenting HTML pages using visual and semantic information

Georgios Petasis, Pavlina Fragkou, Aris Theodorakos, Vangelis Karkaletsis, Constantine D.
Spyropoulos

Software and Knowledge Engineering Laboratory,
Institute of Informatics and Telecommunications,

National Centre for Scientific Research (N.C.S.R.) “Demokritos”,
P.O. BOX 60228, Aghia Paraskevi,

GR-153 10, Athens, Greece.
e-mail: {petasis, fragou, artheo, vangelis, costass}@iit.demokritos.gr

Abstract
The information explosion of the Web aggravates the problem of effective information retrieval. Even though linguistic approaches
found in the literature perform linguistic annotation by creating metadata in the form of tokens, lemmas or part of speech tags, however,
this process is insufficient. This is due to the fact that these linguistic metadata do not exploit the actual content of the page, leading to
the need of performing semantic annotation based on a predefined semantic model. This paper proposes a new learning approach for
performing automatic semantic annotation. This is the result of a two step procedure: the first step partitions a web page into blocks
based on its visual layout, while the second, performs subsequent partitioning based on the examination of appearance of specific types
of entities denoting the semantic category as well as the application of a number of simple heuristics. Preliminary experiments
performed on a manually annotated corpus regarding athletics proved to be very promising.

1. Introduction
Nowadays, the vast amount of information available in
the Web remains in a considerable degree an unexploited
thesaurus of knowledge resources. This is due to the fact
that, even though proposed methods for performing fast
search, clever ranking, data analysis and web page
indexing proved to be highly effective, the actual content
of the web pages is very poorly exploited. In order to face
this challenge, a number of approaches have been
proposed, which try to attach metadata to web pages,
annotating them with linguistic or even semantic
information. Linguistic metadata typically involve the
identification of tokens, part of speech tags, stems,
lemmas and other syntactic information. However, these
metadata are not enough if an in depth analysis of the
content is required, in order to interpret and extract the
facts and events described by the content. Effective
content processing requires the presence of semantic
metadata, which can be extremely useful for the efficient
retrieval, extraction and interpretation of the information
contained into a web page. In addition, it may help in
overcoming problems such as search engine duplicate
results elimination, efficient query refinement and high
precision answering. Being a resource demanding and
time consuming process, semantic annotation needs to be
automated as much as possible through the automatic
acquisition of semantic metadata according to a
predefined semantic model.

An important subtask of semantic annotation is the
semantic segmentation. Semantic segmentation can be
defined as the task of identifying parts of a web page that
refer to the same fact/event (topic), as defined by a
semantic model. For example, web pages of a news portal
may contain multiple news items on a single page, while
pages from an electronic shop can contain multiple
product descriptions per page. Semantic segmentation

must disambiguate these multiple instances into areas
describing a single item, by extracting and subsequently
annotating the “semantic” structure of a web page with
predefined categories (such as “news item” or “product”)
according to a predefined semantic model. Various
subtasks of information extraction can benefit from the
results of semantic segmentation. Tasks like named entity
recognition may benefit less, as they usually can be
performed on a web page as a whole. However task like
co-reference resolution and relation extraction can benefit
more, as they can be applied in more confined areas that
are semantically “coherent”, possibly limiting erroneous
relations and thus increasing performance.

In this paper we present a novel method which
performs automatic semantic segmentation on web pages.
Most specifically, our method partitions the text on a web
page into blocks, which refer to a single topic, and
annotates identified blocks with predefined, domain
specific, categories. The partitioning is based not only on
the visual layout of a web page but also on information
related to the distribution of named entity instances in the
page. Starting from a detailed visual segmentation, the
proposed method follows a two staged approach. During
the first stage, a set of heuristics is applied to transform
the visual segmentation into an initial semantic
segmentation. This initial semantic segmentation is
refined during the second stage by exploiting the
distribution of named entities, with the help of a machine
learning algorithm.

Preliminary results obtained from a manually
annotated corpus about athletics, show that the
segmentation performed by using information from
named entities clearly outperform the segmentation that
exploits only visual information, even if visual
information is combined with heuristics, in order to
increase its performance. The exploitation of the
distribution of named entities, which is one of the main

18

innovative aspects of the presented approach, appears to
significantly improve segmentation performance over
heuristics that are frequently employed for the task. In
addition, the elimination of the heuristics lead to a more
adaptable system, as usually these heuristics are domain
specific and quite often site specific. Finally, the
importance of our work lies on the fact that it can be easily
applied to a number of web-driven applications such as
search engines, web-based question answering,
web-based data mining as well as voice enabled web
navigation.

The structure of the present paper is as follows. Section
2 provides an overview of related work found in the
literature, Section 3 provides a description of the research
project under which the aforementioned work took place
as well as a detailed description of our proposed method,
Section 4 provides experimental results while Section 5
provides conclusion results as well as future steps.

2. Related Work
Research approaches found in the literature use a variety
of methods to accomplish the identification of the
structure of a web page i.e. page segmentation in order to
perform automatic semantic segmentation. A family of
methods perform automatic extraction of segments i.e.
blocks by defining appropriate patterns or grammars that
contain the target data in web pages usually conforming to
a common schema and repeating pattern mining or
adopting pattern matching and string alignment
techniques to refine extraction rules (Zhai and Liu, 2005;
Zhai and Liu, 2006. Crescenzi et al, 2001; Crescenzi et al.,
2002; Arasu and Garcia-Molina, 2003; Chang and Kuo,
2004; Chang et al., 2003). Such methods usually require
(labeled or unlabelled) training examples. A second
family of methods is based on machine learning requiring
human labeling from each Web site that is interested in
extracting data from (Kushmerick, 2000; Hsu and Dung,
1998; Muslea et al., 1999). Recent approaches (Wu et
al.,2006; He et al., 2005; Song et al., 2004; Feng et al.,
2005; Yang et al., 2006; Wang and Richard, 2007) also
exploit the visual layout of a web page by looking in more
depth in the actual structure of a web page. Such
approaches are based on the observation that, blocks of
interest usually appear in the central-main region of the
web page and most specifically exhibit similar visual
appearance. The exploitation of the structure of a web
page is either performed in a “flat” manner i.e. by
searching for repeated sequences of html tags or in a
“hierarchical” manner by exploiting the DOM tree 1or tag
tree of the page. Blocks of interest are retrieved by
exploiting the nodes of the tree and by applying heuristic
rules, tree pattern matching, by examining the
geometrical layout of the leaf nodes, linguistic features,
spatial features (such as the position and size) and content
features (such as the number of images and links) that are
used to construct a feature vector for each block. The
feature vector of each block is in his turn being used to
train a model to assign importance to each block in the

1 The Document Object Model (DOM) is an application
programming interface (API) for valid HTML and well-formed
XML documents. It defines the logical structure of documents
and the way a document is accessed and manipulated.

web page. Alternative approaches exploit the attributes of
the DOM tree. Those approaches try to attribute a block
importance value based on the existence of block features,
spatial cues as well as on heuristic rules. They
alternatively try to attribute a block importance value by
defining content splitting delimiters that are applied in the
DOM tree in order to create block nodes that are refined
based on cue phrases appearing in the anchor text.

One among the most promising approaches is the one
implemented by the VIPS algorithm (Cai et al., 2003;
www.ews.uiuc.edu/~dengcai2/VIPS/VIPS.html) which
tries to segment a web page by exploiting its visual layout
after its rendering in a web browser. Using the visual
information stored by the web browser into the DOM tree,
VIPS identifies the segments that cover large areas of the
rendered web page and then tries to find from the visual
representation of the page horizontal or vertical lines that
separate these segments. Separators denote the horizontal
or vertical lines in a web page without visually crossing
with blocks. The vision-based content structure of the
page is constructed by recursively segmenting the already
processed segments, while the granularity of
segmentation can be controlled through a threshold that
represents the coherence of the segment’s content. A
variation of the VIPS algorithm introduce an additional
criterion i.e. the Degree of Isolation (Li et al., 2005) to
describe the difference between a block and its other
siblings and use language modeling to estimate a model
for each block.

3. Method
The majority of existing algorithms works well in
recognizing the visual layout of a web page. However,
this proves to be insufficient for the semantic annotation,
which requires semantic segmentation. Such produced
metadata may be useful to create an effective
representation of a web page to assist in tasks such as
information retrieval, query refinement and information
extraction. This is due to the fact that, for example, the
information extraction’s purpose is to identify segments
of text containing semantic information, i.e. instances of
named entities and relations. The identification of such
instances and relations is more effective when it is
performed into page segments describing a single event or
“topic” instead of the whole page.

The method presented here goes a step further by
making use of non-visual information for improving web
page segmentation in order to be more compatible with
semantic metadata information. More specifically we
present a method consisting of two stages, which can act
independently, in order to segment HTML web pages
using visual and semantic information. As a first step, the
VIPS visual segmentation algorithm is applied in order to
visually segment each page as thorough as possible. With
the help of heuristics applied on the results of visual
segmentation, basic building blocks such as columns,
paragraphs, headings, tables, headers and footers are
identified.

As a subsequent step, the distribution of named entities
in the text of a web page is exploited, in order to
semantically segment the page. A named entity recognizer
that can handle the domain of the web page is applied on
the page. Then, with the use of machine learning, entities
that can be attributed to refer to the same topic, are

19

grouped together. These groups form the basis for
semantically segmenting the page, by classifying basic
building blocks obtained during visually based
segmentation that contain an entity group into the same
semantic segment. Grouping is achieved by capturing the
relations between named entity instances, as those are
defined by a semantic model. Grouping is performed by
the use of a machine learning algorithm which takes as
input a web page and creates a representation containing
special and proximity relations between named entity
instances appearing in parts of texts. Such relations are
not captured by single repetition of the same value if
named entity instances. Relation instances of interest are
identified by searching for repetition of specific types of
named entity instances with respect to other ones. New
topics may be also be identified by novel instances of
predefined types of named entities. The result of the
implementation of the machine learning algorithm on a
web page is its segmentation into “semantic segments”
according to the BOEMIE semantic model.

3.1 Visual segmentation with the use of heuristics
The first stage of our method, which is based on heuristics
operating on the results of visual segmentation, tries to
identify a web page’s content structure by exploiting
spatial attributes such as relevant position or size. The
VIPS algorithm is applied, in order to perform a thorough
segmentation based solely on visual information. The
segmentation detail is controlled through the granularity
parameter of VIPS, which controls the coherence of
identified segments based on visual perception. By using
the maximum granularity value, this process aims to
identify the smallest possible visual segments, which will
be concatenated through simple heuristics to form the
basic building blocks, such as headers, footers, columns,
headings, paragraphs, tables, images and captions. VIPS
uses placement and size information, placed by a web
browser in the DOM tree nodes that correspond to visual
structures, in order to annotate the DOM tree with
segment information. From the resulting DOM tree, our
method tries to identify the “main” or “central” region of a
page, usually denoted by the wider column whose length
occupies a significant percentage of the total page length.
In the majority of cases this column is represented by the
<td> HTML tag, but in cases where this assumption fails,
the DOM tree node having the greatest text length (in
characters) is used instead. After detecting the main
region, the leaves of the sub-tree of the main region node
that contain at least some text are examined in order to
detect titles and paragraphs. The assumption is that such
nodes have maximum coherence since they were
retrieved at the final level of VIPS segmentation. Leaves
which correspond to image captions or contain linked text
only are omitted in order to result in a set of nodes
appearing in the main region and contain only text i.e.
nodes that are either titles or paragraphs. In order to
identify such cases the following heuristics were applied:
(a) if the text of the node is up to 5 words, it is considered
as a title (b) if it contains more than 20 words it is
considered as a paragraph (c) if it contains a number of
words in the range from 6 to 20 words, it is considered as
a paragraph in case it ends with a dot, otherwise it is
considered as a title. The procedure finishes after all
possible nodes have been parsed, while the output

consists of the identified titles and paragraphs.
The choice of the aforementioned heuristics is based on

results obtained from the observation of web pages
contained in the corpus at our disposal regarding athletics,
as well as the statistical calculation of the number of
words appearing in titles and paragraphs in each of those
pages.

3.2 Transforming visual segments into semantic
segments
While the first stage of our method focuses on the
exploitation of spatial attributes, the second one is
focused on identifying segments which describe the same
topic, with respect to the thematic domain of a web page.
For example, in pages containing news about athletic
events, the semantic model of the domain may dictate the
recognition of segments describing a single sport
competition, in a page describing all sport competitions
that took place in a specific event date. Topic
segmentation is accomplished by parsing titles and
paragraphs in order to identify changes in the frequency
of appearance and distribution of specific types of named
entities, adopting a machine learning approach. The
assumption here is that the presence of specific types of
entity instances as well as the repetition of some of them
may prove to be determinative for the presence of the
same topic. Consequently, the change of the instance
values of specific types of entities may signal change of
topic. Spatial and proximity information of named entity
instances play a major role to the signaling of the presence
or change of the same topic.

In order to perform segmentation, a semi-supervised
machine learning approach is followed, which, given an
unknown web page, it tries to identify portions of texts
that refer to a single topic. This identification is based on
an already learned model. To construct such as model, a
number of manually annotated web pages with the desired
semantic segments are used to form a training corpus.
Each page belonging to the training corpus is processed in
order to form one or more feature vectors each of which
represents a different topic. A feature vector is constructed
for every title or paragraph containing those features that
may signal the existence or not of the same topic. The
feature vector contains information regarding the type of
the node and the frequency of occurrence of named
entities in the node. While all identified types of named
entities can be used in the vector, a reduction of the used
types is also possible, if some types can be identified as
being more important than others in advance. For
example in the athletics domain, if topic is assumed to be
news about sport competitions, entities like sport names,
athlete names and gender of athletes can be more
significant for the task, than entities like locations or
nationalities. Each feature vector also contains contextual
information, by containing the equivalent information
found into previous node(s). The feature vector finally
contains the number of common named entity instance
values with those of the previous node(s).

3.3 Case study: the BOEMIE R&D project
The proposed semantic segmentation method has been
applied in the context of the BOEMIE (Bootstrapping
Ontology Evolution with Multimedia Information
Extraction) R&D project (http://www.boemie.org).

20

BOEMIE implements ontology-based information
extraction systems which extract metadata information
compliant to an ontology from multimedia content
regarding athletic events. Driven by domain-specific
multimedia ontologies, the BOEMIE information
extraction system is able to identify high-level semantic
features in images, videos, audios and texts, and then fuse
modality specific extracted information to interpret
multimodal resources.

When dealing with web pages about news, usually
obtained from web sites of official associations like IAAF,
topic detection mainly concerns the detection of news
items describing a single sport. A news item is usually
represented by an (optional) title, followed by one or more
paragraphs that refer to a specific sport, taking place
during either a specific event or during multiple events.
News-item detection is performed by parsing the titles
and paragraphs in order to identify appropriate units.
Units are usually portions of a web page describing the
athlete’s participating in a specific sport during a specific
event or the athlete’s participating in more than one event
when the sport in question remains the same.

The named entities defined in the semantic model can
be grouped as follows: (a) athlete_name, age, gender,
nationality (corresponding to the information regarding
an athlete), (b) performance and ranking (of an athlete in a
specific round of a specific sport), (c) round_name and
heat_name (corresponding to a specific round with or
without the information of the heat of a specific sport) (d)
sport_name, (corresponding to a specific sport), (e)
event_name, country (corresponding to a specific event
and country in which the event takes place) (f) city, date
(corresponding to a specific city or date in which a
specific sport or event takes place). Our assumption is that,
when during the text, a change of an instance of a named
entity such as the sport name, the athlete name and/or the
gender takes place, this change may signal the appearance
of a new news item. Figure 1 depicts a part of the domain
ontology for the text modality in BOEMIE.

3.3.1 Extracting semantic segments
In order to adapt the proposed method to the domain of
athletics, we have decided to limit the entity types
involved to occurrences of named entities with types sport
name, athlete name and gender. The selection of those
types was based on the following observations: (a) the
most frequent information found in paragraphs and titles
belonging to a news item is the athlete and sport named
entities, (b) paragraphs constituting a news item usually
describe the progress of a competition, thus contain a
number of common sport and athlete name instances, (c)
the gender information signals the description of men or
women competitions, which are considered as different
sports and thus news items (topics), (d) the information of
performance can only act indirectly to the identification of
a news item (i.e. through the range of observed values), (e)
change on the sport name usually corresponds to a
different sport competition.

It is worth mentioning that our feature vector takes
advantage of the actual names of the named entities of
interest. Thus, it focuses on the change of values of
specific types of named entities but not on the change of
the types on named entities used.

From the portion of a webpage which is depicted in

figure 2, the following feature vectors are produced from
examining its nodes

 Title: Title , athlete_instance_1 = “Richards”,
#athlete_instances = 1

 Paragraph 1: Paragraph, sport_instance_1 =
“400m”, athlete_instance_2 = “Sanya Richards”,
gender_instance_1 = “women”,
#athlete_instances = 1, #sport_instances = 1,
#gender_instances = 1,
common_information_with_title =
(athlete_instance_1, #=1)

 Paragraph 2: Paragraph, athlete_instance_3 =
“Richards”, #athlete_instances = 1,
common_information_with_title =
(athlete_instance_1, #=1),
common_information_with_previous_paragrap
hs = (athlete_instance_2, #= 1)

 Paragraph 3: Paragraph, athlete_instance_4 =
“Richards”, #athlete_instances = 1,
common_information_with_title =
(athlete_instance_1, #=1),
common_information_with_previous_paragrap
hs = (athlete_instance_2, athlete_instance_3, #=
2)

 Paragraph 4: Paragraph, athlete_instance_5 =
“Lashawn Merritt”, athlete_instance_6 =
“Angelo Taylor”, sport_instance_2 = “400m”’,
sport_instance_3 = “400 Hurdles”,
gender_instance_2 = “men, #athlete_instances =
2, #sport_instances = 2, #gender_instances = 1,
common_information_with_title =
(nothing),common_information_with_previous
_paragraphs = (sport_instance_1, #= 1)

In order to learn a model for semantically segmenting a

web page, the CRF++ algorithm
(http://crfpp.sourceforge.net/) was chosen, due the fact
that it has been proved to be a very effective framework
for building probabilistic models to segment and label
sequential data (Sha and Pereira, 2003). CRF++ is a
simple, customizable, and open source implementation of
Conditional Random Fields (CRFs) for
segmenting/labeling sequential data. CRF++ has been
designed for generic use, and has been applied on a
variety of NLP tasks, such as Named Entity Recognition,
Relation Extraction and Text Chunking.

4. Experiments
The experiments of our algorithm were performed on a
manually annotated corpus. This is due to the fact that a
suitable benchmark corpus for this specific scientific area
is not publicly available. The collection of the corpus, as
well as the way documents were annotated are described
in the following subsections.

4.1 The dataset
In order to evaluate our method we collected a corpus
which contains 100 web pages taken from eight different
web sites, which are the following:

• IAAF (http://www.iaaf.org) from the
www.iaaf.org site, pages containing news
regarding athletic events were collected, where
both text and images may appear within it. (37
web pages)

21

• USA Track & Field (http://www.usatf.org/),
pages containing news regarding athletic events,
where both text and image may appear within it
were collected. (28 web pages)

• news.bbc.co.uk/, (12 web pages)
• http://www.sportinglife.com/, (10 web pages)
• http://www.scc-events.com/ (4 web pages)
• http://sportsofworld.com/. (9 web pages)

In all web pages manually annotation of the boundaries of
the blocks of interest i.e. the “news items” was performed
using an annotation facility provided by the Ellogon
platform (http://www.ellogon.org). More specifically, the
annotation tool of Ellogon was appropriately configured
in order to annotate the following entities:

• Semantic categories: news item, sport
• Columns: column left, column main, column

right
• Tables: table, table column, table row
• Headings: caption, title
• Page areas: footer, header, paragraph, sentence,

other region
• Semantic model entities: athlete name, age,

gender, nationality, performance, ranking, round
name, heat name, city, date, country, sport name,
stadium name and event name which correspond
to the BOEMIE semantic model. It is worth
mentioning that overlapping annotation may
exist within a web page. A screenshot of the
annotation tool is given in Figure 3.

Figure 3: Annotation of a single web page

4.3 Evaluation
In order to evaluate the proposed method, we measured its
performance on the task of news item identification, in
terms of the Precision, Recall and F-measure metrics.
More specifically, precision is defined as “the number of
the estimated news items which are actual news items”
divided by “the number of the estimated news items,
returned by the method”. Recall is defined as “the number
of the estimated news items which are actual news items”
divided by “the number of the true news items”.

F-measure was defined as the double of the product of
precision and recall divided by their corresponding sum.
More specifically, we examine the correct assignment of
boundaries of our algorithm with those appearing in the
gold corpus with respect to the paragraph’s sequence of
appearance within the page.

Two different approaches were examined in order to
evaluate the correct identification of news items. The first
approach applies a simple heuristic on top of the
heuristics described in Section 3.1. Making the
assumption that news items usually consist of a title
followed by one or more paragraphs, the heuristic
approach uses the identified information about paragraphs
and titles, to form news items. Each identified title is
merged with all paragraphs until the next title (or the end
of the page) to form a news item. Thus, changes in news
items are signaled only by the presence of a new title.

The second approach consists of the application of the
machine learning algorithm described in Section 3.2, on
top of the heuristics described in Section 3.1. A five fold
cross validation was performed on the machine learning
approach. Both the heuristics as well as the combined
approach (heuristics and machine learning algorithm)
were applied on the web pages DOM trees produced by
VIPS, in order to evaluate the correct identification of
news items. The results obtained by both evaluations are
listed in the table below.

 Only heuristics Heuristics & machine
learning algorithm

Precision 40.83% 71.19%
Recall 18.64% 70.87%
F-measure 25.59% 71.01%

Table 1: Evaluation results in news item detection with
heuristics and combination of heuristics and machine

learning

From the obtained results we can see that the mere
application of heuristics is not enough for the detection of
news items. This can be attributed to several facts. The
most important one is that the heuristics chosen proved to
be too general (not domain specific because they do not
exploit the presence of named entity instances that appear
within them which proves to be the “key” for detecting
news items) and able to capture a small portion of cases,
the majority of those belonging to the IAAF site. A second
important factor is the assumption that a news item
consists of a title and a number of paragraphs below it
proves to be true in few cases. This is due to the fact that,
the paragraphs appearing below a title practically prove to
belong to more than one news items. The low
performance of the heuristics can also be attributed to the
variety of web pages layout. Web pages layout proves to
strongly differ from site to site but also from page to page
within the same site.

The use of semantic features via machine learning
proves to significantly improve news item detection. This
can be attributed to several factors: (a) the high efficiency
of the CRF algorithm in segmenting and labeling
sequential data (b) the choice of the types of the named
entities chosen to form the feature vector. This is due to
the fact that the sport name entity in web pages containing
news is a strong indicator of the appearance of a novel

22

news item, although it tends to appear only once inside a
news item, and not necessarily in the first paragraph of a
news item. The same also holds for the appearance of
novel athlete name instances which indicate that the
subject in question refers to a different sport or event.
Finally the change of gender name instance also signals
the change of topic, which is indirectly assisted by the
change of athlete name instances.

It is worth mentioning that, news item detection in
web pages containing news must be dealt as a difficult
problem. This can be attributed to several factors. The
first and probably most important reason is the fact that
those pages have quite different layouts. More specifically,
pages belonging to this category may either contain only
plain text i.e. paragraphs without section titles, or
containing sections accompanied with section titles. In the
first case the news item detection is defined as the
problem of finding the appropriate number of paragraphs
that corresponds to a news item. In the second case, the
text portion appearing between two section titles may
actually belong to more than one news items due to the
fact that the description of more than one sport for the
same event, or the description in more than one event for
the same sport may take place. The aforementioned
situation is aggravated by the fact that it is difficult even
for a domain expert to decide upon a single topic for such
cases. For example, there are documents regarding
athletics where in their beginning, the “highlights” of
more than one sport (along with their top-scoring athletes)
are described in the same paragraph, making impossible
to classify this paragraph with a single topic.

5. Conclusions – Future Work
In the current paper, we presented a novel approach to the
problem of automatic semantic segmentation, which tries
to automatically identify portions of text within a web
page corresponding to semantic categories, in order to
create semantic annotation to web pages. The produced
semantic annotation corresponds to semantic segments,
each of which captures a single topic i.e. “news” item,
where named entity instances related to the topic are
contained. This type of segmentation provides an
overview of the content of a web page, with respect to the
semantic model in use. The innovation of our method lies
in the fact that it takes advantage of the semantic
information, as expressed by the named entity instances,
and combines it with visual layout information to perform
semantic segmentation.

The examination of the results produced, especially
concerning the second stage of our method, lead to the
conclusion that the use of specific types of names such as
sport and athlete names for web pages describing athletic
events proved to be beneficial. A significant property of
our method is that it can be applied to additional topic
areas, possibly significantly different from athletics, as far
as a semantic model is appropriately defined.

As future work, we plan to apply our algorithm to a
larger corpus of web pages, exhibiting even greater layout
variance, possibly originating from a larger variety of web
sites, by exploiting better the large corpus collected in the
context of the BOEMIE project. In order to accomplish
this as well as to higher scalability regarding the domain
in use, we plan to combine our method with others used
for topic change i.e. text segmentation such as those of

(Kehagias, Fragkou and Petridis, 2004) and (Utiyama and
Isahara, 2001). Text segmentation methods benefit from
the fact that they are domain independent and they are
based on the statistical distribution of words within
paragraphs or sentences. Those methods can be used as a
preprocessing step. Alternatively, they can ground the
calculation of their statistical distributions on specific
types of words i.e. named entities and more specifically
on the degree of change of the types of named entities
and/or the degree of change of the actual names.

Regarding heuristics, we plan to make use of the
information of the named entity instances contained in
titles and paragraphs i.e. parts of texts to which they apply.
We intend to examine the use of new features, such as
different types of named entities that can further improve
the performance of our algorithm. We also plan to exploit
information resulting from the application of shallow
parsing and/or co reference resolution in order to identify
portions of text referring to the same topic as well as to
exclude “false alarm” instances. Furthermore, we
additionally consider examining alternative learning
algorithms, besides conditionally random fields. Finally,
due to the fact that, the measures of Precision, Recall and
F-measure penalize equally every inaccurately estimated
news item boundary whether it is near or far from a true
segment boundary, we plan to evaluate our method using
the Beeferman’s Pk metric (Beeferman, 1999) as well as
the WindowDiff metric (Pevzer & Hearst, 2002). Those
measures are successfully used for the evaluation of
change of topic and text segmentation algorithms.

6. References
Arasu, A., Garcia-Molina, H. (2003). Extracting

structured data from Web pages. In the International
Conference on Management of Data Proceedings,
session: Data integration and sharing II, pp:
337—348.

Beeferman, D., Berger, A. and Lafferty, J. (1999).
Statistical models for text segmentation. Machine
Learning, 34, pp.177--210.

Cai, D., Yu, S., Wen, J-R., Ma, W-Y. (2003). Extracting
Content Structure for Web Page based on Visual
Representation". In the Fifth Asia Pacific Web
Conference.

Cai, D., Yu, S., Wen, J-R., Ma, W-Y. (2003). VIPS: a
Vision-based Page Segmentation Algorithm. Microsoft
Technical Report (MSR-TR-2003-79).

Chang, C-H., Kuo, S-C. (2004). OLERA: Semisupervised
Web-Data Extraction with Visual Support. In IEEE
Intelligent Systems, 19(6), pp. 56--64.

Chang, C-H., Hsu, C-N., Lui, S-C. (2003). Automatic
information extraction from semi-structured Web pages
by pattern discovery. Web retrieval and mining, 35(1),
pp. 129 -- 147.

Crescenzi, V., Mecca, G., Merialdo, P. (2001).
RoadRunner: Towards Automatic Data Extraction from
Large Web Sites. In Proceedings of the 27th
International Conference on Very Large Data Bases,
pp. 109 -- 118.

Crescenzi, V., Mecca, G., Merialdo, P. (2002). The
RoadRunner Project: Towards Automatic Extraction of
Web Data. In Proceedings of the International

23

Workshop on Adaptive Text Extraction and Mining in
conjunction with the 17th International Joint
Conference on Artificial Intelligence (IJCAI 2001)
Symposium on Applied Computing, pp. 1108 -- 1112.

Feng, J., Haffner, P., Gilbert, M. (2005). A learning
approach to discovering Web page semantic structures.
In the Proceedings of the Eighth International
Conference on Document Analysis and Recognition,
pp. 1055--1059.

He, Z., Gao, Z., Xu, H., Qu, Y. (2005). DeSeA: A Page
Segmentation based Algorithm for Information
Extraction. In the Proceedings of the First
International Conference on Semantics, Knowledge
and Grid, pp. 14--14.

Hsu, C-N., Dung, M-T. (1998). Generating Finite-State
Transducers for Semi-structured Data Extraction from
the Web. In Information Systems, 23(9), pp. 521--538.

T

Kehagias, Ath., Fragkou P. and Petridis V. (2004). A
Dynamic Programming Algorithm for Linear Text
Segmentation. Journal of Int. Information Systems, 23,
pp. 179--197.

Kushmerick, N. (2000). Wrapper Induction: Efficiency
and Expressiveness. In Artificial Intelligence, nos. 1-2,
pp. 15--68.

Li, S., Huang, S., Xue, G-R., Yu, Y. (2005). Block-based
Language Modeling Approach towards Web Search. In
Proceedings of the seventh Asia-Pacific Web
Conference, pp. 170--182.

Muslea, I., Minton, S., Knoblock, C. (1999). A
Hierarchical Approach to Wrapper Induction. In
Proceedings of the Third Annual Conference on
Autonomous Agents, pp. 190--197.

Pevzner, L. and Hearst, M. (2002). A critique and
improvement of an evaluation metric for text
segmentation. Computational Linguistics, 28(1),
pp.19--36.

Sha F., and Pereira F. (2003). Shallow Parsing with
Conditional Random Fields. In Proceedings of

HLT-NAACL 2003, Edmonton, Canada, 2003, pp.
213-220.

Song, R., Liu, H., Wen, J-R., Ma, W-Y. (2004). Learning
important models for web page blocks based on layout
and content analysis. In ACM SIGKDD Explorations
Newsletter, 6(2), pp.14 --23.

Utiyama, M. and Isahara, H. (2001). A statistical model
for domain - independent text segmentation. In
Proceedings of the 9th Conference of the European
Chapter of the Association for Computational
Linguistics, pp. 491--498.

Wang, Y., Richard, R. (2007). Rule-based Automatic
Criteria Detection for Assessing Quality of Online
Health Information. In the International Conference
Addressing Information Technology and
Communications in Health (ITCH).

Wu, C., Zeng, G., Xu, G. (2006). A Web page
Segmentation Algorithm for extracting product
information. In the IEEE International Conference on
Publication, pp. 1374--1379.

Yang, X., Xiang, P., Shui, Y. (2006). Semantic HTML
Page Segmentation using Type Analysis. In the 1st
International Symposium on Pervasive Computing and
Applications, pp. 669--674.

Zhai, Y., Liu, B. (2006). Structured Data Extraction from
the Web Based on Partial Tree Alignment. In the IEEE
Transactions on Knowledge and Database
Engineering, 18(12), pp. 1614--1628.

Zhai, Y., Liu, B. (2005). Web data extraction based on
partial tree alignment. In Proceedings of the 14th
international conference on World Wide Web, pp: 76--
85.

Person

Name
Gender Age Country

has-gender
has-age

has-nationality

SportsTrial

Ranking

has-ranking
has-performance has-participant

Performance

SportsRound

Name
has-part

starts

Date

has-name

has-name

SportsEvent

starts

EndDate

ends

StartDate

t-p-i-c t-p-i-c

has-part

city Country

has-name

Name

SportsCompetition

has-name

Name

has-part
starts

SportsEvent

Figure 1: Part of the BOEMIE domain ontology

EndDate

ends t-p-i-c

t-p-i-c

City

POI

StartDate

Person

Name
Gender Age Country

has-gender
has-age

has-nationality

SportsTrial

Ranking

has-ranking
has-performance has-participant

Performance

SportsRound

Name
has-part

starts

Date

has-name

has-name

starts

EndDate

ends

StartDate

t-p-i-c t-p-i-c

has-part

city Country

has-name

Name

SportsCompetition

has-name

Name

has-part
starts ends t-p-i-c

t-p-i-c

EndDate City

POI

StartDate

24

Figure 2. Example of an annotated web page

25

Identification of Duplicate News Stories in Web Pages

John Gibson, Ben Wellner, Susan Lubar

The MITRE Corporation
202 Burlington Rd.
Bedford MA 01730

USA

Abstract
Identifying near duplicate documents is a challenge often faced in the field of information discovery. Unfortunately many algorithms
that find near duplicate pairs of plain text documents perform poorly when used on web pages, where metadata and other extraneous
information make that process much more difficult. If the content of the page (e.g., the body of a news article) can be extracted from
the page, then the accuracy of the duplicate detection algorithms is greatly increased. Using machine learning techniques to identify the
content portion of web pages, we achieve duplicate detection accuracy that is nearly identical to plain text and significantly better than
simple heuristic approaches to content extraction. We performed these experiments on a small, but fully annotated corpus.

1. Introduction
News articles published on the Internet typically appear

on many different websites in either identical or revised
form. For users, identical and nearly identical duplicates
are an annoyance. Duplicates slow down the process of
finding new information on a topic, and potentially cause
missed information if the user mistakenly identifies two
documents as identical duplicates when in fact one con-
tains new information. For automated processing such as
named entity recognition and visualization, redundant data
can cause incorrectly weighted results, markedly skewing
search engine results and automated text processing appli-
cations.

While it is straightforward to find identical news stories
in plain text documents, finding identical news stories em-
bedded in web pages is considerably more complex. This is
due to the large amount of “extraneous” information, such
as navigation links, ads, Javascript, and other miscellaneous
content contained in these pages. While the actual news
story text on two separate web pages may be identical, the
extraneous content on the pages will not be. Thus standard
approaches for determining identical duplicates will fail.

In our system, named CEDAR which stands for Con-
tent Extraction and Duplicate Analysis and Recognition,
we have taken a two-part approach to this problem. First,
we have created a method for extracting news story text
from web pages that is not website-specific (Gibson et al.,
2007). We then use the extracted content to identify pairs
of documents with the same news story content, ignoring
any extraneous information on the pages. By calculating a
resemblance score for pairs of documents based on a tech-
nique called shingling (Broder et al., 1997), we can identify
both identical and near duplicate news stories.

2. Background
Duplicates are undesirable for many types of data.

These include databases, mailing lists, file systems, email
and image data. It is common practice to locate identical
pieces of data using hashing strategies. Each piece of data is

Approved for public release; Distribution Unlimited; Case
#08-0238

hashed using one of the standard algorithms, such as MD5.
Any data represented by the same hash value is considered
to be an identical duplicate.

Near duplicate documents are typically determined by
computing a similarity score for each pair of documents in a
collection. As presented by Chowdhury (Chowdhury et al.,
2002) the two most common similarity measures are resem-
blance (Broder et al., 1997) and cosine similarity (Salton
et al., 1975).

2.1. Cosine Similarity

To compute cosine similarity, documents are mapped
into a vector space, typically based on term weights. The
weight for each term is computed by the number of occur-
rences of the term in the document and an inverse measure
of its frequency across a document collection. Document
similarity is then measured by the cosine distance between
the vectors.

2.2. Shingling

To compute the resemblance of two documents, each
is broken into overlapping fragments called shingles. To
do this, a shingle length, � , is specified. The first shingle
is comprised of the first � words of the document. The
second shingle consists of the second word in the document
through the word located at ����� , and so on. Resemblance
for the two documents is computed as the intersection size
of the two documents’ shingle sets divided by the size of
the union of these sets. Let � and � denote the two sets of
shingles for two distinct documents, then their resemblance
is defined as:

�	� ��
�����
� � � ���� � � �� �� � � ���� � � �� �

One of the main drawbacks to shingling is the massive
number of shingles generated, especially for large docu-
ments. Several strategies are used to reduce the number
of shingles, while only slightly reducing the effectiveness
of the algorithm. The first is sketching, which is the pro-
cess of taking a uniform subset of the shingles, for exam-
ple by discarding all shingles S for which

��������� �"!�
26

�
(Broder et al., 1997). A further refinement is supersh-

ingling, which takes the shingles for each document that
remain after sketching and shingling them again. These
second order shingles are supershingles. If two documents
have just a single supershingle in common then they can
be considered near duplicates. A final performance en-
hancement comes from discarding very common shingles.
Broder et al. (Broder et al., 1997) experiment with the Al-
taVista dataset; they discarded all shingles that appeared in
1000 or more documents (Broder et al., 1997). This greatly
reduces the size of the shingle sets which leads to large
space and time savings.

2.3. Locality Sensitive Hashing

As an alternative to computing the resemblance or co-
sine distance, there exist hash functions that yield similar
values for similar documents. These functions produce col-
lisions with a probability equal to the resemblance or cosine
distance. Or as a formal definition from Charikar (Charikar,
2002):

A locality sensitive hashing scheme is a distribution on
a family F of hash functions operating on a collection of
objects, such that for two objects x, y,

� ��������� 	 ��
 � 	 ��� � ������� ��

 �
The main performance advantage of this approach is

that the resulting hash values require much less storage
space than the shingles of a document or the full term vec-
tors of the cosine distance approach.

3. Related Work
3.1. Duplicate Detection

Recently Henzinger combined shingling and locality
sensitive hashing (LSH) to achieve good results on a very
large dataset (1.6 billion distinct web pages) (Henzinger,
2006). Henzinger’s experiment was particularly interesting
because a subset of the data was evaluated manually which
allowed for a more rigorous assessment of the accuracy of
the technique. The combined algorithm first used shingling
and then applied an LSH that estimates the cosine distance.
The shingling portion used a variant of Fetterly, et al.’s al-
gorithm (Fetterly et al., 2003) (which is a variant of Broder,
et al.’s algorithm). Specifically it used a minvalue sketching
technique followed by supershingling. Pages were consid-
ered near duplicates if they had at least 2 matching supersh-
ingles. Next, the LSH was applied to all of the documents
identified as near duplicates by the first pass. Then the bit
sequence for each document was divided into pieces and
any pair of documents that had a single piece in common
were compared more thoroughly. If at least 355 of the 384
bits of the hash matched then the pair was kept as a near du-
plicate. The combined algorithm yielded substantial gains
in precision with only a moderate impact upon recall.

A major difference between Henzinger’s work and our
own is that it has a different definition of near duplicates.
Henzinger’s near duplicates are documents that differ not
in content, but in boilerplate or other miscellaneous page
structure (session ids, username, hit count, etc.). We would
consider those to be identical duplicates. This distinction is

important because the aim of Henzinger’s experiment was
to eliminate redundant documents, while ours is to identify
all of the related versions of each document. Henzinger’s
results are difficult to compare to ours for this reason; addi-
tionally the experiments in that work operate over a much
larger set of web documents than we examine here, are fo-
cused more on scalability and examines all types of docu-
ments randomly taken from the Web rather than just news
stories as in our work. That being said, Henzinger reports
pair-wise precision scores of 79%. The level of recall is un-
known because only a subset of their corpus was annotated.
However, the combined algorithm did have a pair-wise re-
call score of 79% on the results of the shingling algorithm
alone.

3.2. Content Extraction

Content extraction tools such as Columbia University’s
Crunch aim to reduce the size of web pages by removing
what they deem as noise or clutter from the pages (Gupta
et al., 2005). Additionally, a tool by the Document Analy-
sis and Recognition Team (DART) at BCL Computers Inc.
further reduces text by providing a summary of what re-
mains (Rahman et al., 2001). These tools are motivated by
a variety of goals including paring down pages for the visu-
ally impaired (Gupta et al., 2005), producing lighter weight
content for small screen devices such as PDAs (Gupta
et al., 2005; Rahman et al., 2001) and reducing page com-
plexity for subsequent processing as in MetaNews (Kang
and Choi, 2003) and in the CLEANEVAL challenge task as
part of the Web as a Corpus Workshop (WAC 2007, 2007).

These Content Extraction tools are related to our work
in that they are focused on determining which parts of web
pages are relevant to their goal. However, they address
the broader problem of operating on any type of web page,
while we are focused solely on pages containing news arti-
cles.

3.3. News Story Content Extraction

MetaNews (Kang and Choi, 2003) and the Columbia
Newsblaster project (Evans et al., 2004) both concentrate
on gathering news articles on the web. MetaNews uses a
two-phased approach. First, it carries out noise removal by
throwing out HTML tags that it believes will not contain
content. Next it uses pattern matching on the reduced page
to extract news articles. Patterns for MetaNews are manu-
ally defined for each news site, and no automatic learning
is involved. Thus although pattern writing is simpler than
for traditional wrapper approaches, this tool is still likely to
fail if a page format changes, and adding new sites requires
some manual labor.

The Columbia Newsblaster team originally used indi-
vidual site wrappers to identify news articles. They de-
termined that this approach was difficult for handling new
sites. As a result, they implemented a machine learning
based approach which is similar to ours. The module relies
on “simple surface characteristics of the text” to classify
blocks of text as part of an article, or into various other cat-
egories such as title, caption, or other.

27

4. Data
4.1. Harvesting

To create a data set containing duplicate news stories,
we started by obtaining article titles from the Reuters and
Associated Press (AP) RSS feeds. 1 We then sent each ti-
tle as a query to Google News and downloaded the top ten
results for each query. Because of the large variance in the
pagination methods of each site we limited downloads to
the first page of each article. In total we harvested 2577
documents from 49 separate websites. We only annotated
a subset of these; the resulting data set included 1621 doc-
uments from 27 different websites.

After harvesting, we took two steps to turn the data
into a reference standard that could be used for training
and scoring. First, we annotated the documents to indicate
which portions of text were news story content. Second,
we identified and recorded which document pairs contained
identical or near duplicate news stories.

4.2. News Article Annotation

Manually annotating 2577 documents was a daunting
task, so we instead automated the process by writing site-
specific taggers. In the end, we reduced the size of our
dataset for a variety of reasons. First, we concluded that
it was not worth the effort to write taggers for sites that
contributed only a few documents to the dataset. Secondly,
there were two sites whose page format would have been
difficult to annotate automatically. Finally, we decided to
exclude over 500 articles that came directly from various
Reuters sites. We felt that it would not be as interesting to
use these articles as a basis for content extraction because it
is possible to obtain a plain text feed directly from Reuters.
As a result of these exclusions, our final dataset was com-
prised of 1621 documents from 27 different websites.

For each of these documents, we first corrected poorly
formatted HTML using Beautiful Soup2 and Tagsoup.3 We
then inserted tags around the body of the news article.
Where possible, we also tagged the article’s author, date,
location, source, and title.

4.3. Duplicate Identification

The second step in creating a reference standard was to
identify and record duplicate pairs in the document collec-
tion. First we located identical pairs by normalizing the ar-
ticle text and comparing all of the documents directly. This
analysis found that there were 564 distinct articles.

Marking near duplicate pairs was carried out as a man-
ual process because it requires a user’s judgment to deter-
mine whether two articles are near duplicates. We imple-
mented a basic GUI to accelerate the process. It displays
two articles side by side, and highlights the differences be-
tween the articles’ content. A picture of the viewer ap-
pears in Figure 1. Because there are over 1 million possible
pairings of 1621 documents, a manual comparison of all

1We used different feeds from http://www.reuters.com/tools/rss and
http://hosted.ap.org/dynamic/fronts/RSS?SITE=AP.

2Beautiful Soup was written by Leonard Richardson, et al. and
can be found at http://www.crummy.com/software/BeautifulSoup/

3TagSoup was written by John Cowan and can be found at
http://ccil.org/ cowan/XML/tagsoup/

possible pairs would have been extremely time consuming.
Therefore, we used a few techniques to speed up the pro-
cess. First we display only one document for each unique
article as identified by the first pass, bringing the total num-
ber of documents for comparison down to 564. When a
document pair was marked as near duplicates we automati-
cally added near duplicate pairings for all of the exact dupli-
cates of the two marked documents. Because of the method
we used for harvesting documents, we were confident that
the bulk of the duplicates would also share the same title.
Thus we began by reviewing document pairs that had sim-
ilar titles. Once we had implemented our shingling algo-
rithm we used it to find the few remaining documents that
were near duplicates but had different titles.

We had six annotators review the data and record near
duplicate pairs. Because determining whether a fairly dif-
ferent, but related pair is somewhat subjective, we held
group discussions to determine the status of questionable
pairs. Also, after the first pass of all of the documents was
completed, we assigned a different annotator from the orig-
inal group to carry out a second pass and verify the pairs
that were recorded. In the end the reference standard con-
tained 3591 identical duplicate pairs and 1231 near dupli-
cate pairs.

5. Content Identification
Once we had created a reference standard we used the

data to develop a machine learning-based system for iden-
tifying the content of the news articles.

5.1. Division into Blocks

The first step in our approach was to divide the web
page into smaller pieces for our algorithms to identify as
CONTENT or NOTCONTENT.

We sanitized the raw HTML by transforming it into
XHTML using Tagsoup and Beautiful Soup. In the rare
case that a document that could not be transformed into
XHTML, we discarded it. Otherwise we tokenized the doc-
ument. We excluded all words inside style and script tags
from tokenization. It is safe to assume that those tags will
never contain any content because they will not be rendered
by a browser.

Next we partitioned the sequences of tokens into blocks.
Intuitively, we define a block as a sequence of text that
when rendered in a browser does not cause a line break.
More formally we defined blocks as sequences of text
that are bounded by any tag except the following: <a>,
<ins>, , , <bdo>, , ,
<dfn>, <code>, <samp>, <kbd>, <var>, <cite>,
<abbr>, <acronym>, <q>, <sub>, <sup>, <tt>,
<i>, , <big>, <small>, <u>, <s>, <strike>,
<basefont>, and .

5.2. Feature Generation and Classification

Once the individual blocks were identified we generated
a variety of feature types from each block that we subse-
quently used to train our algorithms. These feature types
included a simple bag of words with frequency, a count of
the tokens in a block, the percentage of tokens in a block
that were contained within an anchor tag (<a>), tags in and

28

Figure 1: Example duplicates

around the block, inverse stop wording, named entities, and
a few other feature types. A complete list with details can
be found in our previous paper (Gibson et al., 2007).

We experimented with a variety of machine learning ap-
proaches that made use of the above features to identify
content containing blocks. A key insight is to not label each
block independently, but rather to label them using sequen-
tial classification methods that take into account the whole
sequence of decisions over all the blocks in a single arti-
cle. Conditional Random Fields (CRFs), a flexible statis-
tical model able to capture sequential dependencies while
also allowing rich, arbitrary features proved to be the most
successful approach (Gibson et al., 2007).

We also tried using a simpler maximum entropy model
with only word features to judge the effect of the quality of
the content extraction step upon duplicate detection.

5.3. Content Extraction Methodology

In order to determine the effectiveness of content ex-
traction for duplicate identification, we needed to run our
content extraction system over our entire duplicate data set.
However, the content extraction system relies on the same
articles as a source of training data. Further, many of the
articles in the collection are duplicates, and many are from
the same web-site. Ideally, in the most conservative and fair
setting, the content extractor would not be trained on any of
the same articles (including duplicates and near duplicates)
or any of the same sources as to which it is applied.

To achieve this on our collection we used a four-fold
cross validation approach. Each of the four folds contained
6 or 7 sources, with each source only belonging to exactly

one fold. We assigned sources to folds in round-robin fash-
ion by selecting a source at random weighted by the num-
ber articles belonging to that source. This kept each fold at
roughly the same size in terms of the number of articles.

Three folds constituted the training data while a fourth
served as test data. This would allow each article to be
processed with a content extractor that was trained on ar-
ticles from web-sites not appearing in the test data. How-
ever, due to many duplicates in our corpus, the training data
will likely contain many of the same articles as in the test
data, though from different sources. To compensate for this
problem, if any duplicate documents spanned the training
and test data for a particular fold, we removed those arti-
cles from the training set. An illustration of this process
can be seen in Figure 2. This process was repeated four
times, with each fold taking its turn as test data.

6. Experiments and Results

Our experiments in this section aim to demonstrate 1)
the effect that various system parameters and options have
on overall accuracy and 2) how well the system, tuned on
development data, performs on held-out evaluation data.
We believe that the latter is an indicator of how well the
system will perform on new web pages from news sources.

6.1. Evaluation Methods

Before describing our experiments in detail, we high-
light two methods for evaluating duplicate detection accu-
racy.

29

TestingTraining

CNN

ABC

Mercury News

AlertNet

MSN

Forbes

Figure 2: Data partitioning for content extraction model.
Boxes indicate sources, circles are documents. Circles con-
nected by lines are duplicates. Crossed out circles were
dropped from the training set.

6.1.1. Pair-wise Evaluation
The most natural way to evaluate a duplicate detection

system is with a pair-wise evaluation metric. Given a set
of documents, the reference standard provides information
as to whether each pair of documents is a duplicate pair. A
system for duplicate detection is responsible for assigning
a similarity score, � , to each pair of documents. Given a
threshold, � , each pair with a score, ����� is hypothesized
to be a duplicate pair. For a particular threshold, � , we
can evaluate the precision and recall of the duplicate system
where precision is computed as:

correct duplicate pairs
hypothesized duplicate pairs

and recall computed as:

correct duplicate pairs
true (reference standard) duplicate pairs

For different applications, different threshold values
may be appropriate depending on whether precision or re-
call is preferred. A way to compare the results of different
systems across all threshold values is to look at Receiver
Operator Characteristic (ROC) curves, which plots the true
positive rate against the false positive rate, essentially cap-
turing the precision rate at all possible recall levels. The
area under this curve provides a single number useful for
comparing two systems that assign scores to positive and
negative instances. The area under the curve, in our context,
can be interpreted as the probability that the system/model
will provide a higher resemblance score to an arbitrary doc-
ument pair ��� than a pair ��� when ��� is, in fact, a duplicate
pair and ��� is not. We use the area under the ROC, AU-
ROC curve for some of the results that follow. Note that, in
particular, the graphs below plot how the AU-ROC changes
as a parameter is adjusted - the graphs are not ROC curves
themselves.

Note that for our full data set of 1621 web page doc-
uments, there are 1,313,010 unordered document pairs of

which just 4815 are duplicate pairs.

6.1.2. Cluster-Based Evaluation
While pair-wise evaluation is intuitive and appropriate

in many cases, it has the disadvantage of skewing the re-
sults when the pair-wise relation is an equivalence relation4.
This is because mistakes made with documents belonging
to larger equivalence classes will be penalized more than
documents within small equivalence classes. This can pro-
vide for a rather unintuitive evaluation metric. The cluster-
wise evaluation metric considers the degree to which the
resulting equivalence classes match each other rather than
considering all pair-wise relations.

Equivalence class-based evaluation metrics have been
used for evaluation within document and cross document
co-reference in natural language processing (Vilain et al.,
1995; Amit and Baldwin, 1998). For our formal evalua-
tion of the system, we use the B 	 scoring metric (Amit and
Baldwin, 1998) and its implementation within the LingPipe
suite of NLP tools5. Very briefly, the B 	 metric takes as in-
put the reference standard clusters and the clusters derived
from the system output (obtained in our case by asserting
that all pairs with a resemblance above a certain threshold
are duplicates and then taking the transitive closure). For a
document,
 , precision,

���
, and recall, � , are computed as

follows:

��� � # of correct documents in the output cluster containing

of documents in the output cluster containing

and

 � � # of correct documents in the output cluster containing

of documents in the truth cluster containing

The final precision and recall scores for the output clus-
ters are the average precision and recall scores across all the
documents.

6.2. System Configuration Analysis

In this section we consider a set of experiments aimed
at identifying the effect of different system parameters on
duplication detection accuracy.

The first set of experiments looks at the effect of varying
the system parameters:

Block size filter This option removes blocks (described
above) if their word/token count is below a certain
threshold. The threshold varies from 1 to 20.

Shingle frequency filter This option removes the � %
most frequent shingles in the corpus, values range
from 0.0% to 10.0%.

Shingle size This parameter controls the size of the shin-
gles in words. It is an integer varying from 1 to 10.

4While we have not restricted our similarity relation to be tran-
sitive, the manually annotated duplicate pairs reveal a similarity
relation that is transitive in nearly all cases. This may be a reflec-
tion on our particular data set, however.

5LingPipe is available at http://alias-i.com/lingpipe/

30

5 10 15 20

0.
82

0.
84

0.
86

0.
88

0.
90

0.
92

Minimum token count within each block

A
re

a
U

nd
er

 R
O

C

Figure 3: Duplicate detection accuracy with different min-
imum word counts per block with word shingles of size 6.

0 2 4 6 8 10

0.
85

0.
90

0.
95

Percentage of most frequent shingles removed

A
re

a
U

nd
er

 R
O

C

Figure 4: Duplicate detection accuracy with different shin-
gle cutoff percentages using word shingles of size 6.

Figure 3 shows how duplication detection accuracy, in
terms of AU-ROC (on the Y-axis), varies as more and more
blocks are filtered from the documents based on the min-
imum token count (shown on the X-axis). As the mini-
mum count is increased, accuracy improves until a mini-
mum count of 10 with increasing minimum counts not re-
sulting in noticeable improvement and eventually degrada-
tion in accuracy after reaching a minimum of 17 or more.
The shingle size is fixed at 6 while the shingle frequency
filter is inactive.

Figure 4 contains a graph illustrating the effect of re-
moving varying percentages of the most frequent shingles.
Accuracy improves even more substantially as compared
with the block filter here. The explanation for this is that
many of the shingles in the non-content portions of the doc-
ument appear over and over again as part of the web-page
boilerplate, in contrast to shingles found in the content por-
tion of the article. Again, shingle size was fixed at 6 and no
block-level filtering was performed.

A final graph is shown in Figure 5 demonstrating the
effect different shingle sizes have on overall accuracy. The
best duplicate identification accuracy is found with shin-
gles of size 2. Surprisingly, single word shingling performs
very well, outside the standard deviation of accuracy with
shingles of size 4.

In addition to the above contributions, we also exam-
ined the effect of content extraction on accuracy. The hy-
pothesis here is that extracting the article content by remov-
ing extraneous parts of the document, will improve dupli-

2 4 6 8 10

0.
99

75
0.

99
85

0.
99

95

Word Shingle Size

A
re

a
U

nd
er

 R
O

C

Figure 5: Duplicate detection accuracy with different word
shingle sizes. The standard deviation bars, computed using
the approach in (Hanley and McNeil, 1982), demonstrate
significantly lower accuracy with larger shingles.

Shingle/Block Filter AU-ROC
Heuristic 0.91076 � 0.00283
CE-SIMPLE 0.9999922 � 0.0000284
CE-BEST 0.9999933 � 0.0000272
Ref. Standard 0.9999935 � 0.0000259

Table 1: Content Extraction-based results using word shin-
gles of length 2.

cate detection accuracy. We look at four different content
extraction (CE) approaches here:

Heuristic Removal of document regions between
<script> and <style> tags.

CE-SIMPLE A simple maximum entropy classifier to
identify blocks containing article content. The feature
set used for the classifier consisted of only the words
present in the block. The document-level accuracy of
this CE system is 58% – meaning that it is able to per-
fectly identify the content portion of a web-page 58%
of the time. The block-level precision is 96.0 with re-
call at 98.1.

CE-BEST The automatic best content extraction system
based on CRFs using a richer feature set that consid-
ered the presence of particular HTML tags, the pres-
ence of named entities (e.g. people, organizations,
etc.) and other features. Document-level accuracy for
this CE system is 80% with block-level precision and
recall at 97.9 and 99.5, respectively.

Ref. Standard Only the portions of the documents consid-
ered content by site-specific taggers and reviewed by
human annotators were used to compute resemblance.

The results in Table 1 illustrate the effects of these dif-
ferent methods on duplicate detection.

A final analysis shown in Table 2 looks at combining
the block filter and the shingle frequency filter with and
without using the heuristic-based content extraction. The
results here indicate that using the heuristic-based CE to-
gether with filtering out the top 5% most frequent shingles
and removing blocks with fewer than 12 tokens (bottom

31

Shingle/Block Filter AU-ROC

Entire Web Document
None 0.94275 � 0.00233
MinBlock = 5 0.95883 � 0.00200
Shingle Freq. = 7.5% 0.99751 � 0.00005
Heuristic Content Extraction
Heuristic Only 0.91076 � 0.00283
Shingle Freq.= 7.5% 0.99500 � 0.000718
Shingle Freq.= 5.0%
& MinBlock = 12 0.99994 � 0.000079

Table 2: Combinations of block filtering, shingle filtering
and heuristic CE using shingles of length 2.

row) achieves very high results in terms of AU-ROC. These
results appear to be competitive with duplication detection
approaches that use a statistically trained CE system (in Ta-
ble 1). However, as we demonstrate below, statistically-
driven content extraction does significantly improve dupli-
cation detection accuracy over the best system that doesn’t
use statistical CE.

6.3. Formal Evaluation

In this section we describe the results of a somewhat
more formal evaluation with a fixed development and test
split of the data. While the above analysis based on AU-
ROC provides insight into the contributions of different as-
pects of the system on overall accuracy, in a realistic setting
one must pick a fixed threshold.

We split the data into two roughly equal-sized sets
of documents such that no equivalence classes of dupli-
cate documents (according to the reference standard) over-
lapped both sets. The development portion of the data was
used to tune the threshold value and to optimize various pa-
rameters such as the minimum word count block filter and
the shingle frequency cutoff. Table 3 shows the official re-
sults in terms of the cluster-based B 	 metric as well as the
more standard pair-wise metric.

We also provide scores for using a normalized string
comparison on the reference standard’s content. This ap-
proach finds all of the identical duplicates and none of the
near duplicates.

The most obvious result of these experiments is that
effective content extraction provides a significantly higher
level of accuracy than more basic techniques. By enabling
the duplicate detection algorithm to focus on the article
content, filtering out extraneous web page material, accu-
racy is improved considerably. The overall results here are
very promising indicating that a very high percentage of
duplicate document clusters can be identified perfectly.

Another interesting result here is that even a very simple
machine learning content extraction approach provides for
duplicate detection accuracy that is nearly identical to us-
ing the reference standard extracted content. Implementing
this approach requires little effort provided a set of training
documents with the content portions annotated (see (Gib-
son et al., 2007)).

7. Conclusions
Our approach to detecting identical and near duplicate

news articles embedded in web pages is a two step process.
Our system, CEDAR, first extracts the text of the news arti-
cles from the pages, and then computes resemblance scores
for the articles using a shingling approach. We carried out
a number of experiments which show that basing the du-
plicate detection purely on the extracted content results in
more accurate results than computing resemblance across
the text of the original documents.

Additionally, we have implemented a flexible, non-
brittle approach for identifying news article text in web
pages. We created a model for our CRF classifier based on
the structure of web news pages across twenty-seven differ-
ent news websites. The classifier can now be used to find
news article text embedded in pages from previously un-
seen web sites, and does not break when the formatting on
a web site changes.

Though this content extraction technique does not al-
ways provide perfect results, it is accurate enough to allow
our duplicate detection system to outperform itself when
using more naive approaches to identifying article text.
Moreover, this content extraction module can be used to
improve results for many different tasks involving news ar-
ticles on the web. Some examples are named entity extrac-
tion, visualization, search indexing and display on a small
screen such as a PDA or cell phone.

8. Future Work
Our future work is focused on making CEDAR deploy-

able. For the content extraction this means optimizing the
preprocessing and feature generation as well as moving to
a faster implementation language (currently, we are using
Python). In situations where the only purpose of extracting
content is to improve duplicate detection accuracy, we can
use the simpler MaxEnt system which requires many fewer
features and is faster in general than the full CRF system.

Because of the relatively small size of the dataset, our
duplicate analysis implementation was performed in mem-
ory. To handle larger datasets we will experiment with
sketching and supershingling, as well as redesigning the
code to work on smaller chunks at a time. We can also
switch to an entirely different algorithm such as cosine dis-
tance or fingerprinting. Finally, if we were only concerned
with improving the precision of a system, then we could use
our system on the clusters generated by other systems. As
long as the clusters themselves are not prohibitively large,
our current performance limitations would not be an issue
and we could eliminate a large number of false positives.

Another direction for our work is to experiment with
processing foreign language text, particularly for languages
written in other character sets. It is our expectation that
translating the documents to English before shingling will
generate poor results. However, by applying word segmen-
tation techniques we should be able to achieve reasonable
accuracy using word based shingling. Or, by normalizing
the text to remove all segmentation whatsoever, shingling
based on characters rather than words should achieve very
good results. However, this approach will create an enor-
mous number of shingles and therefore performance can

32

System Threshold Cluster-based Pair-wise
Prec. Rec. F-meas. Prec. Rec. F-meas.

Heur. and Shingle Freq. = 5% 0.35 0.929 0.854 0.89 0.977 0.782 0.869
Heur. and MinBlock = 8 0.4 0.919 0.860 0.889 0.919 0.860 0.889
Heur., Shingle Freq. = 5% & MinBlock = 9 0.35 0.981 0.862 0.917 0.981 0.862 0.917
CE-BEST 0.4 0.992 0.979 0.985 0.992 0.979 0.985
CE-SIMPLE 0.4 0.992 0.977 0.985 0.992 0.977 0.985
Ref. 0.4 0.992 0.977 0.985 0.992 0.977 0.985
Ref. String Comparison N/A 1.0 0.802 0.89 1.0 0.745 0.854

Table 3: Cluster-based and pair-wise results on the evaluation data with threshold and system parameters tuned on the
development data.

become unacceptably slow. Our plan is to experiment with
character based shingling combined with sketching to in-
crease speed while maintaining reasonable accuracy.

Acknowledgements
This work was supported by the Department of

the Army’s Communications-Electronics Lifecycle Man-
agement Command (C-E LCMC) and performed under
MITRE Mission Oriented Investigation and Experimen-
tation (MOIE) project M130 of contract W15P7T-07-C-
F600, sponsored by the Pacific Regional Service Center.
Any opinions, findings and conclusions or recommenda-
tions expressed in this material are those of the author(s)
and do not necessarily reflect those of the sponsor.

9. References
Amit, B. and B. Baldwin, 1998. Algorithms for scoring

coreference chains. In Proceedings of the Seventh Mes-
sage Understanding Conference (MUC7).

Broder, Andrei Z., Steven C. Glassman, Mark S. Manasse,
and Geoffrey Zweig, 1997. Syntactic clustering of the
web. In Selected papers from the sixth international con-
ference on World Wide Web. Essex, UK: Elsevier Science
Publishers Ltd.

Charikar, Moses S., 2002. Similarity estimation techniques
from rounding algorithms. In STOC ’02: Proceedings of
the thirty-fourth annual ACM symposium on Theory of
computing. New York, NY, USA: ACM.

Chowdhury, Abdur, Ophir Frieder, David Grossman, and
Mary Catherine McCabe, 2002. Collection statistics for
fast duplicate document detection. ACM Trans. Inf. Syst.,
20(2):171–191.

Evans, D. K., J. L. Klavans, and K. McKeown, 2004.
Columbia Newsblaster: Multilingual news summariza-
tion on the web. In Proceedings of Human Language
Technology Conference/ North American Chapter of the
Association for Computational Linguistics.

Fetterly, Dennis, Mark Manasse, and Marc Najork, 2003.
On the evolution of clusters of near-duplicate web pages.
In LA-WEB ’03: Proceedings of the First Conference on
Latin American Web Congress. Washington, DC, USA:
IEEE Computer Society.

Gibson, John, Ben Wellner, and Susan Lubar, 2007. Adap-
tive web-page content identification. In WIDM ’07: Pro-
ceedings of the 9th annual ACM international workshop
on Web information and data management. New York,
NY, USA: ACM.

Gupta, S., D. Daiser, P. Grimm, M. Chiang, and J. Star-
ren, 2005. Automating content extraction of html docu-
ments. World Wide Web - Internet and Information Sys-
tems, 8(2):179–224.

Hanley, JA and BJ McNeil, 1982. The meaning and use
of the area under a receiver operating characteristic (roc)
curve. Radiology, 143:29–36.

Henzinger, Monika, 2006. Finding near-duplicate web
pages: a large-scale evaluation of algorithms. In SIGIR
’06: Proceedings of the 29th annual international ACM
SIGIR conference on Research and development in infor-
mation retrieval. New York, NY, USA: ACM.

Kang, D. and J. Choi, 2003. Metanews: An information
agent for gathering news articles on the web. In Interna-
tional Symposium on Methodologies for Intelligent Sys-
tems.

Rahman, A. F. R., H. Alam, and R. Hartono, 2001. Under-
standing the flow of content in summarizing html docu-
ments. In International Workshop on Document Layout
Interpretation and its Applications (DLIA).

Salton, G., A. Wong, and C. S. Yang, 1975. A vector
space model for automatic indexing. Commun. ACM,
18(11):613–620.

Vilain, Marc, John Burger, John Aberdeen, Dennis Con-
nolly, and Lynette Hirschman, 1995. A model-theoretic
coreference scoring scheme. In MUC6 ’95: Proceedings
of the 6th conference on Message understanding. Mor-
ristown, NJ, USA: Association for Computational Lin-
guistics.

WAC 2007, Web as a Corpus, 2007. WAC2007. In Web as
a Corpus. UCLouvain, Louvain-la-Neuve, Belgium.

33

GlossaNet 2: a linguistic search engine for RSS-based corpora

Cédrick Fairon, K évin Macé, Hubert Naets

Centre de Traitement Automatique du Langage — Cental
Université Catholique de Louvain

Louvain-la-Neuve, Belgique
{cedrick.fairon,kevin.mace,hubert.naets}@uclouvain.be

Abstract
This paper presents GlossaNet 2, a free online concordance service that enables users to search into dynamic Web corpora. Two steps
are involved in using GlossaNet. At first, users define a corpus by selecting RSS feeds in a preselected pool of sources (they can also add
their own RSS feeds). These sources will be visited on a regular basis by a crawler in order to generate a dynamic corpus. Secondly, the
user can register one or more search queries on his / her dynamic corpus. Search queries will be re-applied on the corpus every time it is
updated and new concordances will be recorded for the user (results can be emailed, published for the user in a privative RSS feed, or
they can be viewed online). This service integrates two preexisting software: Corporator (Fairon, 2006), a program that creates corpora
by downloading and filtering RSS feeds and Unitex (Paumier, 2003), an open source corpus processor that relies on linguistic resources.
After a short introduction, we will briefly present the concept of “RSS corpora” and the assets of this approach to corpus development.
We will then give an overview of the GlossaNet architecture and present various cases of use.

1. Introduction
Over the last 10 years, growing needs in the fields of Cor-
pus Linguistics and NLP have led to an increasing demand
for text corpora. In this context, the development of the In-
ternet was seen as a real opportunity to help meeting the
demand (Kilgarriff and Grefenstette, 2003; Hundt et al.,
2007). The Web is indeed immense, very diverse and easily
accessible. . . but at the same time it is mixed up, incoherent
and most of the time unforeseeable. Although it is tech-
nically easy to get access to online documents, it is still
a challenge to extract clean data from these documents to
compose a corpus. The Cleaneval competition1 is a good
indicator of the state of the art in this domain.
Corpus linguists and NLP specialists have been using the
Web as corpus in two directions that complement each
other. A first approach considers the Web itself as a very
large corpus. Systems that implement this approach usu-
ally offer an interface for querying and seeking concor-
dances within the Web. Basically, they add a layer to tradi-
tional search engines like Google or Microsoft Live Search
and offer various display options that are useful for lin-
guistic work (concordances, extraction of collocates, stop
lists, etc.). Among other systems: WebCorp2 (Renouf,
2003), WebCorpus3 (Fletcher, 2007), Corpeus4 (Leturia et
al., 2007).
A second approach consists in using the Web as a source for
extracting texts that will be collected, filtered and recorded
in a standalone corpus. Systems of this second category
rely on the use of crawlers and filtering techniques. The
Wacky5 project is a typical example of this option (Baroni
and Bernardini, 2006) but other examples are numerous
(Duclaye et al., 2003; Fletcher, 2007).

1http://cleaneval.sigwac.org.uk/
2http://www.webcorp.org.uk/
3http://webascorpus.org/searchwac.html
4http://www.corpeus.org/
5http://wacky.sslmit.unibo.it/

Similarly to the first category, the GlossaNet system we are
about to present is an online tool tailored for use by lin-
guists, but the way it sees corpora is closer to the second
category. Indeed, it offers tools for defining “dynamic cor-
pora” that will be downloaded and refreshed on a regular
basis by the system.
The original GlossaNet service6 has been in use since 1998
(Fairon, 1999) and was limited to press corpora. At the
time, newspapers’websites were seen as a good source for
generating “dynamic corpora” because they are updated on
a daily basis7 (new texts come continuously day after day).
GlossaNet users can create an account, select a series of
newspapers (which define a virtual corpus) and register
search queries. The system integrates the programs and
linguistic resources of Unitex8, an open source corpus pro-
cessor (Paumier, 2003). Unitex is used for applying se-
veral analysis tasks on the corpus: tokenization, sentence
segmentation, dictionary lookup. Once the corpus is pro-
cessed, it becomes possible to search for linguistic patterns.
To make it short, one can describe GlossaNet as a linguistic
search engine of limited scope. Until recently, this scope
was very limited as it covered only a hundred newspapers
websites. GlossaNet 2 goes beyond this limitation as it can
download corpora from any RSS / Atom feed (see section
2.). GlossaNet integrates two preexisting pieces of soft-
ware: Corporator (Fairon, 2006), a program that creates
corpora by downloading and filtering RSS feeds and Uni-
tex. Both software are available as standalone applications.
Two steps are involved in using GlossaNet. At first, users
define a corpus by selecting RSS feeds in a preselected pool
of sources (they can also add their own RSS feeds). These
sources will be visited on a regular basis by a crawler in

6http://glossa.fltr.ucl.ac.be/
7In addition, newspapers are available in many different lan-

guages,they cover many different themes, they represent various
styles, various types of text (argumentative, informative, techni-
cal, pedagogical, etc.) and they provide texts of a constantquality.

8http://www-igm.univ-mlv.fr/∼unitex/

34

<rss version="2.0">

<channel>
<title>Paris Libre</title>
<lastBuildDate>
Tue, 4 Mar 2008 13:12:31 +0100
</lastBuildDate>
<item>

<title>Un sport</title>
<link>
http://parislibre.lalibreblogs.be/
archive/2008/03/04/un-sport.html
</link>
<pubDate>
Tue, 4 Mar 2008 10:45:00 +0100
</pubDate>
<description>
C’est un peu comme courir le marathon.
Quand on est journaliste de presse...
</description>

</item>
</channel>
</rss>

Figure 1: Example of RSS feed

order to generate a dynamic corpus. Secondly, the user can
register one or more search queries on his / her dynamic cor-
pus. Search queries will be re-applied on the corpus every
time it is updated and new concordances will be recorded
for the user (results can be emailed, published for the user
in a private RSS feed, or they can be viewed online).

2. RSS and Atom feeds

2.1. What are RSS and Atom ?

RSS is the acronym for Really Simple Syndication. As
XML-based format, RSS is used to facilitate news publica-
tion on the Web and content interchange between websites.
Atom is another standard built with the same objective.
Actually, most of the newspapers and blogging websites
offer RSS and / or Atom-based news feeds to allow easy
access to the recently published news articles. Each
RSS / Atom file contains a list of articles recently published,
often grouped by theme or category. Usually, these files do
not contain full articles, but the title, the date of publication,
a link to the full article available on the publisher website
and a summary or a truncated text. On a regular basis (every
day, every hour or even more frequently), the RSS / Atom
feeds are updated with the new published content. The
feeds are often organized by theme and / or in accordance
with sections of the newspaper or the blog (“politics”, “so-
cial”, “nature”, “editorial”,“regions”, etc. for newspapers,
or “my cats”, “my friends” and “computational linguistics”,
etc. for blogs). Feeds can be also created for special hot
topics like “Partition of Belgium” in the French-speaking
press for example.
Figures 1 and 2 respectively show the basic structure of an
RSS and an Atom feed. These XML-based structures are
very simple. For RSS, it mainly consists of a “channel”
which contains a list of “items” such as a title, a link, a
description and a publication date.
An Atom feed is composed of more or less the same in-
formation, i.e. a “feed” which contains a list of “entries”
comprising, among other things, a title, a link, a summary
and information about the time of the last update.

<feed xmlns="http://www.w3.org/2005/Atom"
xml:lang="fr">

<title>Paris Libre</title>
<updated>2008-03-04T13:08:38+01:00
</updated>
<entry>

<title>Un sport</title>
<link rel="alternate" type="text/html"
href="http://parislibre.lalibreblogs.be/
archive/2008/03/04/un-sport.html" />
<updated>
2008-03-04T10:57:03+01:00
</updated>
<published>
2008-03-04T10:45:00+01:00
</published>
<summary>
C’est un peu comme courir le marathon.
Quand on est journaliste de presse...
</summary>
</entry>

</feed>

Figure 2: Example of Atom feed

2.2. RSS and corpora

Most of the time, RSS and Atom feeds contain little text in
the “description” or “summary” field (even though some
publishers incorporate the full article in the RSS / Atom
feeds), but each “item” or “entry” has a link to the full
article. Therefore, the link can be used to download the
corresponding webpage (see section 3.5. and figure 3).

Figure 3: Dynamic Corpus using RSS / Atom feeds

As mentioned above, RSS and Atom feeds are frequently
classified by genre, theme or category. Unfortunately, this
classification is not standardized among newspapers, let
alone blogs or other websites using feeds. In addition, no
other indication is given about the classification criteria.
However, if the classification fits the researchers needs, the
RSS feeds can be used to build a specialized corpus.
A second characteristic of the RSS / Atom feeds is that they
are frequently updated, which provides a continuous flow
of data that can be easily collected in a corpus.
A third characteristic is that, by selecting “trusted” RSS or
Atom sources (for example newspaper sources), the qual-
ity of the retrieval texts will be constant, which resolves the
well known problem of Web corpus quality: when the Web
is crawled for finding sources, the quality between docu-
ments may differ tragically.
For all these reasons and despite the problem of classifica-
tion criteria, using RSS or Atom feeds probably represents
one of the most interesting ways to build a corpus from the

35

Figure 4: GlossaNet architecture

Web. But it also comes with some limitations since all of
the Web content is not available through these feeds.

3. Architecture and process
3.1. Architecture

GlossaNet is made of three parts (figure 4):

1. a Web interface to interact with users;

2. a database which contains data about each user,
his / her corpora and his / her linguistic queries;

3. a server-side part composed of five servers organized
in an asynchronous and distributed framework.

This architecture enables the use of these five servers on
various computers and to split a server in two or more in-
stances. This characteristic was necessary to prevent server
overloads due to the ability given to the users to create many
corpora from a virtually infinite number of RSS and Atom
feeds.
We use the Perl Object Environment9 (POE) framework to
provide the asynchronous and distributed layer.

3.2. Process

The basic mechanism of GlossaNet is the following (figure
4). A Web interface (section 3.3.) allows the user to build
one or more dynamic corpora from one or more RSS / Atom
feeds (any feed available online can be selected). In addi-
tion, the user can create or use linguistic queries (made of
regular expressions or graphs) and apply these queries to
one or more previously built corpora. Information about
user, corpora and linguistic queries are recorded into a
database.

9http://poe.perl.org/

Figure 5: Login screen

A central server named “Manager” (section 3.4.) detects
when a new corpus is added into the database. When it
happens, the “Manager” appends the RSS / Atom feeds of
this corpus to the list of the feeds to download. On a regular
basis, the list is sent to the “corpus building” server (section
3.5.) which downloads each feed, extracts the new entries
(“items” in the RSS jargon) and, for each entry, gets and
cleans the corresponding webpage. Clean texts are trans-
mitted back to the “Manager” which stores them into the
database.
Once a day, the “Manager” collects all the new texts of a
corpus, concatenates and sends them to the “Linguistic pre-
processing” server (section 3.6.). This server uses the Uni-
tex software to tokenize and normalize the text. If linguistic
resources are available for the corpus language, Unitex is
also used to apply dictionaries and tag the corpus. Then a
path to the preprocessed corpus is sent back to the “Man-
ager”.
When corpora are ready, the “Manager” checks the
database to determine which linguistic queries have to be
applied. The path to the corpus and each query (in the form
of a finite state transducer) are posted to the next server
which will retrieve all the concordances between the cor-
pus and the query (section 3.7.). Results are sent back to
the “Manager”.
Once all the queries have been applied for a given user,
results are transmitted to him (section 3.8.). Depending on
the users preferences, results are sent on a daily or weekly
basis.

3.3. Web interface

The Web interface provides several control pannels for cre-
ating and managing user’s profile (figure 5), copora (figure
8) and linguistic queries (figure 7 and 6).

3.4. Manager

The manager role consists in supervising all the processes
and sending the data needed by each server at a suitable
time. It makes sure the results or useful information (for ex-
ample about the unavailability of some RSS / Atom feeds)
is sent to the user.

36

Figure 6: Task creation

Figure 7: Graphs manager

3.5. Corpus building

The “corpus building” server frequently receives new
RSS / Atom feeds from the “Manager” to check. When the
program detects that a RSS feed was updated, it retrieves
the new items from the RSS file and, for each item, stores its
title, description and URL. Then, it downloads each web-
page corresponding to the URL, removes the boilerplate
and sends the page to the “Manager” in text format.

During this process, two tasks must be considered: the boil-
erplate filtering and the identification of duplicated news.

Figure 8: Feeds manager

3.5.1. Boilerplate removal
The main difficulty for building the corpus is to remove
irrelevant text and links from webpages. This automatic
boilerplate suppression is necessary to obtain clean texts
which can be used with Unitex.
There are three differences with the Cleaneval task:

• At first, GlossaNet filters can rely on the metadata pro-
vided by the RSS feed (title and description). It is for
instance helpful to locate the title in the HTML docu-
ment because it indicates where the (relevant) text be-
gins;

37

• Next, a lot of newspaper websites split long articles
over two or more pages, but the RSS item refers only
to the first page;

• Finally, some websites using RSS / Atom have com-
mon features, like the “print” button that opens a new
webpage displaying the entire text in a simplified lay-
out.

Considering all these specificities, we are developing two
kinds of filters:

• specific filters for frequently used newspaper websites
or for common blogging systems like Blogger, Word-
press, etc.;

• generic filters using RSS titles and descriptions, or fre-
quent features like the “print” button.

As it is the case in most web corpus projects, filtering re-
mains a challenge.

• Although it is possible to create specific filters for the
most popular sources (like the main national news-
papers or blog publishing systems), generic filters re-
main necessary for all other type of webpages.

• Since website layouts change over the time, specific
filters must be continuously adapted.

3.5.2. Duplicated news
The system also needs a filter that prevents a single text
from appearing more than once in the corpus. Several situ-
ations may lead to text duplicates:

• a text that was published earlier on a RSS feed can be
broadcasted again for various reasons: that can happen
simply by mistake or on purpose, for instance after
small corrections (typos, etc.) or after the addition of
a new paragraph to the text;

• on newspaper websites, it is common to find, next to a
news article, links to other related articles. These links
can consist in short titles or long paragraphs borrowed
from the referred article;

• on blogs, several posts can be displayed on the same
webpage. Each time a new post is added, the RSS feed
is updated and when the Corporator crawler follows
the link to get the full article, it retrieves not only the
last article but also older articles presented on the same
webpage.

As we can see, these difficulties go beyond the usual
‘boilerplate removal’. Of course, if we do not address this
problem, it could have important consequences on word
frequencies in the corpus. Moreover, concordances built
from this corpus will contain duplicates.

3.5.3. Corporator
The “corpus building” server corresponds to the new core
of Corporator. This new version of the software will be re-
leased as a standalone version with a GUI and will include
the improvements made for GlossaNet (boilerplate filters
and similarities detection). Corporator will be distributed
under an open source licence.

3.6. Linguistic preprocessing

The preprocessing step is mainly dependent on the Uni-
tex software. The corpus is first normalized and tok-
enized and then, if linguistic resources are available for
the corpus language, a dictionary lookup program is used
to tag the text (Unitex provides linguistic resources for
English, Finnish, French, German, Ancient Greek, Mod-
ern Greek, Italian, Korean, Norwegian, Polish, Portuguese
from Brazil, Portuguese from Portugal, Russian, Serbian,
Spanish and Thai).

3.7. Linguistic queries

If the corpus language is supported by Unitex, complex
queries may be created, using word form, lemma, part of
speech, morphological and semantic information.
Figure 9 shows a complex query using:

• a simple form (“to”);

• a lemma (“be” between chevrons, i.e. all the inflec-
tional forms of “be”);

• parts of speech and morphological information
(“<V:G>”, i.e. any verb with an -ing form, and
“<V:W>, i.e. any verb with an infinitive form);

• parts of speech and semantic information
(“<N+conc>”, i.e. any concrete noun).

Figure 9: Example of a complex linguistic query

This query matches for example with the sentence “I am
going to eat bread” but also with “He is going to get books”.
Otherwise, if the language is not supported, more simple
queries using linguistic forms can be created (figure 10).

Figure 10: Example of a simple linguistic query

The “linguistic queries” server build a concordance and
sends it to the “Manager”. The characteristics of the con-
cordance (sort order, length, number of occurrences, etc.)
can be determined by the user in the Web interface.

3.8. Sending of results

The user can also define how and how often results will be
provided to him: on a daily or weekly basis; by e-mail, by
RSS feed, or via the GlossaNet website interface.

4. Use cases

The use cases presented here are just a few examples of
enquiries that can be made using GlossaNet.

38

4.1. Linguistics

Fairon and Singler (2006) used GlossaNet in their study
of a particular type of quotative that occurs frequently in
American Vernacular English and might be becoming part
of the Standard English: (be) like. In order to evaluate how
this quotative is spreading in written English, GlossaNet
was used to monitor newspapers from various parts of the
World. The Finite State Graphs search option facilitated the
extraction of variants of this quotative.

4.2. Websites monitoring

If GlossaNet was initially conceived for linguists, it also
proved to be useful for another category of users. We have
indeed noticed that many users are more interested by ”in-
formation” than ”linguistic patterns”. Their queries contain
keywords intended to collect news clippings. Once regis-
tered into the system, queries are reapplied every time cor-
pora are updated. It is therefore possible to monitor web-
sites or information sources. Finite state graphs offer a con-
venient way for representing many variants of keywords.

5. Conclusion
In this paper, we have described a new version of GlossaNet
which represents a major update of the system. Now, this
online application allows the user to build dynamic corpora
from the Web using RSS and Atom feeds. Then, these dy-
namic corpora can be searched for linguistic patterns and
results are presented under the form of a concordance that
can be transmitted to the user by email, on a privative RSS
feed or that can be read online in the user account. Four
points should be highlighted:

1. The Web interface, which is the main entry point of
GlossaNet, was entirely redesigned. This was nec-
essary to improve ergonomics but also for integrat-
ing the new features related to the management of the
RSS / Atom feeds.

2. The previous version of GlossaNet was limited to a
series of approximately one hundred dynamic corpora
(which were generated by a crawler bound to a pre-
selected pool of newspaper websites). In this new ver-
sion, the number of possible corpora is virtually in-
finite. Each user can design his / her own corpus by
combining RSS / Atom feeds that are every day more
numerous on the Web.

3. If GlossaNet corpora were formerly limited to news-
papers, it is no longer the case: any site that offers
content through RSS / Atom feeds can be used. It is
easy to build thematic corpora (finance, recipes, sport,
health, etc.) or corpora representing certain genres
(blog, forum, etc.)

4. The system was completely rebuilt on improved soft-
ware architecture. Thanks to the modularity of the new
architecture, it is now easy to integrate new features

or to bridge the system with other pieces of software.
For instance, we use the system for generating flows
of textual data that feed other applications (for corpus
lexicography, information extraction, etc.)

6. References
F. Duclaye, F. Yvon, and O. Collin. 2003. Unsupervised

incremental acquisition of a thematic corpus from the
web. In Proceedings of Natural Language Processing
and Knowledge Engineering. IEEE.

Cédrick Fairon and John V. Singler. 2006. I’am like, ‘Hey,
it works’: Using GlossaNet to find attestations of the
quotative (be) like in English-language newspapers. In
A. Renouf and A. Kehoe, editors,The Changing Face
of Corpus Linguistics, number 55, pages 325–337. Lan-
guage and computers: Studies in Practical Linguistics,
Amsterdam - New York.

Cédrick Fairon. 2006. Corporator: A tool for creating rss-
based specialized corpora. InProceedings of the Work-
shop Web as corpus, Trento. EACL.

William H. Fletcher. 2007. Implementing a BNC-
Compare-able Web Corpus. In C. Fairon, H. Naets,
A. Kilgariff, and G.-M. de Schryver, editors,Build-
ing and Exploring Web Corpora, volume 4, Louvain-la-
Neuve. Cahiers du Cental.

Marianne Hundt, Nadja Nesselhauf, and Carolin Biewer,
editors. 2007.Corpus Linguistics and the Web, Lan-
guage and computers studies in practical linguistics, vol-
ume 59. Rodopi, Amsterdam - New York.

Adam Kilgarriff and Gregory Grefenstette. 2003. Intro-
duction to the special issue on the web as corpus.Com-
putational Linguistics, 29(3):333–348.

Igor Leturia, Antton Gurrutxaga, Iñaki Alegria, and Ait-
zol Ezeiza. 2007. CorpEus, a ‘web as corpus’ tool de-
signed for the agglutinative nature of basque. In C. Fa-
iron, A. Kilgariff, H. Naets, and G.-M. de Schryver, ed-
itors, Building and Exploring Web Corpora, number 4,
Louvain-la-Neuve. Cahiers du Cental.

Mario Baroni and Silvia Bernardini, editors. 2006.Wacky!
Working papers on the Web as Corpus. GEDIT, Bologna.

Cédrick Fairon. 1999. Parsing a web site as a corpus. In
Cédrick Fairon, editor,Analyse lexicale et syntaxique:
Le syst̀eme INTEX, Lingvisticae Investigationes, volume
XXII, pages 327–340. John Benjamins Publishing, Am-
sterdam/Philadelphia.

Sébastien Paumier. 2003.De la reconnaissance de formes
linguistiquesà l’analyse syntaxique. Ph.D. thesis, Uni-
versité de Marne-la-Vallée.

Antoinette Renouf. 1993. A word in time: first find-
ings from the investigation of dynamic text. In J. Aarts,
P. de Haan, and N. Oostdijk, editors,English Language
Corpora: Design, Analysis and Exploitation, pages 279–
288, Amsterdam. Rodopi.

Antoinette Renouf. 2003. Webcorp: providing a renewable
energy source for corpus linguistics. In S. Granger and
S. Petch-Tyson, editors,Extending the scope of corpus-
based research: new applications, new challenges, pages
39–58, Amsterdam. Rodopi.

39

Collecting Basque specialized corpora from the web:
language-specific performance tweaks and improving topic precision

I. Leturia, I. San Vicente, X. Saralegi, M. Lopez de Lacalle
Elhuyar Fundazioa, R&D

Zelai Haundi kalea, 3. Osinalde Industrialdea, 20170 Usurbil. Basque Country
E-mail: {igor, inaki, xabiers, maddalen}@elhuyar.com

Abstract
The de facto standard process for collecting corpora from the Internet (with a given list of words, asking APIs of search engines for
random combinations of them and downloading the returned pages) does not give very good precision when searching for texts on a
certain topic. And this precision is much worse when searching for corpora in the Basque language, due to certain properties inherent in
the language and in the Basque web.
The method proposed in this paper improves topic precision by using a sample mini-corpus as a basis for the process: the words to be
used in the queries are automatically extracted from it, and a final topic-filtering step is performed using document-similarity measures
with this sample corpus. We also describe the changes made to the usual process to adapt it to the peculiarities of Basque, alongside
other adjustments to improve the general performance of the system and quality of the collected corpora.

1. Introduction

1.1 Motivation
Basque needs corpora more than many other bigger
languages, as its standardisation began only very recently.
And above all it is in need of specialized corpora, because
terminology is the area with least de jure normalization.
The only specialized corpus in Basque is the ZT Corpus
(Areta et al., 2007), a corpus on Science and Technology
that is a very valuable resource, but which does not fulfil
all the needs of Basque for many reasons: it does not
include texts on social sciences; it is divided into very
general topics, so it is impossible to search texts dealing
exclusively with anatomy or computer sciences, for
example; and it is not kept up-to-date.
But building specialized corpora the classical way, i.e. out
of printed texts, is normally a very costly process, and
Basque is not exactly what we would call a language with
plenty of economic resources. So we embarked on a
project to build a system to collect specialized corpora in
Basque, using the Internet as a source.

1.2 Low topic precision
Before BootCaT (Baroni & Bernardini, 2004) came onto
the scene, collecting corpora on a certain topic from the
web was mainly done by crawling sites related to the topic
and subsequently filtering the pages using some sort of
topic classifier, as in (Chakrabarti et al., 1999). BootCaT
introduced a new methodology: give a list of words as
input, query APIs of search engines for combinations of
these seed words and download the pages. This
methodology has in some cases been used to build big
general corpora (Sharoff, 2006), but for collecting smaller
specialized corpora, it has become the de facto standard.
Since then, the subsequent topic-filtering stage has been
left aside, as it has been assumed that the search for words
on a topic suffices for obtaining the corresponding texts
on it alone.

And yet there are not many studies on the precision
obtained by the word-list method, and the results of the
few that have been done give us reason to believe that a
topic-filtering stage is necessary: in the aforementioned
paper on BootCaT, an evaluation was performed on a
small sample of 30 texts of each of the two corpora
collected, and a third of them proved to be uninformative
or unrelated to the topic. Depending on the application,
this amount of noise in the corpora can be considered to
be unacceptable.

1.3 Problems with Basque
Obtaining an increase in precision is even more important
in our case, since some features of the Basque language
and the Basque web cause topic precision to fall
dramatically when using the standard methodology, as the
experiment we describe next shows.
We used BootCaT to gather some small corpora on
geology and computer sciences: we made 20 queries with
2, 3 and 4 n-gram combinations and downloaded the first
10 pages. Then we looked at all of the documents to see if
they were appropriate for the corpus (desired topic and
language, informative, not duplicates, etc.), and the
results we obtained are shown in Table 1.

Total Appropriate Topic n
Docs Words Docs % Words %

2 65 1,282,001 33 50.77 289,259 22.56
3 60 2,853,710 25 41.67 406,426 14.24

Comp.
Sci.

4 48 2,321,888 22 45.83 355,254 15.30
2 85 2,526,820 13 15.29 379,131 15.00
3 31 1,606,312 8 25.81 184,371 11.48Geol.
4 3 195,246 2 66.67 101,731 52.10

Total 292 10,785,977 103 35.27 1,716,172 15.91

Table 1: BootCaT topic precision results

40

The percentage of each of the reasons for a document to
be considered inappropriate are shown below:

Reason

Wrong topic Wrong
language Other1 Topic n

Docs % Docs % Docs %
2 21 65.63 5 15.63 6 18.75
3 17 48.57 11 31.43 7 20.00

Comp.
Sci.

4 16 61.54 4 15.38 6 23.08
2 31 43.06 26 36.11 15 20.83
3 4 17.39 2 8.70 17 73.91Geol.
4 0 0.00 0 0.00 1 100.00

Total 89 47.09 48 25.40 52 27.51

Table 2: Kinds of inappropriate pages

This study is by no means exhaustive, but our objective
was not to quantify the loss in precision exactly. We were
just aiming to show that topic precision and general
quality of a corpus obtained with BootCaT are much
worse when looking for corpora in Basque. Besides, we
must take into account that in this experiment we did not
perform the bootstrapping process of extracting the words
out of the downloaded pages to get new ones; if we had
done so, the pages downloaded in the next stage would
most likely have yielded even worse topic precision.
The reasons for this are diverse. One is that no search
engine offers the possibility of returning pages in Basque
alone, so when looking for technical words (as is often the
case with specialized corpora), it is very probable that
they exist in other languages too, and that the queries
return many pages that are not in Basque. Another reason
is that the Basque web is not as big as those of other
languages, and this means that the only pages existing for
certain queries with combinations of various words are
very long documents (blogs, magazines in PDF format,
etc.) where the desired topic is just a small part of the
whole document, or where the words searched for are
simply found by chance in different parts of the long
document. This phenomenon is exacerbated by the fact
that Basque is a morphologically rich language and any
lemma has many different word forms, so looking for a
word’s base form alone, as search engines do, brings
fewer results.

2. Our approach

2.1 System objectives and description
The objective of our project is to develop a system to
obtain specialized corpora in Basque from the Internet,
aimed at improving topic precision and solving
Basque-specific problems.
In order to try to improve topic precision, our method

1 Duplicate, part of a much bigger text including other topics,
spam, etc.

takes, as a starting point, a sample mini-corpus of
documents on the topic, instead of a list of words. This
mini-corpus has two uses: first, the list of keywords to be
used in the queries is automatically extracted from it;
second, it is used to filter the downloaded documents
according to topic by using document-similarity
techniques (Lee et al., 2005).
And considering the inferior quality that is obtained when
Basque is involved, we also try to improve this by using
techniques and methods known to obtain better
performances with Basque IR, as well as other little
adjustments to the general process.

2.2 Evaluation corpora
In order to evaluate and measure the improvements of our
system, we built some corpora by putting the system into
practice. We chose the same two topics with which we
evaluated the performance of BootCaT with Basque, i.e.
computer sciences and geology. We built three sample
corpora of each topic, consisting of 10, 20 and 30
documents, the two smaller ones made up of documents
chosen at random out of the bigger one. For each of these
six sample mini-corpora, we automatically extracted the
word lists and revised them manually. Then out of each of
the six lists we built three different corpora using 2-, 3-
and 4-word combinations in the queries. These are the
final sizes of the 18 corpora collected:

n Topic Sample
size 2 3 4
10 758 274 43
20 745 256 56

Computer
Sciences

30 674 176 52
10 97 22 3
20 125 14 3 Geology
30 146 27 2

Table 3: Sizes of the collected corpora

These are the corpora that have been used for the various
evaluations and partial results mentioned in the next
sections, which describe the method and system
developed.

3. Automatic keyword extraction from a
sample mini-corpus

The basis of our system is a sample mini-corpus of
documents on the target topic, which will have to be
collected manually. This sample will be used for
extracting the word list for the queries and in the final
topic-filtering stage as well, so the criteria when
collecting the sample is that it should be as heterogeneous
as possible and cover as many different subjects of the
topic as possible. According to our experiments, as few as
10 documents may be enough for a very specialized topic,
but more might be needed for more general topics.
The words to be used in the queries are automatically

41

extracted from this sample corpus, thus avoiding the work
of finding appropriate words on the topic. This is usually
more laborious than finding texts on the topic, at least for
Basque, because there are many topics for which there are
still no specialised dictionaries or glossaries.
The keyword extraction method is based on the work
previously performed in our team in the DokuSare project
(Saralegi & Alegria, 2007). The mini-corpus is
automatically lemmatised and POS-tagged, and then the
most significant nouns, proper nouns, adjectives, verbs,
entities and multiword terms are extracted by means of
Relative Frequency Ratio or RFR (Damerau, 1993),
which we calculate by dividing the relative frequency of a
word in the specialized mini-corpus by the relative
frequency of the word in a general corpus, and applying
an empirically determined threshold. The general corpus
we use is a 450,000-word corpus consisting of newspaper
articles.
The extracted list consists of (mostly) topic-specific
words, but some of them might be too specific or rare, as
the RFR measure tends to promote on excess words that
are not present in the general corpus. The usual way to
avoid this is to use a raw frequency threshold to choose
the candidate words for the RFR measure, but this is not
so easy to apply in our case, because the sample
mini-corpora are small (on purpose). And in any case,
these undesired words are usually removed in the manual
revision stage explained in the next paragraph.
In order to maximise the performance of the queries, the
extracted list is revised manually. Too specific or too local
proper nouns, too general words and polysemous words
that have other meanings in other areas are removed.
Normally, the total process of obtaining the mini-corpus
and manual revision of the word list is still less costly than
trying to obtain a word list, because of the absence of
specialised dictionaries explained above.

4. Optimizing for Basque
It is a well-known fact that search engines do not work
well with many non-English languages (Bar-Ilan &
Gutman, 2005). In 2007 there was even a SIGIR
workshop on the subject (Lazarinis et al., 2007).
Specifically, performance of search engines for Basque is
very poor, mostly due to the rich morphology of the
language and to the fact that no search engine can restrict
its results to pages in Basque alone, and these are the main
reasons for the poor performance of BootCaT with
Basque. But search engines can be made to work much
better with Basque by applying the techniques known as
morphological query expansion and language-filtering
words, as shown in the projects CorpEus (Leturia et al.,
2007 a) and EusBila (Leturia et al., 2007 b).

4.1 Methodology description
In Basque, a lemma can form very many different surface
forms, so just looking for the exact base form does not
return all the pages that actually contain occurrences of a
word. This is true, to a greater or lesser extent, for many
other languages too, but while search engines usually

apply some sort of stemming for major languages, this
does not happen in the case of Basque. Morphological
query expansion, also called Frequent Case Generation in
some other works (Kettunen, 2007), consists of asking the
search engine not only for the lemma of a word, but also
for various different word forms of the lemma, which are
obtained by morphological generation, within an OR
operator. In order to maximize recall, the most frequent
word forms are used. In the case of Basque, the
morphological generation is done using a tool developed
by the IXA Group of the University of the Basque Country,
and recall is improved by up to 60% in some cases. The
anticipated effect of this increase in recall in our project is
a smaller percentage of big PDFs in the downloaded
documents, and more pages downloaded in some topics
with 4-word combinations in the queries.
The other problem is caused by the fact that no search
engine offers the possibility of restricting its results to
pages in Basque. The result is that when searching for
technical words, short words or proper nouns, many
non-Basque pages are returned, since those words may be
used in other languages too. The language-filtering words
method, consisting of adding the most frequent Basque
words to the queries within an AND operator, improves
language precision from 15% to over 90%. There is also a
non-negligible loss in recall, because pages not containing
the filtering words may be left out, but these are normally
short and so uninteresting for corpora. Besides, the
practical effect in a project like ours is actually a gain in
recall: where some normal searches would return many
non-Basque pages that would afterwards be filtered out in
the language- or size-filtering step and yield few or even
no results, with the language-filtering method, however,
we would obtain pages in Basque.
We are aware that BootCaT does give the option of
language-filtering by means of a list of frequent words in
the language, but that filtering is done after downloading
the pages. If filtering is conducted that way, many
searches for words that exist in other languages will bring
no results in Basque and all the pages will be filtered out,
thereby wasting bandwidth, time and calls to the API of
the search engine.
However, the language-filtering words method ensures
that almost all of the pages downloaded will have Basque
in them, but not that they will be exclusively in Basque.
Due to the Basque language being co-official with
Spanish in the Basque Autonomous Community and in
some parts of the Charter Community of Navarre, there
are many bilingual web pages and documents, e.g. many
local and regional government gazettes. Including those
bilingual documents in the corpora would cause too much
noise, but not including them means we could lose many
interesting documents.
In order to solve this problem, we use LangId, a language
identifier developed by the IXA Group of the University
of the Basque Country, applied at paragraph level. This
does not mean that we remove every non-Basque
paragraph; if we did, we could also remove some short
quotes important for the understanding of a text. As our

42

intention is to eliminate sufficiently large amounts of
noise, we remove sequences of non-Basque paragraphs
that exceed 10% of the length of the document, and
individual paragraphs only if the total amount of the
language of the paragraph in the document exceeds 40%.
But working with a minority language like Basque does
not always mean more difficulties. Spam and porn
filtering, for example, turn out to be very easy. Since as
big an audience as possible is usually targeted, there is
practically no spam or porn in Basque, so language
filtering does the job perfectly.

4.2 Evaluation
The effectiveness of the language-filtering words method
for obtaining pages exclusively in Basque from the
queries had already been proven in the aforementioned
CorpEus and EusBila projects, and the results achieved in
this experiment confirm it (only 2.46% of documents
retrieved by search engines did not contain any Basque).
As to the language identifier that is applied at paragraph
level, it removes supposedly non-Basque parts from 28%
of the downloaded documents. Due to the amount of work
this entails, we did not evaluate the recall of this step (that
is, we did not look at all the documents to see how many
non-Basque parts had been left out). But we did look at a
sample of the cleaned documents to see if the removed
parts were really non-Basque, and although we did not
measure it quantitatively, the performance can be
considered to be very good.
The morphological query expansion method improves
recall in Basque IR, so the number of long PDFs should
go down when it is used, which in fact turns out to be the
case: in the BootCaT experiments, almost 72% of the
documents were PDFs, but now only 13% are PDFs in the
computer sciences corpus and 41% in the geology corpus;
and the average document length also went down by a
25%.

5. Other improvements

5.1 Description
Filtering documents by length is an effective way of
reducing noise (Fletcher, 2004). In our case, we reject
documents the length of which after conversion to plain
text is under 1,000 characters or over 100,000 characters.
That is to say, we remove documents that are roughly
shorter than half a page (not enough continuous text to be
interesting) or longer than 50 pages (not likely to be on a
specialized topic).
Boilerplate removal is another key issue in this project,
not only because boilerplate adds noise and redundancy to
corpora, but also because it can affect subsequent stages
(near-duplicate detection, topic filtering, etc.). For
boilerplate removal, we use Kimatu (Saralegi & Leturia,
2007), a system developed in our team that scored well
(74.3%) in the Cleaneval competition (Baroni et al.,
2008).

We have also included a near-duplicate detection module
based on Broder’s shingling and fingerprinting algorithm
(Broder, 2000). We have prioritised non-redundancy over
recall and have rejected not only almost equal documents,
but all that have a level of coincidence of over 50% with
some other one. The reason for this is that nowadays
many on-line news sites and blogs have a main page with
some news that changes over time with the addition of
new items, but at certain times many news items may
coincide. Also, they often show the list of posts related to
a category or a tag, and these can have many articles in
common too.
Broder’s earlier works on near-duplicate detection also
dealt with containment (Broder, 1997). But while
near-duplicate detection was improved enough to require
a very small set of features and very fast processing (as
much as to be used at web level), containment detection
did not attain this level of optimization. However, we
think containment detection is important: again, many
blogs and news sites have a main page or section where
many individual articles that also have their own URL are
contained. And near-duplicate detection methods do not
detect containment. So we took up again Broder’s method
for containment detection, which on our scale is perfectly
usable.

5.2 Evaluation
31% of the downloaded documents were filtered out
because they were too long, and 10% and 3% of the
computer sciences and geology corpora, respectively,
because they were too short. By taking a look at the
rejected ones, we confirmed that the filter achieves its
goal, as the great majority were uninteresting, general or
multi-topic documents.
The near-duplicates filter removes 5% of the downloaded
documents, and the containment filter another 5%. In the
small evaluation we made for precision we found no
errors; recall was not evaluated.

6. Topic precision obtained with the
improvements

All the improvements made to the process, both
Basque-specific or general, that have been described
above, have already been evaluated individually. But the
aim of each and every one of them is to enhance the
quality of the corpora obtained, mainly regarding topic
precision. So it is imperative to evaluate the collected
corpora by looking at topic precision, to see if the
performance tweaks for Basque and the other
improvements had any effect and actually improved the
BootCaT results. We took a random sample of 30
documents out of each of the 18 corpora built for the
evaluation, and saw whether they belonged to the desired
topic or not. Due to their small size (see Table 3), all the
documents of n=4 and of geology n=3 were checked.
These were the results we obtained:

43

n Topic Sample
size 2 3 4 Avg.
10 46.66% 63.33% 82.93% 64.31%
20 50.00% 66.66% 70.00% 62.22%
30 53.33% 63.33% 63.89% 60.19%

Computer
Sciences

Avg. 50.00% 64.44% 72.27% 62.24%
10 53.33% 40.91% 100.00% 64.75%
20 56.66% 64.29% 100.00% 73.65%
30 46.66% 56.76% 100.00% 67.81%

Geology

Avg. 52.22% 53.98% 100.00% 68.74%
Avg. 51.11% 59.21% 86.14% 65.49%

Table 4: Topic precision before topic-filtering stage

In view of these results, we can conclude that our little
improvements, all together, do yield much better topic
precision results when looking for corpora in Basque, and
are not far short of the baseline for other languages.

7. Topic filtering
As we have pointed out already, this topic precision can
be considered insufficient in many cases, and another aim
of our project was to try to improve it.

7.1 Methodology description
Topic or domain detection is usually approached through
machine learning methods. While these can obtain good
performances, they also have their drawbacks: they need
fairly big training sets and times, they are trained for a
fixed set of topics, etc.
Our approach to this matter has been to try to use a small
set of sample documents (i.e. the sample mini-corpus out
of which the keywords are extracted) and document
similarity measures based on keyword frequencies to say
whether a document belongs to a topic or not. According
to Sebastiani (2002), topic or domain detection can be
done using keywords.
These kinds of document similarity measures are usually
applied between two documents to see if they deal with
the same or a similar subject, as in the aforementioned
DokuSare project. But in our case, we have a document
and a corpus, which are elements of different scale, and
also the level of similarity to be handled is somehow
smaller, since we just need to measure whether they
coincide on the topic.
They have also been applied to measure similarity
between two corpora (Kilgarriff & Rose, 1998), which is
also a little different from our case.
However, the general idea of our project is very similar to
that of DokuSare: to represent both the documents to be
filtered and the sample mini-corpus through a set of
features based on keywords, and to use some similarity
measure to see if they share the same topic.
But as we said, we are going to measure the similarity
between elements of a different scale, i.e. a document and
a set of documents. So we have tried by measuring the

similarity between a document and the mini-corpus
directly, and also by measuring the similarity of a
document with each of the documents of the sample
mini-corpus, and taking the maximum.
For the representation of both the downloaded documents
and the sample corpus or each of the documents of the
sample corpus, we use the bag-of-words paradigm, which
models the most significant keywords, i.e. nouns, proper
nouns, adjectives and verbs, in a vector. The words are
selected and weighted by a certain frequency measure. We
have tried two: the aforementioned RFR and a new one
we have defined as Relative Rank Ratio or RRR.
We felt that this new frequency measure fitted Zipf’s law
better (Zipf, 1949) and could be better suited for
comparing documents of different sizes. It is defined as
the ratio between the relative frequency-ranking of a word
in the document or corpus involved, and the relative
frequency-ranking of a word in a general corpus. This is
its exact formula:

1.).(
.).,(.

1

1)(
),(.

1
),(

+
−

+
−

=

corpgenRankCount
corpgenwRankFreq

dokRankCount
dokwRankFreq

dokwRRR
i

i

i

We have observed that this measure works better if we
apply some sort of smoothing to words that are not found
in the general corpus, because otherwise the formula
gives them very high values, and they are often rare words
or spelling errors that worsen the results.
For measuring the similarity we use the cosine, the most
extended way to measure the similarity between
documents represented in the vector space model.
So for comparing two documents x and y, wi (i },1{ n∈)
being the keywords present in any of the two, we prepare
the vectors (x1, x2, … xn) and (y1, y2, … yn), where xi and yi
are the RFR or RRR ratios of the word wi in the
documents x and y respectively, and then we calculate the
cosine between the two, which is specified as follows:

∑∑

∑

==

==
n

i

n

i

n

i
ii

yx

yx

yx

1

2

1

2

1),cos(

7.2 Evaluation
As an evaluation experiment, we took the corpora
collected for the evaluation, and out of each of them we
manually chose a sample of appropriate documents and
another one of inappropriate ones, each made up of 15
documents (if the corpus was large enough). Then we
applied the aforementioned similarity measures to these
development datasets in the two ways explained, and for
each of the 18 corpora we obtained charts like those
shown in figures 1 to 4. More precisely, these correspond
to the average of the geology and computer sciences
corpora collected using 20-document sample
mini-corpora and using 2-word combinations.

44

Figure 1: Results with RRR measure,

taking the sample mini-corpus as a whole

Figure 2: Results with RFR measure,

taking the sample mini-corpus as a whole

Figure 3: Results with RRR measure, taking each
document of the sample mini-corpus individually

Figure 4: Results with RFR measure, taking each
document of the sample mini-corpus individually

It is impossible to show here all the charts for all of the 18
corpora and the different averages. Instead, we will
explain the conclusions we have drawn from their
observation.
Since our primary objective is to improve topic precision,
we are interested in finding a measure and a threshold that
will maximise the F-measure but which will prime
precision. This is usually obtained somewhere to the right
and near the crossing point of the precision and recall
series. On average, the highest crossing points are found
with the RRR measure when compared with each
document of the sample corpus individually.
We have also tried to improve the results by combining
more than one of them. For example, we have tried first
measuring the similarity with the whole sample
mini-corpus and, if the measure is not above the threshold,
trying again with the one-by-one comparison. But the
only effect of this was that more documents were accepted,
both good and bad ones, thus augmenting recall but at the
cost of precision.
If we are to significantly improve the baseline of 66%
topic precision, we would need a precision of 80%
minimum, without a great loss in recall. The
RRR-individual method can obtain precision and recall
above 80% for most of the corpora, but with different
thresholds. In other words, there is no threshold that
maximises F-measure and obtains a precision above 80%,
and which works for all of the corpora.
In any case, for higher thresholds we usually obtain a
higher precision (at least until it falls at some point), so it
is possible to assure high precision (80-90%) if recall is
not an issue. This might not be the case of Basque, since,
as we have observed before, some topics already yield
very small corpora and a recall of 60-40% may not be
acceptable. But for English or other bigger languages,
with the RRR-individual method and a threshold from
0.18 to 0.20 we can obtain a topic precision of 80-90%.

8. Conclusions
The series of improvements to the standard method for
collecting specialized corpora from the Internet that we
propose, and which are intended to improve the otherwise
disastrous performance when looking for documents in
Basque, seem to achieve their purpose, since our results
are similar to the baseline of other languages. We have
also observed that, without any filtering, the best topic
precision results are obtained, logically, with 4-word
queries, but due to the reduced amount of Basque content
on the Internet, corpora obtained on some topics are
extremely small with these kinds of queries. And there is
no way one can know a priori which topics will be
affected, so it is better to use 3-word queries, even though
the topic precision obtained will be a little lower.
We have also proposed a method for improving the topic
precision for any language, based on a sample
mini-corpus, automatic extraction of words for the queries
and easily computable document similarity measures. In
particular, we have shown that it is possible to attain a
high precision (80-90%) using the RRR measure and the

45

cosine to compare the documents of the corpus with each
document of the sample corpus and taking the maximum,
and applying a high enough threshold. But there is also a
non-negligible loss in recall, which might be an issue at
least for Basque. However, adding the initial word
extraction and the final topic filtering as new optional
modules to BootCaT could be very interesting.
However, there is an important aspect to point out
regarding this method. Obtaining high topic precision
does not imply that the corpus obtained will be highly
representative of the universe. In fact, since we are
filtering by applying similarity measures using the
documents of the sample mini-corpus, if this is not wide
enough, that is, if not all the subareas of the topic are
represented there, we might be missing areas without ever
knowing it. So the quality and heterogeneity (and also size)
of the sample mini-corpus is a key issue in the method
proposed. But it is not easy to say what is a minimum or
optimum size of the sample mini-corpus to assure good
representativeness, since it greatly depends on whether
the topic is very specialised, or quite general, etc. This
alone could be a matter for another paper.

9. References
Areta, N., Gurrutxaga, A., Leturia, I., Alegria, I., Artola,

X., Diaz de Ilarraza, A., Ezeiza, N., Sologaistoa, A.
(2007). ZT Corpus: Annotation and tools for Basque
corpora. In Proceedings of Corpus Linguistics 2007.
Birmingham, UK: University of Birmingham.

Bar-Ilan, J., Gutman, T. (2005). How the search engines
respond to some non-English queries? Journal of
Information Science, 31(1), pp. 13--28.

Baroni, M., Bernardini, S. (2004). BootCaT:
Bootstrapping corpora and terms from the web. In
Proceedings of LREC 2004. Lisbon, Portugal: ELDA,
pp. 1313--1316.

Baroni, M., Chantree, F., Kilgarriff, A., Sharoff, S. (2008).
Cleaneval: a competition for cleaning web pages. In
Proceedings of LREC 2008. Marrakech, Morocco:
ELDA.

Broder, A.Z. (2000). Identifying and filtering
near-duplicate documents. In Proceedings of
Combinatorial Pattern Matching: 11th Annual
Symposium. Montreal, Canada: Springer, pp. 1--10.

Broder, A.Z. (1997). On the resemblance and containment
of documents. In Proceedings of Compression and
Complexity of Sequences 1997. Los Alamitos, CA:
IEEE Computer Society, pp. 21--29.

Chakrabarti, S., van der Berg, M., Dom, B. (1999).
Focused crawling: a new approach to topic-specific
web resource discovery. In Proceedings of the 8th
International WWW Conference. Toronto, Canada:
University of Toronto, pp. 545--562.

Damerau, F.J. (1993). Generating and evaluating
domain-oriented multi-word terms from texts.
Information Processing & Management, 29, pp.
433--447.

Fletcher, W.H. (2004). Making the web more useful as a
source for linguistic corpora. In U. Connor & T. Upton
(Eds.), Corpus Linguistics in North America 2002.
Amsterdam, The Netherlands: Rodopi.

Kettunen, K. (2007). Managing keyword variation with
frequency based generation of word forms in IR. In
Proceedings of NODALIDA Conference. Tartu, Estonia:
University of Tartu, pp. 318--323.

Kilgarriff, A., Rose, T. (1998). Measures for corpus
similarity and homogeneity. In Proceedings of the 3rd
Conference on Empirical Methods in Natural
Language Processing. Granada, Spain: ACL SIGDAT,
pp. 46--52.

Lazarinis, F., Vilares, J., Tait, J. (2007). Improving
non-English web searching (iNEWS07). ACM SIGIR
Forum, 41(2), pp. 72--76.

Lee, M.D., Pincombe, B., Welsh, M. (2005) An empirical
evaluation of models of text document similarity. In
Proceedings of CogSci2005. Stresa, Italy: Earlbaum, pp.
1254--1259.

Leturia, I., Gurrutxaga, A., Alegria, I., Ezeiza, A. (2007).
CorpEus, a ‘web as corpus’ tool designed for the
agglutinative nature of Basque. In Building and
exploring web corpora, Proceedings of the 3rd Web as
Corpus workshop. Louvain-la-Neuve, Belgium:
Presses Universitaires de Louvain, pp. 69--81.

Leturia, I., Gurrutxaga, A., Areta, A., Alegria, I., Ezeiza,
A. (2007). EusBila, a search service designed for the
agglutinative nature of Basque. In Proceedings of
Improving non-English web searching (iNEWS’07)
workshop. Amsterdam, The Netherlands: SIGIR, pp.
47--54.

Saralegi, X., Alegria, I. (2007). Similitud entre
documentos multilingües de carácter científico-técnico
en un entorno web. Procesamiento del Lenguaje
Natural, 39, pp. 71--78.

Saralegi, X., Leturia, I. (2007). Kimatu, a tool for cleaning
non-content text parts from HTML docs. In Building
and exploring web corpora, Proceedings of the 3rd
Web as Corpus workshop. Louvain-la-Neuve, Belgium:
Presses universitaires de Louvain, pp. 163--167.

Sebastiani, F. (2002). Machine learning in automated text
categorization. ACM Computing Surveys, 34(1), pp.
1--47.

Sharoff, S. (2006). Creating general-purpose corpora
using automated search engine queries. In M. Baroni &
S. Bernardini (Eds.), WaCky! Working papers on the
Web as Corpus. Bologna, Italy: Gedit.

Zipf, G.K. (1949). Human behavior and the principle of
least effort. Cambridge, MA: Addison-Wesley.

46

Introducing and evaluating ukWaC, a very large web-derived corpus of English

Adriano Ferraresi,∗ Eros Zanchetta,∗ Marco Baroni,† Silvia Bernardini∗

∗ SITLeC – University of Bologna (Forlı̀)
Corso Diaz 64, 47100 Forlı̀ – Italy

adriano@sslmit.unibo.it, eros@sslmit.unibo.it, silvia@sslmit.unibo.it

† CIMeC – University of Trento
Corso Bettini 31, 38068 Rovereto (TN) – Italy

marco.baroni@unitn.it

Abstract
In this paper we introduce ukWaC, a large corpus of English constructed by crawling the .uk Internet domain. The corpus contains
more than 2 billion tokens and is one of the largest freely available linguistic resources for English. The paper describes the tools and
methodology used in the construction of the corpus and provides a qualitative evaluation of its contents, carried out through a vocabulary-
based comparison with the BNC. We conclude by giving practical information about availability and format of the corpus.

1. Introduction

This article introduces ukWaC, a very large (>2 billion
words) corpus of English, and presents an evaluation of its
contents. UkWaC was built by web crawling, contains basic
linguistic annotation (part-of-speech tagging and lemmati-
zation) and aims to serve as a general-purpose corpus of
English, comparable in terms of document heterogeneity
to traditional “balanced” resources. Since the aim was to
build a corpus of British English, the crawl was limited to
the .uk Internet domain. The corpus is, to the best of our
knowledge, among the largest resources of its kind, and the
only web-derived, freely available English resource with
linguistic annotation. It was created in 2007 as part of the
WaCky project, an informal consortium of researchers in-
terested in the exploration of the web as a source of linguis-
tic data.
The aims of this article are to introduce ukWaC to the com-
munity of linguistic researchers, to describe the procedure
that was followed in constructing it and to provide some
preliminary evaluation of its contents.
The article is structured as follows: in Section 2. we out-
line the corpus creation process. In Section 3. we carry
out a vocabulary-based comparison between ukWaC and
the British National Corpus (BNC), which sheds light on
the main differences between the two corpora. Section 4.
deals with issues related to format and availability of the
corpus. Finally, Section 5. briefly discusses previous work
on web corpora, and Section 6. hints at what we consider
the most pressing next steps of the WaCky initiative.

2. Corpus construction

The procedure described in this Section was carried out on
a server running Fedora Core 3 with 4 GB RAM, 2 Dual
Xeon 4.3 GHz CPUs and 2.5 TB hard disk space. Data
about corpus size and other relevant summary statistics for
each step of the creation process are reported in Table 1 at
the end of the Section.

2.1. Seed selection and crawling

Our aim was to set up a resource comparable to more tra-
ditional general language corpora, containing a wide range
of text types and topics. These should include both ‘pre-
web’ texts of a varied nature that can also be found in
electronic format on the web (spanning from sermons to
recipes, from technical manuals to short stories, and ide-
ally including transcripts of spoken language as well), and
texts representing web-based genres (Santini and Sharoff,
2007), like personal pages, blogs, or postings in forums. It
should be noted that our goal here was for the corpus to be
representative of the language of interest, rather than being
representative of the language of the web. While the latter
is a legitimate object for ‘web linguistics’ (Kilgarriff and
Grefenstette, 2003), its pursuit is not among the priorities
set out for the WaCky corpora.
The first step was identifying sets of seed URLs which en-
sured variety in terms of content and genre. In order to find
these, random pairs of randomly selected content words in
the target language were submitted to Google. The queries
were formed by two-words tuples because preliminary ex-
perimentation found that single word queries tend to yield
potentially undesirable documents (e.g., dictionary defini-
tions of the queried words), whereas combining more than
two words would often retrieve pages with lists of words,
rather than connected text. Content- and genre-wise, previ-
ous research on the effects of seed selection upon the result-
ing web corpus (Ueyama, 2006) suggested that automatic
queries to Google which include words sampled from tra-
ditional written sources such as newspapers and reference
corpus materials tend to yield ‘public sphere’ documents,
such as academic and journalistic texts addressing socio-
political issues and the like. Issuing queries with words
sampled from a basic vocabulary list, on the contrary, tends
to produce corpora featuring ‘personal interest’ pages, like
blogs or bulletin boards. Since it is desirable that both kinds
of documents are included in the corpus, relevant sources
have been chosen accordingly.
Three sets of queries were generated: the first set (1,000

47

word pairs) was obtained by combining mid-frequency
content words randomly selected from the BNC; function
words were excluded from the list, since search engines
usually ignore them when submitted as part of a query.
The second list of queries (500 word pairs) was obtained by
randomly combining words sampled from the spoken sec-
tion of the BNC, while the third list (500 word pairs) was
generated from a vocabulary list for foreign learners of En-
glish1 which (however counter-intuitively) contains rather
formal vocabulary, possibly required for academic study in
English. Once the various seed words had been identified,
they were paired randomly before submission to Google.
A maximum of ten seed URLs were retrieved for each ran-
dom seed pair query, and the retrieved URLs were col-
lapsed in a single list. Duplicates were discarded and, to
ensure maximal sparseness, only one (randomly selected)
URL for each (normalized) domain name was kept. The
remaining URLs were fed to a crawler in random order.
The crawl was limited to pages in the .uk web domain
whose URL does not end in a suffix cuing non-html data
(.wav, .jpg, etc.). The rationale for the choice of limiting
the crawl to .uk pages is that our goal was to construct a
relatively homogeneous resource, comparable to the BNC,
and because of practical issues arising when trying to define
the country domains to crawl (i.e., including or excluding
countries in which English is an official, though not a na-
tive language), as well as how to treat U.S. pages (relying
on the .us domain would provide a very skewed sample of
texts). Our strategy does not, of course, ensure that all the
pages retrieved represent British English.
The crawl was performed using the Heritrix2 crawler and
was stopped after 10 days. The full seed pair and seed URL
lists are available from the project page (see Section 4.).

2.2. Post-crawl cleaning
Using information in the Heritrix logs, we only preserved
documents that were of mime type text/html, and be-
tween 5 and 200KB in size. As observed by Fletcher
(2004) and confirmed by informal experimentation, very
small documents tend to contain little genuine text (5KB
counts as ‘very small’ because of the html code overhead)
and very large documents tend to be lists of various sorts,
such as library indices, store catalogs, etc.
We also identified and removed all documents that had per-
fect duplicates in the collection (i.e., we did not keep even
one instance of a set of identical documents). Decision to
apply this drastic policy followed inspection of about fifty
randomly sampled documents with perfect duplicates: most
of them turned out to be of limited or no linguistic inter-
est (e.g., warning messages, copyright statements and the
like). While in this way we might also have wasted rel-
evant content, the guiding principle in our web-as-corpus
construction approach is that of privileging precision over
recall, given the vastness of the data source.3

1http://wordlist.sourceforge.net/
2http://crawler.archive.org/
3This is also the reason for excluding such documents as .pdf

and .doc files from the crawl (cf. Section 2.1.). It is true that
these documents may contain interesting linguistic materials, but,
on the negative side, they require ad-hoc post-processing tech-

The contents of all the documents that passed this pre-
filtering stage underwent further cleaning based on their
contents. First, we had to remove code (html and
javascript), together with the so-called ‘boilerplate’, i.e.,
following Fletcher (2004), all those parts of web documents
which tend to be the same across many pages (for instance
disclaimers, navigation bars, etc.), and which are poor in
human-produced connected text. From the point of view
of our target user, boilerplate identification is critical, since
too much boilerplate will invalidate statistics collected from
the corpus and impair attempts to analyze the text by look-
ing at KWiC concordances. Boilerplate stripping is a chal-
lenging task, since, unlike html and javascript, boilerplate
is natural language text and it is not cued by special mark-
up. We adapted and re-implemented the heuristic used in
the Hyppia project BTE tool,4 which is based on the ob-
servation that the content-rich section of a page has a low
html tag density, whereas boilerplate text tends to be ac-
companied by a wealth of html (because of special format-
ting, many newlines, etc.). Thus, of all possible spans of
text in a document, we pick the one for which the quantity
N(tokens) − N(tags) takes the highest value. After they
are used for the count, all html tags and javascript code and
comments are removed using regular expressions.
While resource-free and efficient, the proposed boilerplate
stripping method has several limits. Most importantly, it
cannot extract discontinuous fragments of connected text;
thus, for pages with boilerplate in the middle, depending
on the tag density of this middle part, we end up either with
only one of the connected text fragments, or (worse) with
both, but also the boilerplate in the middle. The heuristic
also has problems with the margins of the extracted section,
often including some boilerplate at one end and removing
some connected text at the other. Recently, more sophisti-
cated supervised boilerplate stripping methods have been
proposed as part of the 2007 CLEANEVAL competition
– see algorithms described in Fairon et al. (2007). How-
ever, the unsupervised, heuristic method we are using out-
performs all the CLEANEVAL participants in the text-only
task of the competition, with a score of 85.41 on average
(the best competitor achieves a mean score of 84.07).5

Next in the pipeline, the cleaned documents were filtered
based on a list of 151 function words. Connected text is
known to reliably contain a high proportion of function
words (Baayen, 2001), therefore documents not meeting
certain minimal parameters – ten types and thirty tokens per
page, with function words accounting for at least a quarter
of all words – were discarded. The filter also works as a
simple and effective language identifier.
Lastly, pornographic pages were identified and eliminated,
since they tend to contain long machine-generated texts,
probably used to ‘trap’ search engines. Lists were cre-
ated of words that are highly frequent in ad-hoc crawls of
pornography websites. A threshold was then set, such that
documents containing at least 3 types or 10 tokens from this

niques, and we are not aware of reliable tools for converting them
to text files. We plan to tackle this issue in future work.

4http://www.smi.ucd.ie/hyppia/
5These experiments were conducted by Jan Pomikálek, whose

contribution we gratefully acknowledge.

48

list were discarded.

2.3. Near-duplicate detection and removal

The next step consisted in identifying near-duplicates, i.e.,
documents with substantial overlapping portions. There
are several reasons to postpone this to after corpus clean-
ing, and in particular after boilerplate stripping. Boilerplate
may create both false positives (different documents that
share substantial amounts of boilerplate, thus looking like
near-duplicates) and false negatives (documents with nearly
identical contents that differ in their boilerplate). Also,
near-duplicate spotting is computationally costly and hard
to parallelize, as it requires comparison of all documents in
the collection; thus it is wise to reduce the number and size
of documents in the collection first.
We use a simplified version of the ‘shingling’ algorithm
(Broder et al., 1997). For each document, after removing
all function words, we took fingerprints of a fixed num-
ber s of randomly selected n-grams (sequences of n words;
we counted types, not tokens – i.e., we only looked at dis-
tinct n-grams, and we did not take repetitions of the same
n-gram into account). Then, for each pair of documents, we
counted the number of shared n-grams, which can be taken
to provide an unbiased estimate of the overlap between the
two documents (Broder et al., 1997). For pairs of docu-
ments sharing more than t n-grams, one of the two was
discarded. The pairs were ordered by document ID, and,
to avoid inconsistencies, the second document of each pair
was always removed. Thus, if the pairs A-B, B-C and C-D
were in the list, only document A was kept; however, if the
list contained the pairs A-C and B-C, both A and B were
kept. The devising of efficient ways to identify clusters of
near-duplicates, rather than pairs, is left to future work.
In constructing ukWaC, 25 5-grams were extracted from
each document, based on preliminary experimentation.
Near-duplicates are defined as documents sharing as few as
two of these 5-grams. This threshold might sound surpris-
ingly low, yet there are very low chances that, after boil-
erplate stripping, two unrelated documents will share two
sequences of five content words. A quick sanity check con-
ducted on a sample of twenty pairs of documents sharing
two 5-grams confirmed that they all had substantial over-
lapping text. The near-duplicate detection phase took about
four days.

2.4. Annotation

At this point, the surviving text could be enriched with
different types of annotation. Part-of-speech tagging and
lemmatization was performed by the TreeTagger.6 The an-
notation phase took about five days.
In its final, annotated version, ukWaC contains 1.9 billion
tokens, for a total of 12 GB of uncompressed data (30 GB
with annotation). See Table 1 for detailed size information
at the different stages.

6http://www.ims.uni-stuttgart.de/
projekte/corplex/TreeTagger/

n of seed word pairs 2,000
n of seed URLs 6,528
raw crawl size 351 GB
size after document filtering 19 GB
n of documents after filtering 5.69 M
size after near-duplicate 12 GBcleaning
n of documents after 2.69 Mnear-duplicate cleaning
size with annotation 30 GB
n of tokens 1,914,150,197
n of types 3,798,106

Table 1: Size data for ukWaC.

3. Evaluating ukWaC through wordlist
comparisons

When corpora are built through automated procedures, as
is the case for ukWaC, there is limited control over the con-
tents that make up the final version of the corpus. Post-
hoc evaluation is therefore needed to appraise actual corpus
composition. Along the lines of Sharoff (2006) (cf. Sec-
tion 5.), here we provide a qualitative evaluation of our web
corpus based on a vocabulary comparison with the widely
used BNC. A mostly quantitative evaluation of the overlap
of ukWaC and the BNC in terms of lexis is presented in
Baroni et al. (2008).
Separate wordlists of nouns, verbs and adjectives were cre-
ated for the two corpora, which were then compared via the
log-likelihood association measure.7 This makes it possi-
ble to identify the words that are most characteristic of one
corpus when compared to the other (Rayson and Garside,
2000). Since the procedure relies on the tagger’s output, it
should be noted that the version of the BNC used was re-
tagged using the same tools as ukWaC, so as to minimize
differences in the wordlists that would be due to different
annotation procedures.
For each of the 50 words with the highest log-likelihood
ratio, 250 randomly selected concordances were retrieved
and analyzed. In the following Sections the results of the
analysis are presented.

3.1. Nouns
The nouns most typical of ukWaC when compared to the
BNC belong to three main semantic areas (see Table 2 for
some examples), i.e., (a) computers and the web, (b) edu-
cation, and (c) what may be called ‘public sphere’ issues.8

Category (a) groups words like website, email, and soft-
ware. If we analyse the contexts in which such words ap-
pear, it can be noticed that they are distributed across a wide
variety of text types, ranging from online tutorials to pro-
motional texts introducing, e.g. a web-based service. This

7Full lists are available from the ‘download’ section of the
WaCky site (see Section 4.). For further details on the wordlist
creation and for more detailed analysis see Ferraresi (2007).

8Here and below, the analysis does not take into account words
typically featured in ‘boilerplate’ sections of web pages. An
example of such words is information, which frequently occurs
within expressions like “for more” or “for further information”.

49

may be seen as a welcome finding, for at least two distinct
reasons. First, no one-to-one correspondance is observed
between a topic and a text typology (it could have been
possible that, e.g., software instruction manuals emerged
as a preponderant text type). Second, a corpus like ukWaC
could be used to study the usage of relatively ‘new’ words,
such as those produced within the constantly changing field
of new technologies, and that are unattested in traditional
corpora. As an example of this, a word like website does
not appear at all in the BNC.

ukWaC
Web and computers Education Public sphere issues
website students services
email skills organisations
link project nhs
software research support
BNC
Imaginative Spoken Politics and economy
eyes er government
man cos recession
door sort plaintiff
house mhm party

Table 2: Examples of nouns typical of ukWaC and the BNC
grouped according to their semantics.

The analysis of the concordances and associated URLs for
nouns belonging to category (b) (e.g., students, research),
and (c) (e.g., organisations, nhs, support) suggests that
their (relatively) high frequency can be explained by the
considerable presence in ukWaC of certain entities respon-
sible for the publishing of web contents. These are univer-
sities – in the case of (b) – and non-governmental organiza-
tions or departments of the government – in the case of (c).
Typical topics dealt with in these texts are on the one hand
education and training and, on the other, public interest is-
sues, such as assistance for citizens in need. The variety
of the text genres which are featured is especially remark-
able. As pointed out by Thelwall (2005), academic sites
may contain very different types of texts, whose commu-
nicative intention and register can differ substantially. We
find ‘traditional’ texts, like online prospectuses for students
and academic papers, as well as ‘new’ web-based genres
like homepages of research groups. In the same way, the
concordances of a word like nhs reveal that the acronym is
distributed across text types as diverse as newspaper arti-
cles regarding quality issues in the services for patients and
forum postings on the treatment of diseases.
The nouns most typical of the BNC9 compared to ukWaC
can also be grouped into three macro-categories (examples
are provided in Table 2), i.e., (a) nouns related to the de-
scription of people or objects, (b) markers of orality (or,
more precisely, typical transcriptions of such words), and
(c) words related to politics, economy and public institu-
tions. The words included in category (a) are names of body

9As can be noticed in Table 2, some of the words taken into
account here are not nouns (e.g. er), but rather expressions which
were erroneously recognized by the tagger as nouns.

parts, like eyes; words used to refer to people, such as man,
and names of objects and places, like door, and house. All
of these share the common feature of appearing in a clear
majority of cases in texts classified by Lee (2001) as ‘imagi-
native’ or ‘fiction/prose’. As an example, eyes appears 74%
of the times in ‘fiction/prose’ texts, and door appears in this
type of texts almost 62% of the times. In general, what can
be inferred from the data is that, compared to ukWaC, the
BNC seems to contain a higher proportion of narrative fic-
tion texts, confirming that “texts aimed at recreation [such
as fiction] are treated as an important category in traditional
corpora” (Sharoff, 2006, p. 85), whereas they are rarer in
web corpora. This may be due to the nature of the web
itself, since copyright restrictions often prevent published
fiction texts from being freely available online.
Category (b) includes expressions which are typically as-
sociated with spoken language, including graphical tran-
scriptions of hesitations, backchannels and reduced forms.
Among these we find er, cos, mhm, which appear most fre-
quently in the spoken part of the BNC. These words are
clearly not nouns. However, since the same tagging method
was applied to the two corpora, it is likely that they really
are more typical of the BNC, inasmuch as their relatively
higher frequency cannot be accounted for by differences in
tagger behavior. A noun like sort is also frequently featured
in the spoken section of the BNC, being often found in the
expression “sort of”. As could be expected, spoken lan-
guage is less well represented in ukWaC than in the BNC,
since the latter was specifically designed to contain 10%
transcribed speech.
The last group of words (c) which share important com-
mon traits in terms of their distribution across text gen-
res and domains is that of words associated with poli-
tics, economy and public institutions. Examples of these
nouns are government, recession, plaintiff and party. All
of these are mainly featured in BNC texts that are clas-
sified as belonging to the domain “world affairs”, “social
sciences” or “commerce”, and occur both in academic and
non-academic texts. As a category, this seems to overlap
with the group of words related to public sphere issues
which are typical of ukWaC. However, the specific vocabu-
lary differs because the texts dealing with politics and econ-
omy in ukWaC seem to share a broad operative function,
e.g. offering guidance or promoting a certain governmental
program, as in the following examples:

OGC offers advice, guidance and support;

Local business support services include the
recently established Sussex Business Link;

...use Choice Advisers to provide practical
support targeted at those parents most likely
to need extra-help.

Concordances reveal instead that in the BNC words like
government or recession are more frequently featured in
texts which comment on a given political or economic situ-
ation, as e.g., newspaper editorials would do, for example:

...is urging the government to release all
remaining prisoners of conscience;

Despite assurances from government
officials that an investigation is underway;

...a crucial challenge to the cornerstone
of his government’s economic policy.

50

3.2. Verbs
In Section 3.1. the nouns most characteristic of ukWaC and
the BNC were grouped and analysed on the basis of the
text domains and types they typically appear in. Identi-
fying a similar relationship between textual domains and
verb forms is somewhat less immediate, since verbs are of-
ten less easily associated with, e.g., a particular text topic.
Alternatively, one can adopt a semantic classification based
on their core meaning – here we follow that proposed by
Biber et al. (1999) –, and assess whether verbs belong-
ing to the same class show similar distributional patterns
across, e.g., textual types. Another important aspect which
is taken into account in the analysis of verbs is that of verb
tenses, which, as we shall see, can provide further indica-
tions about the texts that characterize the two corpora.

ukWaC
Activity verbs Verbs of facilitation
use help
develop support
provided improve
visit ensure
BNC
Activity verbs Mental verbs
looked know
nodded mean
go thought
shrugged saw

Table 3: Examples of verbs typical of ukWaC and the BNC
by semantic category.

A clear majority of the 50 verb forms most typical of
ukWaC when compared to the BNC can be classified ei-
ther as “activity verbs”, i.e. verbs which “denote actions
and events that could be associated with choice” (ibid., p.
361), such as use, provide and work, or as “verbs of fa-
cilitation or causation”, i.e. verbs that “indicate that some
person or inanimate entity brings about a new state of af-
fairs”, such as help and allow (other examples can be found
in Table 3). Taken together, the verb forms belonging to
these two categories account for almost 50% of the verbs
most characteristic of ukWaC. Their distribution across text
types, however, seems to differ.
Activity verbs are evenly distributed across the main text
types identified in Section 3.1., i.e. promotional texts – is-
sued both by private companies and governmental depart-
ments and universities –, “discussion texts”,10 such as news
articles and postings in forums, and “instruction texts”, like
help pages and instruction manuals. Here are some exam-
ples:

Specifically created to perform research
and to develop future leaders for aerospace
manufacturing;

...children are dying of AIDS. It
challenges all religions to work together
to reduce the stigma;

10The terminology used to classify web texts is taken from
Sharoff (2006).

When you visit a web page, a copy of that
page is placed in the cache.

As could be expected, verbs of causation, on the contrary,
show a distinct tendency to appear in only two of these
text types, i.e. instruction and promotional texts. In pro-
motional texts, in particular, verbs of causation are used to
convince readers that a certain product, service or idea can
actually make a difference, as in the following sentence:

Acas aims to improve organisations and
working life through better employment
relations.

It is interesting to notice in this respect that many texts in
ukWaC are not easily classifiable as belonging to one single
category. This is the case, e.g., for seemingly instructional
texts, which actually also promote the product they are de-
scribing. Thus, a sentence like:

Once again, we can help with any queries
you may have. Products liability insurance
will cover...

published on the help page of an insurance company can
hardly be seen as having a merely informative function.
This corresponds to what Santini (2007) calls “genre hy-
bridism”, which often makes it especially difficult to clas-
sify web text into clear-cut genre categories.
If verb tenses are taken into account, it can be noticed
that most verbs in the list are in the present tense (or in
their base form), and that those which could appear as past
forms are, in fact, often used as past participles in passive
forms. This could be due to the already noted considerable
importance in ukWaC of discussion texts, which are typi-
cally concerned with current affairs, or of promotional and
instruction texts, which often make use of the imperative
form.
Verb forms in the BNC belong to two main semantic cate-
gories, i.e. activity verbs, like looked and go, and “mental
verbs”, i.e. verbs that “denote a wide range of activities and
states experienced by humans, [...] do not involve physical
action and do not necessarily entail volition” (Biber et al.,
1999, p. 362), like “know” and “thought” (see Table 3 for
other examples).
The verbs belonging to these two categories show very
similar distributional patterns: verbs in the past form oc-
cur most frequently in imaginative/fiction texts, whereas
present tense forms are most frequently featured in the spo-
ken section of the corpus. As regards this point, notice
that activity verbs in the BNC – which usually indicate a
physical action, e.g. of a character in fiction (cf. nodded,
shrugged) – seem to be less evenly distributed across text
types than activity verbs in ukWaC. As an example, the
past tense form looked appears 67% of the times in fiction
texts, and nodded 94% of the times. As already mentioned,
present tense forms – which, however, are a minority in the
list, accounting for less than 15% of the total number of
verbs analysed – are instead most frequent in spoken lan-
guage. The verb form go, e.g., appears 36% of the times
in spoken texts (26% of the times in fiction texts), and the
mental verb know occurs in such texts almost 50% of the
times.

51

Summing up, the (relatively) high frequency of activity and
mental verbs in the BNC can be explained by their being
frequently used within two text types, i.e. fiction and spo-
ken texts. Moreover, when verb tenses are also taken into
account, the BNC, unlike ukWaC, seems to be character-
ized by past-oriented (narrative) language.

3.3. Adjectives
The adjectives most typical of ukWaC can be classified as
belonging to four semantic areas, i.e. (a) web-related adjec-
tives, (b) public sphere-related adjectives, (c) time-related
adjectives, and (d) emphatic adjectives conveying a posi-
tive evaluation (see Table 4 for examples). As can be no-
ticed classes (a) and (b) correspond to two of the main text
topics identified in Section 3.1., thus confirming that such
topics are well represented within ukWaC.

ukWaC
Web Public sphere Present time Emphatic
online sustainable new excellent
digital global current fantastic
mobile disabled innovative unique
BNC
Imaginative Politics Present time Sciences
pale political last gastric
dark soviet former colonic
afraid conservative nineteenth ulcerative

Table 4: Examples of adjectives typical of ukWaC and the
BNC grouped according to their semantics.

Both adjectives belonging to class (a) and (b) show distri-
butional patterns similar to those of their noun “counter-
parts”. Adjectives like online and digital can be found in
technical instruction texts, such as tutorials and user manu-
als; in discussion pages, like blogs, and in promotional texts
about computing-related services. Similarly, adjectives like
sustainable and global typically occur in texts created by
departments within the government and NGOs, or in vari-
ous kinds of promotional or discussion texts, such as texts
promoting a political (or humanitarian) program, or news.
Topics in ukWaC thus seem to correspond to a certain ex-
tent to current themes of discussion (such as “global econ-
omy” and “sustainable growth”). This, however, is also true
for the BNC, in which two of the most typical adjectives
compared to ukWaC are soviet and cold. Such datum is
likely to reflect the importance that such themes as the “So-
viet Union” and the “Cold War” – which are among the
most frequent bigrams including these adjectives – had at
the time of the corpus construction.
Category (c) includes adjectives referring to present time,
or signalling a change with respect to the past, like, e.g.,
new and current. The presence of such adjectives may be
seen as also connected with the high frequency of verbs in
the present tense. Taken together, these two features seem
to point at the fact that the web texts in ukWaC are typi-
cally both focused on the present time and willing to signal
it explicitly. This is notably true for press releases and pro-
motional pages. In the latter type of texts, adjectives which

signal a radical change with respect to the past (e.g. in-
novative) are particularly used to display how original and
innovative a service or product is.
The presence of a considerable number of promotional texts
is also revealed by the high frequency of adjectives which
are chiefly used to indicate positive characteristics (cate-
gory (d)), like excellent, fantastic, and unique. All of these
are mainly found, e.g., in descriptions of products, services
or tourist attractions, as in the following example:

...your stay in Cornwall. Fantastic views
across the ocean and countryside.

The adjectives most typical of the BNC when compared
to ukWaC can also be classified into four main semantic
areas, i.e. (a) adjectives used to describe people and objects,
(b) politics-related adjectives, (c) adjectives related to past
time, and (d) science-related adjectives (see examples in
Table 4).
In the case of the BNC too, classes (a) and (b) correspond to
two of the categories identified in Section 3.1. In category
(a) we find adjectives that refer to physical characteristics of
people (e.g. pale, tall), or of inanimate objects and settings
in which an action takes place (e.g. dark, thick), and oth-
ers that relate to people’s temper (e.g. anxious, angry). As
could be expected, all of these are most frequently found in
imaginative texts. Adjectives belonging to category (b) in-
clude “general”, hypernymic adjectives (e.g. political, so-
cial), and adjectives which designate national provenance
(soviet, french) or refer to political parties (conservative).
These are typically found in three domains, i.e. “world af-
fairs”, “social sciences” and “commerce” (Lee, 2001). As
was noted in Section 3.1., this category of words seems
to overlap with that of public-sphere issues identified in
ukWaC. Concordances of politics-related adjectives, how-
ever, confirm that texts in which the two categories of adjec-
tives occur differ: public sphere-related texts in ukWaC are
often concerned with matter-of-fact issues (like, e.g., offer-
ing support to disabled people), and are mainly focused on
the present (cf. Section 3.2.). Texts related to politics in the
BNC, on the contrary, seem to describe events through gen-
eral, abstract categories (e.g. political), and to report facts
in the past time (cf. Section 3.2. and Section 3.1. for some
examples).
In this regard, it is interesting to notice that, unlike in
ukWaC, the adjectives most typical of the BNC relating to
time refer to the past (category (c)), like, e.g., last, former,
and nineteenth (whose most frequent collocate is century).
These are mainly found in two text domains, i.e. world
affairs and social sciences. Their frequency in these text
types may be seen as confirming that texts about politics
and economics in the BNC seem to adopt a retrospective,
historical approach to facts, as is typical, e.g., of academic
and journal articles.
Finally, adjectives belonging to category (d) are related to
natural and applied sciences. Words like gastric, colonic,
and ulcerative are often found in academic and non-
academic essays which deal with anatomy or health prob-
lems (medicine). A closer look at the adjectives reveals
that several refer to the digestive system. It seems there-
fore likely that the BNC contains a higher proportion of

52

essays on the specific topic of human or animal digestion
than ukWaC (cf. also Kilgarriff and Grefenstette (2003)).
In turn, this could be interpreted as a sign of the relative
weight that even a few texts can have on a (not so small)
corpus like the BNC.

3.4. Discussion
In the present Section a method was presented to provide an
evaluation of ukWaC’s contents. The method involved con-
structing different lists of nouns, verbs, and adjectives. The
same procedure was carried out on the BNC, and the lists
were subsequently compared across the two corpora via the
log-likelihood association measure. This made it possible
to find the words that are comparatively more frequent in
either ukWaC or the BNC, i.e. the words that may be seen
as being relatively typical of one corpus when compared to
the other.
When two corpora are evaluated through word list compar-
isons, however, two points need to be remembered. The
first is that all the words that appear in the lists should be
taken as being indicators of relative typicality in one corpus
or the other, and not as being absolutely typical of them. To
give an example, the noun eyes appears as the 4th most typ-
ical noun of the BNC, even though its absolute frequency
is nearly 15 times lower than in ukWaC. Thus, the fact that
a word is typical of the BNC does not imply that it is not
equally well represented in ukWaC. The second point is that
the method is apt at highlighting strong asymmetries in the
two corpora, but it conceals those features that make them
similar (represented by words that have a log-likelihood
value close to 0). In future work, we intend to determine
what kinds of text types or domains do not turn up as typi-
cal of either ukWaC or the BNC, and assess whether there
is ground to conclude that they are similarly represented in
both corpora.
Moving on to the actual data analysis, it would seem that,
compared to the BNC, ukWaC contains a higher proportion
of texts dealing with three domains, i.e. the Web, educa-
tion, and what were called “public sphere issues”. These
appear in a wide range of text types. Web-related issues, in
particular, are found in almost all the text types identified
by Sharoff (2006), i.e. discussion (e.g. online forums of
discussion about a particular software or website), promo-
tional (e.g. advertising of a traditional or web-based ser-
vice) and instruction texts (e.g. tutorials). The presence of
those among the most typical of ukWaC is unsurprising, in-
sofar as they represent meta-references to the medium of
communication that hosts them, and as the BNC was pub-
lished at a time when the web was still in its infancy. Ed-
ucation and public service issues are also found in a great
variety of text types, ranging from “traditional” texts like
academic articles, to more recent web-based genres, like
presentation pages detailing the activity, e.g., of a research
or humanitarian group. Such heterogeneity of text types
is a very positive feature in terms of the internal variety
of ukWaC, since no one-to-one correspondence between a
certain topic and a text type can be identified. This can
be interpreted as confirming the soundness of the sampling
strategy adopted.
In terms of domains, the BNC features a comparatively

larger presence of narrative fiction texts. These are char-
acterised by the frequent use of nouns and adjectives refer-
ring to physical characteristics or emotions, and by verbs
(in the past tense) related to human actions. Moreover, the
BNC seems to contain a higher proportion of spoken texts,
whose presence is signalled by a number of discourse mark-
ers (e.g. er) and mental verbs in the present tense (e.g.
know, mean). The third category of texts typical of the
BNC is that of texts which deal with political and economic
issues. Such texts differ from public service texts found
in ukWaC, which are characterised by a stronger focus on
practical issues (e.g. offering guidance to citizens), and on
the present time. Politics- and economy-related texts in the
BNC, on the contrary, are more concerned with describing
events through abstract categories and using the past tense,
as is typical, e.g., of non-fiction prose.
Differences in temporal deixis across the two corpora prove
especially noteworthy. ukWaC seems to be characterised
by a stronger concern with the present time, as is demon-
strated, e.g., by the use of verbs in the present tense and
of adjectives which refer to the present. This may be due,
among other factors, to a considerable presence of adver-
tising texts, which also display a number of causative verbs
and of adjectives conveying a positive evaluation. One of
the most interesting findings in this regard was that such
advertising texts are featured not only in pages selling com-
mercial products or services, but also in pages published by
universities (e.g. inviting students to enrol), and govern-
mental departments (e.g. promoting a political program).
In the BNC, on the contrary, narrative language, charac-
terised by past tense verbs and adjectives referring to the
past, is more prominent.

4. Availability
UkWaC is available for download from the website of the
Wacky initiative,11 which also contains other data, such as
frequency lists, seeds (words, tuples and URLs) as well as
the lists used for the comparisons in Section 3. The cus-
tomized tools used for corpus construction (duplicate de-
tection, boilerplate stripping, etc.) are also available for
download from the website. The corpus is available in two
formats, as a plain text file (with no morphological annota-
tion) and as a POS-tagged file encoded in a shallow XML
format. This format is ready for indexing with the IMS
Open Corpus Workbench (CWB),12 a popular corpus pro-
cessing tool. UkWaC is also available via the commercial
“Sketch Engine”.13

5. Related work
There is by now a large and growing literature on using
the web for linguistic purposes, mostly via search engine
queries or by crawling ad-hoc data – see for example the
papers in Kilgarriff and Grefenstette (2003), Baroni and
Bernardini (2006), Hundt et al. (2007), Fairon et al. (2007).
On the other hand, we are not aware of much publicly doc-
umented work on developing large-scale, general-purpose
web-derived corpora.

11http://wacky.sslmit.unibo.it
12http://cwb.sourceforge.net
13http://www.sketchengine.co.uk

53

The work most closely related to ours is that presented
in Sharoff (2006). The author developed a collection of
‘BNC-sized’ corpora (around 100 M tokens) that, as of
early 2008, include English, Chinese, Finnish, French, Ger-
man, Italian, Japanese, Polish, Portuguese, Russian and
Spanish, and that can be queried via an online interface.14

The methodology followed (Sharoff, 2006) is similar to the
one described here – indeed, many tools and ideas were
developed jointly. The main differences are that Sharoff
does not perform a true crawl (he retrieves and processes
only the pages returned by random Google queries, rather
than using them as seed URLs), nor does he perform near-
duplicate detection. Evaluation of some of these corpora is
carried out in Sharoff (2006), where a comparison is made
with reference corpora in the same languages, in terms of
domain analysis and comparing wordlists, similarly to what
we did here. For a more systematic literature review, how-
ever, we invite the reader to refer to Baroni et al. (2008).

6. Further work
UkWaC is already being actively used in several projects,
including simulations of human learning, lexical semantics
and langage teaching. We hope that this article will encour-
age other researchers to adopt ukWaC as a research tool,
and that these activities will give us a clearer idea of the
corpus’ strengths and limits.
We believe that the most pressing issue at this moment is
the need to provide free access to the corpus, both through
a web service that allows scripting access to remote cor-
pora (to support linguists in doing extensive qualitative and
quantitative research with the corpora) and via a web user
interface that should allow user-friendly access to those
without advanced technical skills (e.g., language learners,
teachers and professionals). We are actively working in
these areas.
A second important line of research pertains to automated
cleaning of the corpora, and to the adaptation of tools such
as POS taggers and lemmatizers – that are often based on
resources derived from newspaper text and other traditional
sources – to web data. Moreover, corpora should be en-
riched with further layers of linguistic annotation. To this
effect, we recently finished parsing ukWaC with a depen-
dency parser and we are currently investigating the best way
to make these data available.

7. Acknowledgements
We would like to thank the members of the WaCky commu-
nity for many useful interactions, in particular: S. Castag-
noli, T. Emerson, S. Evert, W. Fletcher, F. Gaspari, A. Kil-
garriff, J. Pomikálek and S. Sharoff. The WaCky project
is partly funded by the University of Bologna through the
LiMiNe funding scheme.

8. References
A. Baayen. 2001. Word frequency distributions. Kluwer,

Dordrecht.
M. Baroni and S. Bernardini, editors. 2006. Wacky! Work-

ing papers on the Web as Corpus, Bologna. Gedit.

14http://corpus.leeds.ac.uk/internet.html

M. Baroni, S. Bernardini, A. Ferraresi, and E. Zanchetta.
2008. The WaCky Wide Web: A Collection of Very
Large Linguistically Processed Web-Crawled Corpora.
submitted.

D. Biber, S. Johansson, G. Leech, S. Conrad, and E. Fine-
gan. 1999. Longman grammar of spoken and written
English. Harlow, London.

A. Broder, S. Glassman, M. Manasse, and G. Zweig. 1997.
Syntactic clustering of the web. In Proceedings of the
Sixth International World Wide Web Conference, pages
391–404, Santa Clara, California.

C. Fairon, H. Naets, A. Kilgarriff, and G.-M. de Schryver,
editors. 2007. Building and exploring web corpora –
Proceedings of the 3rd Web as Corpus Workshop, incor-
porating Cleaneval. Presses Universitaires de Louvain,
Louvain.

A. Ferraresi. 2007. Building a very large corpus of En-
glish obtained by web crawling: ukWaC. Master’s the-
sis, University of Bologna. Retrieved January 28, 2008
from http://wacky.sslmit.unibo.it.

W. Fletcher. 2004. Making the web more useful as a source
for linguistic corpora. In U. Connor and T. Upton, edi-
tors, Corpus Linguistics in North America 2002, Amster-
dam. Rodopi.

M. Hundt, N. Nesselhauf, and C. Biewer, editors. 2007.
Corpus linguistics and the web. Rodopi, Amsterdam.

A. Kilgarriff and G. Grefenstette. 2003. Introduction to the
special issue on the web as corpus. Computational Lin-
guistics, 29(3):333–347.

D. Lee. 2001. Genres, registers, text types, domains, and
styles: Clarifying the concepts and navigating a path
through the BNC jungle. Language Learning & Tech-
nology, 5(3):37–72.

P. Rayson and R. Garside. 2000. Comparing corpora us-
ing frequency profiling. In Proceedings of Workshop
on Comparing Corpora of ACL 2000, pages 1–6, Hong
Kong, China.

M. Santini and S. Sharoff, editors. 2007. Proceedings of
the CL 2007 Colloquium: Towards a Reference Corpus
of Web Genres, Birmingham, UK.

M. Santini. 2007. Characterizing genres of web pages:
genre hybridism and individualization. In Proceedings
of the 40th Hawaii International Conference on System
Sciences, poster session, pages 1–10, Waikoloa, Hawaii.

S. Sharoff. 2006. Creating general-purpose corpora us-
ing automated search engine queries. In M. Baroni and
S. Bernardini, editors, Wacky! Working papers on the
Web as Corpus, pages 63–98, Bologna. Gedit.

M. Thelwall. 2005. Creating and using web corpora. Inter-
national Journal of Corpus Linguistics, 10(4):517–541.

M. Ueyama. 2006. Evaluation of japanese web-based ref-
erence corpora: Effects of seed selection and time in-
terval. In M. Baroni and S. Bernardini, editors, Wacky!
Working papers on the Web as Corpus, pages 99–126,
Bologna. Gedit.

54

RoDEO: Reasoning over Dependencies Extracted Online

Reda Siblini and Leila Kosseim

CLaC Laboratory
Department of Computer Science and Software Engineering

Concordia University
1400 de Maisonneuve Blvd. West

Montreal, Quebec, Canada H3G 1M8

R Sibl@encs.concordia.ca, Kosseim@encs.concordia.ca

Abstract
The web is the largest available corpus, which could be enormously valuable to many natural language processing applications. However
it is becoming very difficult to identify relevant information from the web. We present a system for querying dependency tree collocations
from the web. We show its usefulness in identifying relevant information by evaluating its accuracy in the task of extracting classes of
named entities. The task achieved a general accuracy of 70%.

1. Introduction

(McEnery and Wilson, 2001) has described corpus linguis-
tics as the study of language based on examples of ‘real
life’ language use. And where can we find more examples
of ‘real life’ language use than the web? With the growth
of the World Wide Web, more and more researchers have
been used it in their study of language. Collocations are a
rich source of information that could be very useful in many
natural language processing tasks. The richness of colloca-
tions is attributed to its relationship with meaning. This re-
lationship has been noticed by many researchers, and prob-
ably two of the most quoted ones are (Firth, 1957) “you
shall know the word by the company it keeps” and (Har-
ris, 1968) distributional hypothesis that “words with sim-
ilar meaning tend to appear together”. The term colloca-
tion by itself has more than one definitions in the literature:
(Firth, 1957) described it as “habitual” word combinations,
(Manning and Sch‘eutze, 1999) as some conventional way
of saying things, (Bartsch, 2004) as a frequently recurrent,
relatively fixed syntagmatic, combinations of two or more
words, and (Evert, 2005) as word combination whose se-
mantic and/or syntactic properties cannot be fully predicted
from those of its components, and which therefore has to be
listed in a lexicon.
Although the importance of collocation is obvious, it is not
always easy to collect collocation information for words
that are usually unavailable in a typical corpus; for example
collocations of a specific proper noun. As the web contains
the largest repository of text, it is seen as a solution of such
a problem. However, using the web as a corpus poses its
own set of challenges. In this paper we describe a system
for extracting, representing, and querying collocations from
the web, and we attempt to respond to some of those chal-
lenges posed by the web.
In the remainder of this paper, we first review related work,
then describe a system for extracting collocations online ti-
tled RoDEO: for Reasoning over Dependencies Extracted
Online. And then we evaluate it on the task of extracting
classes of named entities.

2. Related Work

In this section we will present some of the related work in
the literature that extract, represent, and query collocation
information from the web.
(Kilgarriff et al., 2004)’s sketch engine, is a corpus tool
that creates ”Word sketches”, or one-page summaries of a
word’s grammatical and collocational behavior, from a cor-
pus, in addition to other functionalities. The corpus query
language and search is based on regular expression. The
tool also makes uses of a web service that produces corpora
from the web, but the time needed to build a corpus from
the web could varies between minutes and hours.
(Resnik and Elkiss, 2005) described the Linguist’s Search
Engine (LSE), a system that enables language researchers
to query the web for examples based on syntactic and lex-
ical criteria. The system allows users to create queries by
example: by supplying a sample sentence the system parse
the sentence, and find similar structure in the user selected
corpus. To use the web as a corpus the user must supply
a web query to a search engine from within the system,
the system will extract, parse and index sentences from the
web search results and the result can be used by the user as
a new corpus. The user has to wait between minutes and
hours for this process to be completed, however the user
can begin querying the results as soon as they are collected.
The indexing and search of the collected data is based on a
method for querying XML Data by tree structures. It should
be noted that parse trees data are not similar to the typical
semi-structured data that is usually stored and queried in
XML, as phrases structure are usually highly recursive.
(Renouf et al., 2007) presented WebCorp as a tool that helps
corpus linguists in retrieving linguistic output from the web.
The request for linguistic information is translated and feed
to web search engine, the returned documents will be pro-
cessed, and the concordance results are returned to the user.
The author presented some of the current WebCorp prob-
lems, such as the performance issues, the need of a gram-
matical and better collocational analysis, in addition to a
more sophisticated pattern matching.

55

Most of these systems are similar to the system we are pre-
senting in this paper; however the differences and the ad-
vantage of our system will be evident in the following sec-
tions.

3. Extracting Collocations Online
Annotated corpora contain linguistic information that en-
ables linguists to accurately search for the specific occur-
rences of linguistic information. The usefulness of the cor-
pus is increased with the level of annotation or linguistic in-
formation explicitly present in it, and with the expressive-
ness of the search query formalism utilized to investigate
these data.
Most of the related work presented in the previous sec-
tion annotates the utilized corpus, or its extracted part, with
syntactic structure. The syntactic structure used follows a
certain syntactic theory, nevertheless most researches, jus-
tifiably, try not to select a theory specific structure. Two
main categories of syntactic structure are usually described:
phrase structure and dependency structure. Phrase struc-
ture combines words or phrases into syntactic categories or
constituent parts. Dependency structure, on the other hand,
is a representation of relationships between words. (Hays,
1964) define a dependency relationship as a binary relation-
ship between a word called head and another called mod-
ifier. For example the sentence: “Tom drives a car” can
be represented by the following set of dependency relation-
ships: (Tom—subject—drives), (a—determiner—car),
and (car—object—drives). Figure 1 shows a graphical

Figure 1: An Example Dependency Tree

representation of this dependency tree. The expressiveness
of the dependency formalism is usually related to the dif-
ferent types of syntactic relations used to characterize the
words relationships.
We prefer the use of dependency structure over phrasal
structure since they represent syntactic relations explicitly;
however these relationships are more implicit in a phrasal
structure. For example, the actuality that “Tom” is the sub-
ject of “drives” in the above example can only be uttered
in the phrasal structure as a sentence having noun phrase
headed by the noun “Tom”, and related to a verb phrases
headed by the verb “drives”. As such using a dependency
structure allows us to directly represent and query syntactic
relations. However selecting the syntactic structure is not
the main issue in querying or representing syntactic collo-
cations. The main issue is related to how to represent the
created structure and how to query it. In the next section we
are going to present the preferred annotation representation

structure that will allows us, in addition to the incorporation
of syntactic structure, the inclusion of semantic informa-
tion. The selected representation is a scalable and tractable
structure that will enable expressive query formalism in ad-
dition to an advanced reasoning capabilities based on the
availability of syntactic and semantic information.

3.1. Corpora Representation
Before describing the preferred corpora representation, we
will revisit the collocation definition in order to specify
our preference, which correspond to our syntactic structure
preference that we have described in the previous section.
(Lin, 1998b) defines a collocation as a dependency rela-
tionship between two words that occurs significantly more
frequently than by chance. He also proposed a method for
extracting dependency collocations from text corpora. His
method involves the parsing of a corpus using the Mini-
par (Lin, 1998a) parser, and storing the resulted dependen-
cies into a database. By using dependency frequencies and
mutual information he separated collocations from depen-
dency triples that occurred by coincidence. We would like
to extend (Lin, 1998a)’s collocation definition to a depen-
dency relationship between a word and one or more depen-
dency trees. We refer to this type of collocations as Depen-
dency Tree Collocation or (DTC). This extension of collo-
cation would allow us to filter the extracted dependencies
into very specific ones. This restriction is required as the
most frequent collocations vary by context, and in a given
context we are not usually talking about all the possibili-
ties of a word collocating with another, but to a restricted
subset that the context is related to. As such, this extension
will allow us the restriction of the returned collocations to
a selected context.
A dependency collocation between two words could be
represented in the following linear form: [Word1] Depen-
dency1—[Word2]; where Word1 collocates with Word2
via the dependency relationship Dependency1. On the
other hand, a dependency collocation between a word
and a dependency tree could be represented in the fol-
lowing form [Word1] Dependency1—[Word2] Depen-
dency2—[Word3] Dependency3—[Word4]... or graph-
ically as in Figure 2.

Figure 2: A Graphical Representation of a Dependency
Tree Collocation

One of (Lin, 1998b)’s example of a collocation as
a dependency relationship between two words is
[Word]Object—[Drink], or finding the word that col-

56

locates with the word “Drink” through an object depen-
dency relationship. We can extend this example to find
[Word]Object—(Drink)—Subject(Child) or the word that
collocates through an object dependency relationship with
the dependency tree consisting of the verb “Drink” having
a subject dependency relationship with the word “Child”.
Although the top ranked collocation of (Lin, 1998b)’s
example is “Tap Water” the top words for our DTC is
“Milk”. In this sense we have restricted the retrieved
collocations to the instances of the verb that collocate with
a specific object. We could have different restriction types
depending on the formulated DTC query.
Multiple method have been proposed in the literature to
represent and query corpora annotated information, from
a simple regular expression match such as the sketch
engine of (Kilgarriff et al., 2004), to a more complex
semi-structured way as in the linguistic Search Engine case
of (Resnik and Elkiss, 2005). Nevertheless, what we are
presenting here is our preferred annotation representation
structure that will allows us, not only to represent syntactic
structure, but also to include semantic information in a
scalable, tractable structure. This structure will enable
expressive query formalism, in addition to an advanced
reasoning capabilities based on the availability of syntactic
and semantic information. Our representation is based on a
decidable logic representation of the DTC structure. Since
dependency trees could be seen as a semantic network,
using description logic that is equipped with a formal
logic-based semantics fits exactly our needs. Especially
when such a logic is a tractable, decidable subset of
predicate logic, and has several well studied theorem
provers to query it.
Description logic (DL) is a logical formalism for defining
concepts and their relations (Terminologies) specifying
properties of individuals (Assertions). Lately, description
logics became the foundation of the semantic web. The
Semantic web is a collaborative effort led by World Wide
Web consortium (W3C) that provides a framework for
making World Wide Web content processable by machines
(Berners-Lee, 1998). W3C endorsed the web ontology
language (OWL) as the language for the semantic web
(Dean et al., 2004). OWL is a semantic markup language
for defining and instantiating web ontologies, and it is
based on description logic. It is a vocabulary extension
of RDF (the Resource Description Framework), derived
from the DAML+OIL (DARPA Agent Markup Language
and Ontology Interchange Language), and based on XML
(Extensible Markup Language). An OWL ontology may
include descriptions of classes (or concepts), properties
(relations between a main class called domain and another
called range), and the classes instances (or individuals).
We have selected OWL-DL as the structure for represent-
ing corpora annotation, it is the subset of OWL supporting
a decidable (SHOIN(D)) description logic (Horrocks
and Patel-Schneider, 2004). The intuition behind this
selection is the effortless mapping between a dependency
relation and an OWL-DL property between two classes
(the head of dependency relation and its modifier). In
addition the lemma and part of speech information of
each word are mapped to classes. For example, the DTC:

(Drinks Verb)—Subject(Child Noun) will be mapped to
the following OWL descriptions:

• “Subject” as an OWL property having as domain the
class “Drink” and as range the class “Child” (note that
the lemma of the word is used to describe the class) .

• “Drink” is subclass of the class “Verb” and “Child” is
a subclass of the class “Noun”.

• In addition to indexed instance of the class “Drink”,
such as: “Drinks 1”, and an indexed instance of the
class “Child” such as “Child 1”.

The indexing is needed to relate sentence instances. The
end result could be illustrated graphically as in figure
3.In this graph rectangles represent classes, ovals represent
properties, and double brackets represent instances.

Figure 3: A Graphical Representation of a Dependency
Tree Collocation ontology

This representation has a lot of advantages, some of these
advantages:

1. Availability of well studied, powerful query formal-
ism.

2. Possibility of applying rules to the created knowledge
base using backward or forward chaining.

3. Ability to integrate multiple knowledge bases, some
of which might include general semantic information.

4. The existence of well studied reasoners that can be
used to answer queries over the created knowledge
base schema and instances.

5. OWL is a standard meant to be used for the semantic
web, in which semantics of information and services
on the web are defined to be used and exchanged. As
such, most of the available reasoner services are built
for large scalability.

Investigating in details all of these advantages are beyond
the scope of this paper. Nevertheless we are going to fo-
cus on the first advantage: a powerful query formalism and
related answering mechanism, which will be introduced in
the next section.

3.2. Query Formalism
The reasoner that we have selected for the query answer-
ing is the RACER reasoner (Haarslev and Moller, 2003).
RACER (an acronym for Renamed ABox and Concept Ex-
pression Reasoner) is a reasoner that implements tableau
calculus for description logic (DL) and supports the web

57

ontology languages DAML+OIL, RDF, and OWL. nRQL
(new RACER Query language) is an expressive DL-query
language. An nRQL query consists of a query head and
a query body. For example, the query (retrieve (?x) (?x
Noun)) has the head (?x) and the body (?x Noun). It re-
turns all “Nouns” from the ontology which is queried. A
detailed description of nRQL is given in (Haarslev et al.,
2004). Although nRQL is closely related to Horn logic
query languages such as Datalog, it has been argued (Wes-
sel and Moller, 2006) that nRQL is a more general query
language framework that provides more flexibility and op-
tions for extensions than Datalog. In addition, it provides
an optimized implementation by bounding the variables in
a query to explicitly mentioned instances in the knowledge
base.
The DTC query could be represented in nRQL, which en-
ables us to formulate complex conjunctive queries in order
to retrieve a specific DTC from the created dependency on-
tology structure. Then we can use the RACER conjunctive
query answering to prove the nRQL, over the created DT
ontology, and return the corresponding results.
For example, if we are looking for the dependency tree
collocation [Noun]Subject—[Drive]—Object[Ball], that
is the nouns that are subjects of the verb ”Drive” and hav-
ing “Ball” as its object, we can formulate it as the following
nRQL query: (Retrieve (?x)(AND(?y ?x Subject)(?y ?z
Object)(?y Drive)(?x Noun)(?z Ball)).
Although we are using nRQL as the query formalism of
choice, other query languages could be easily used such as
the OWL-QL (Fikes et al., 2004) query language of the se-
mantic web.
Using RACER we can then run an nRQL query and re-
turn related Dependency Tree Collocations from the web
corpora that would be presented as an OWL-DL ontology.
Representing the whole World Wide Web as a well struc-
tured description-logic knowledge representation would be
the ideal solution to query DTCs, however as it is not fea-
sible for us to do so, we are going provide an alternative:
a method to generate sentences from a DTC query, which
will enable us to created related web queries and retrieve
very specific and related documents that will represent a
corpus related to the DTC in question. This method will be
described in details in the next section.

3.3. From DTC to Sentences

Most web search engines provide an unstructured query
language to query the web. Transforming a DTC conjunc-
tive query to a web search query puts forward its own set
of challenges. Using the DTC conjunctive query content
words as web query keywords may return millions of docu-
ments. However, not all the returned documents are related
to the dependencies collocation that we are looking for,
but barely documents containing the supplied keywords.
To narrow down the returned results to the dependency
relationship that we are looking for, we formulate the web
query as a specific search phrase. A search phrase is a
sequence of words that must co-occur together.
For the DTC example query above: (Retrieve
(?x)(AND(?y ?x Subject)(?y ?z Object)(?y Drive)(?x
Noun)(?z Ball)). The content words of this DTC query

are: “Drive” and “Ball”. When we used the Google API
to search for documents having the keywords “Drive” and
“Ball”, we obtained about 39 million documents. When
we searched for the search phrase ”Drive.Ball”, we found
167,000 documents. Still this search phrase is not the
search phrase that returns the narrowed down documents
to the DTC above. In addition, concatenating the content
words from the DTC does not always match what we are
looking for. So we need a way to know how we usually
write sentences that match the dependency tree we are
looking for.
Our solution to this problem is the creation of a dependency
tree corpus from a subset of the open American National
Corpus (ANC), which would act as a representation of the
grammatical structure of the sentences in terms of depen-
dency trees. The corpus is represented as an OWL-DL
knowledge base in the same way described in section 3.1.
We then use the reasoner over the create knowledge base
to query for the subclasses of the DTC conjunctive query.
For the example above the subclasses of DTC query is
(Retrieve (?x)(AND(?y ?x Subject)(?y ?z Object)(?y
Verb)(?x Noun)(?z Noun)). Running this query over the
created tree ontology will help in the creation of search
phrases that correspond to the DTC conjunctive query. The
dependency tree corpus only contains dependency trees of
grammatical categories and their relationships, but does
not contain the actual words of sentences. This knowledge
base is meant to be a representation of various grammatical
phenomena, where each dependency tree represents a
typical sentence in a text, and is ranked by its length and
by the number of non-content words it contains. The
reasoning behind the ranking is that the more non-content
words in a search phrase the more specific the documents
that will be returned from the search engine.
For example, one of the search phrases that
matched the DTC query above in the created de-
pendency tree knowledge base, and ranked high
as having a length of 6 words, where 3 of them
are non-content words, is [Determiner.Noun-
Subject.Pronoun.Verb.Determiner.Noun-Object].
This search phrase contains a set of related grammatical
categories, such as determiner, verb, noun.., which act as
placeholders. Non-Content categories are then replaced
by a non-content word, for example “determiner” could
be replaced by “a”, and ”pronoun” with “that”. Content
words (Noun, Verb) are replaced by the content words of
the DTC query; so “Verb” would be replaced by “Drive”
in this example. The rest of the categories will be replaced
by search query wildcards. So one of the resulted web
search phrase from this example that is specific to the
Google API is: [a.*.that.drive.*.ball]. This query with
Google returned only 69 documents.
For each DTC conjunctive query we could automatically
generate hundreds of similar search phrase queries. Then
using a search engine we run the created search phrase
queries. The resulted top 10 documents of each search
query are downloaded, stripped from HTML, and a regular
expression match is performed in order to extract the
complete sentences that conform to the search phrase
query. For the example query above some of top returned

58

sentences are:
“A golfer that drives a golf ball that...” —Rank = 8
“He has a swing that drives the ball...” —Rank = 6
“A batter that drives a ball forward...” —Rank = 4
“a force that drives your ball back...” —Rank = 2
...
The above ranks are the rank of the document returned by
the search engine.

3.4. From Sentences to DTCs
In order to be able to execute the DTC conjunctive query
over the extracted web sentences from the previous section,
we need first to transform the extracted sentence to a de-
pendency tree. To do so we use the Minipar dependency
parser. But before transforming the extracted sentences to
dependency trees, we first filter out interrogative, negated,
and conditional sentences, in order to represent only fac-
tual and positive sentences. Minipar represents the gram-
mar as a network of nodes representing grammatical cate-
gories and the links representing grammatical relationships.
Minipar’s lexicon is derived from WordNet. In addition to
proper names, it contains about 130k entries in base forms.
Lexical ambiguities are handled by the parser. Minipar con-
structs all possible parses for an input sentence, and out-
puts a single parse tree with the highest ranking. Parsing
is based on a manually constructed grammar and is guided
by statistical information obtained by parsing a 1GB corpus
with Minipar. The resulted dependency trees will then be
mapped into OWL-DL as we showed in the section 3.1. All
the resulted sentences will be mapped into one knowledge
base. Figure 4 shows a graphical representation of a part

Figure 4: RoDEO Ontology Example

of the dependency ontology created by RoDEO for some of
the returned sentences of the example query above. In this
graph rectangles represent classes, ovals represent proper-
ties, and double brackets represent instances.

3.5. Reasoning over Dependencies Extracted Online
In order to achieve high precision is answering the DTC
nRQL query, the query and the resulted OWL-DL knowl-
edge base will be supplied to the reasoner RACER. RACER
will try to prove the query over the created knowledge base
and return any instances that conform to it.
For example, some of the nouns that were returned by
RoDEO for the nRQL query (Retrieve (?x)(AND(?y ?x
Subject)(?y ?z Object)(?y Drive)(?x Noun)(?z Ball))
are: “Golfer, swing, batter, stroke...”. Notice that introduc-
ing the object “Ball” that is modifying the verb “Drive”
returns subjects that are related to one sense of “Drive”,

that is “Hit very hard, as by swinging a bat horizontally”,
which is the only sense related to the word “Ball”.
The reasoning however is not only in nRQL answering, but
also in the possibility of reasoning over word semantic re-
lationship. Such semantic information could be easily in-
tegrating from general available ontologies. For example,
if a sports ontology has been added to the created ontology
of the previous example, the object “Ball” will also match
to instances under its subclasses, such as the subclasses:
“baseball, basketball, or even a marble...”
Inferring new information from the available one is also
possible by running rules over the created knowledge base.
For example, if we create and executed a rule saying that:
“if an object is round and is hit or thrown or kicked in games
then it is a subclass of the class ball”, we will be able to rea-
son over the new inferred information that has been added
to the ontology by this rule.
The following section will describe our results in using
RoDEO on the task of extracting classes of named entities.

4. Evaluation Application: Extracting
classes of Named Entities

In this section we evaluate the extracted collocations using
an application of the RoDEO system. The application that
we developed over RoDEO is the application of extracting
classes of named entities.

4.1. Named Entity Recognition
Named Entity Recognition (NER) as described by the
Message Understanding Conferences (MUC)-7 (Chinchor,
1998) is the task consisting of identifying and classify-
ing entities that are considered to belong to one of the
following classes: person, location, organization, tempo-
ral entities and numeric quantities. Different approaches
have been introduced to deal with NER, however two ap-
proaches are mainly adopted. The first uses resources, such
as gazetteers, and handcrafted rules to match the term to the
resources, and the other use machine learning techniques
on a tagged corpus in order to learn a set of patterns or to
train some sort of a supervised learning algorithm such as
the work of (Bikel et al., 1999).

4.2. Extracting classes of Named Entities with
RoDEO

Our aim is to automatically extract the most specific
class(es) of a selected named entity. For example, we need
the ability to extract the class that “Paul Krugman” belongs
to, in this case a general class would be a “person”, but a
more specific one would be a “columnist”. To accommo-
date the utmost coverage in selecting fine-grained classes
of named entities, many researchers have used the web.
Most of the techniques used rely on a set of pattern, and
the main difference between one technique and the other is
usually the type of patterns used. Some used text patterns
such as the work of (Etzioni et al., 2005), other used wrap-
per or HTML patterns such as the work of (Nadeau et al.,
2006). (Etzioni et al., 2005) KNOWITALL system aims to
automate the extraction of instances of classes such as the
names of scientist from the web by using a set of patterns.

59

We will be building upon (Etzioni et al., 2005)’s work, how-
ever instead of using a set of text patterns over the web,
we will be using dependency tree conjunctive query pat-
terns, and instead of learning instances of classes, we will
be learning classes of instances. By creating the depen-
dency tree collocation patterns we can then use the RoDEO
system to extract dependencies that conform to the selected
dependency pattern from the web in order to extract classes
of named entities.
One of the dependency tree collocation patterns that we will
introduce here is the predicate noun pattern. Grammat-
ically, a predicate-noun follows a form of the verb to be,
like in the sentence: “Margaret Thatcher was the Prime
Minister”. In this example “Margaret Thatcher” is the
subject of verb to be and “Prime Minister” is its predi-
cate noun. As a result, it would be an appropriate pattern
to extract classes of named entities. The predicate-noun
DTC query pattern is of the form: (Retrieve (?x)(Verb-
toBe(?z) AND Predicate(?z ?x) AND Subject(?z ?y)
AND Named-Entity(?y))), that is a pattern that looks for
?x having a dependency relationship of type predicate with
?z an instance of verb to be that is having a subject rela-
tionship to the named entity in question.
Another pattern is the appositive pattern. Appositive is
a word that usually describes another word, as in: “Rudy
Giuliani, New York City Mayor, is...”. The noun “Mayor”
is an appositive to “Rudy Giuliani”. The corresponding
dependency tree collocation pattern would be: ((Retrieve
(?x) (Noun(?y) AND Named-Entity(?x) AND Apposi-
tive(?x ?y)))).
We have also derived other patterns from (Hearst, 1992)’s
lexico-syntactic patterns, such as:

1. NP such as NP, (or/and) NP.
Where NP stands for noun phrase. Example: Colum-
nist, such as Paul Krugman.

2. Such NP as NP, (or/and) NP.
Example: Work by such columnist as Paul Krugman,
and Paul Romer.

3. NP, or other NP.
Example: Paul Krugman, or any other columnist in
the N.Y. Times.

4. NP, and other NP.
Example: Read Paul Krugman and other economists
and healthcare experts....

The first of Hearst’s patterns, for example is translated to
the following DTC query: ((Retrieve (?x)((?x Noun)
AND Named-Entity(?y) AND Modify(?x such-as) AND
Pcomp-n(such-as ?y)))), where Pcomp-n stands for a
nominal complement of a preposition.
Using RoDEO, a dependency tree collocation pattern will
return a list of nouns that conforms to a selected DTC query
from the web. First we replace the named entity into the
Named-Entity DTC patterns, then using RoDEO we run
the created DTC pattern that will collect related dependen-
cies and store them into an ontology. We then Match the
DTC query using the Reasoner over the created ontology
and we count the resulted dependency tree collocations. If

the resulted collocation is less than a certain threshold t, we
run the next DTC patterns until we have enough colloca-
tions returned. The returned collocations are all ranked by
Google’s document ranking. In order to select the most ap-
propriate noun corresponding to the term in question, we
first cluster the returned collocations, and then rank the
clusters by collocation frequency. The clustering is sim-
ply based on the semantic relatedness of nouns as defined
by (Miller, 1995)’s WordNet’s hypernym relations. In ad-
dition, we filter out the nouns that belong to certain classes
that could not represent a named entity class, such as the
nouns belonging to the following hypernyms: ”feeling, psy-
chological, status...”.
Table 1 shows an example of the top 5 returned classes with
their ranks for the named entity “Al Franken”, grouped by
clusters.

Cluster Class Rank
Cluster 1 Guy, man, adult male, male... 25
Cluster 1 Author, communicator, person... 12
Cluster 1 Candidate, politician, politico... 7
Cluster 1 Comedian, performer, artist... 5
Cluster 2 Dog, canine, carnivore... 2

Table 1: Named Entity Classes Returned By RoDEO For
“Al Franken”

Only the classes of the cluster with the highest frequency
are considered as possible types of the named entity, so in
this example only cluster 1 is returned.

4.3. Evaluation Results
As we classify named entities into very specific types, we
evaluated the application of extracting classes of named
entities over a set of 1019 named entities extracted from
a shared online database of structured knowledge called
FreeBase (Bollacker et al., 2007). FreeBase contains
named entities with their general and specific types. For
example, according to FreeBase, the named entity: “Al
Franken” belongs to the following types “Person, author,
writer, and actor”. The evaluation scoring has been done
by comparing our extracted types to the FreeBase types. As
the system returned classes do not have to exactly match
the FreeBase types, we used the WordNet::Similarity (Ped-
ersen et al., 2004) Path Length method in comparing two
types. The path length method is a simple node-counting
scheme, which returns a relatedness score between two
concepts. The score is inversely proportional to the num-
ber of nodes along the shortest path between the synsets in
WordNet. The shortest possible path occurs when the two
synsets are the same, in which case the length is 1. If the
compared types had a relatedness score that is over a thresh-
old t, t=0.21, we considered that it as correct. The thresh-
old has been selected after manually comparing a set of 50
classes. For example, if the returned class is an “Actor”
for a named entity, and its FreeBase corresponding type is
an “Artist”, the WordNet::Similarity Path Length method
returns a relatedness of 0.25 for the two concepts. As such
we assume that the returned class is correct. We have eval-
uated a total of 1019 named entities. The total number of

60

different FreeBase types, that these entities belong to is 69
types. The total number of classes returned by our system
for the 1019 named entity is 678 types. That shows that
our system is returning far more specific results than the
FreeBase types. For example, the “Athlete” FreeBase type
has been matched to “Blocker, bowler, boxer, cornerback,
cricketer, footballer, keeper, receiver, scorer, skater, swim-
mer, tackle...”.
To compute the accuracy of the extracted classes of a single
named entity we use the following:

Accuracy =
Number of correct types
Total number of types

The total accuracy of the system is computed as the average
of the accuracy for all the evaluated named entities.
Overall, the application achieved an accuracy of 0.7. Ta-
ble 2 shows some of the accuracy results grouped by types
and sub-types. For example, for the high level “Person”
type the accuracy achieved is up to 0.87, whereas the type
“Company” achieved an accuracy of 0.62. The person type
can be subdivided into several subtypes, for example the
“Actor” type achieved an accuracy of 0.78.

Types Accuracy Subtypes Accuracy
Person 0.87

Actor 0.78
Athlete 0.76
Author 0.75
... ...
Publisher 0.14
... ...

Company 0.62
Airline 0.66
Employer 0.34
Owner 0.31
... ...
Chain 0.16
... ...

Table 2: Sample Of The Evaluation Results

There are many related work in the named entity recogni-
tion and classification field; however most of the available
work fall under the initially task set at the MUC confer-
ence for identifying and classifying named entities into five
classes, which is much easier than classifying named en-
tities into more fine grained classes. Most methods that
classifies named entities into five classes achieved an ac-
curacy of well above 90%. However, this has not been the
case when classifying named entities into more fine grained
classes. As such, we are going to focus our comparison
to some of the approaches that classify named entities into
more than just five classes. Table 3 shows a comparison of
some of these approaches ordered by the number of classes
they consider. (Cimiano and Staab, 2004)’s PANKOW sys-
tem is a leixco-syntactic pattern based system that uses
the web frequency to select the appropriate class from a
set of 59 classes. The PANKOW system achieved an ac-
curacy of 24.9%. (Nadeau, 2007)’s BaLIE system uses

semi-supervised machine learning and the web to classify
named entities into 100 classes. It achieved an accuracy of
57.4%. BaLIE creates large gazetteers of named entities,
using a hand crafted HTML markup in web pages and a
seed of named entities, and then uses a simple heuristic to
identify and classify named entities. (Sekine, 2004)’s sys-
tem achieved 72% by classifying named entities into 200
classes, however they used about 1,400 handcrafted rules
and a dictionary of 130,000 instances that are classified into
the 200 classes. The last system is (Alfonseca and Man-
andhar, 2002)’s system that adopted a vector space model
having syntactic dependencies as vector features, and com-
pared the named entity vector into the most similar vector.
They had considered 1200 classes and achieved an accuracy
of 17.39% using the verb/object dependencies as a feature.

Systems Types Accuracy
MUC 5 >90%
PANKOW 59 24.9%
BaLIE 100 57.4%
Sekine’s tagger 200 72%
RoDEO 678 70%
Alfonseca’s system 1200 17.39%

Table 3: Comparison Table

Although we are extracting a large number of fine grained
classes, we are not classifying the named entities into these
set of classes, but extracting the most frequent classes asso-
ciated with each named entities. We notice from this com-
parison that RoDEO’s accuracy is comparable to the system
using hand crafted rules, although we are extracting a much
larger number of classes.
While analyzing the system results, we noticed that some
of the low scores are a result of the restriction that we have
set on the RoDEO system regarding the total number of re-
turned collocations. It seems that the number is too low,
and increasing it would probably boost the overall system
accuracy. In addition, the similarity path length method that
was used for the scoring is not very adequate. For example
the “Chain” concept relatedness score to the “Company”
concept is 0.2, which is less than the threshold set. As such
a “Chain” is not a treated as of type “Company”. At the
same time, if we lower the threshold to less than 0.21, then
concepts such as a “Person and a “Set” would be related.
It should be noted that comparing the results of extract-
ing classes of named entity is also an issue by itself. As
many techniques have been proposed for the ranking of
named entity recognition and classification task, a recent
survey of named entity recognition and classification sys-
tems (Nadeau and Sekine, 2007) has showed that a score of
a simple example made of only five named entities, varied
between 20 and 40 %, using three scoring techniques that
have been used in the major conferences related to named
entity recognition and classification.

5. Conclusion and Future Work
In this paper we have presented a system for extracting
dependency tree collocations online, using a dependency

61

parser, an advanced representation based on description
logic, and a reasoner. We showed the usefulness of such
a system in extracting classes of named entities, and the
usefulness of using the web as a corpus. Without the quan-
tity of the text that the web provides, such an application
would not have been possible.
In our future work, we plan to enhance the extraction of
classes of named entities, mainly by increasing the thresh-
old of returned collocations, and integrating the resulted
ontology with a named entity types ontology which will
automatically reason over these types without relying on
WordNet Similarity. In addition, we would like to show
the usefulness of the RoDEO system in other NLP applica-
tions, such as in semantic relations of noun compounds, in
commonsense rule discovery, and in other applications.

6. References
E. Alfonseca and S. Manandhar. 2002. Extending a lexi-

cal ontology by a combination of distributional seman-
tics signatures. Proceedings of the 13th International
Conference on Knowledge Engineering and Knowledge
Management (EKAW 2002), pages 1–7.

S. Bartsch. 2004. Structural and Functional Properties of
Collocations in English.: a corpus study of lexical and
pragmatic constraints on lexical co-occurrence. Gunter
Narr Verlag.

T. Berners-Lee. 1998. Semantic Web Road
Map. World Wide Web Consortium (W3C).
http://www.w3.org/DesignIssues/Semantic.html.

D.M. Bikel, R. Schwartz, and R.M. Weischedel. 1999.
An Algorithm that Learns What’s in a Name. Machine
Learning.

K. Bollacker, R. Cook, and P. Tufts. 2007. Freebase: A
shared database of structured general human knowledge.
Proceedings of the National Conference on Artificial In-
telligence, 22(2).

N. Chinchor. 1998. Muc-7 named entity task definition.
Proceedings of the 7th Message Understanding Confer-
ence (MUC-7).

P. Cimiano and S. Staab. 2004. Learning by googling.
ACM SIGKDD Explorations Newsletter, 6(2):24–33.

M. Dean, G. Schreiber, et al. 2004. OWL Web Ontology
Language Reference. W3C Recommendation, 10.

O. Etzioni, M. Cafarella, D. Downey, A.M. Popescu,
T. Shaked, S. Soderland, D.S. Weld, and A. Yates. 2005.
Unsupervised named-entity extraction from the web: An
experimental study. Artificial Intelligence, 165(1):91–
134.

Stefan Evert. 2005. The Statistics of Word Cooccurrences
Word Pairs and Collocations. Ph.D. thesis, University of
Stuttgart.

R. Fikes, P. Hayes, and I. Horrocks. 2004. OWL-QLa lan-
guage for deductive query answering on the Semantic
Web. Web Semantics: Science, Services and Agents on
the World Wide Web, 2(1):19–29.

J.R. Firth. 1957. Papers in linguistics 1934-1951. Oxford
University Press New York.

V. Haarslev and R. Moller. 2003. Racer: A core inference
engine for the semantic web. Proceedings of the 2nd In-

ternational Workshop on Evaluation of Ontology-based
Tools, pages 27–36.

V. Haarslev, R. Moller, and M. Wessel. 2004. Querying the
Semantic Web with Racer+ nRQL. Proceedings of the
KI-04 Workshop on Applications of Description Logics.

Z.S. Harris. 1968. Mathematical Structures of Language.
Interscience Publishers New York.

D.G. Hays. 1964. Dependency theory: A formalism and
some observations. Language, 40(4):511–525.

M.A. Hearst. 1992. Automatic acquisition of hyponyms
from large text corpora. In Proceedings of the 14th In-
ternational Conference on Computational Linguistics.

I. Horrocks and P. Patel-Schneider. 2004. Reducing OWL
entailment to description logic satisfiability. Web Seman-
tics: Science, Services and Agents on the World Wide
Web, 1(4):345–357.

A. Kilgarriff, P. Rychly, P. Smrz, and D. Tugwell. 2004.
The Sketch Engine. Proceedings of Euralex, pages 105–
116.

D. Lin. 1998a. Dependency-based evaluation of minipar.
Workshop on the Evaluation of Parsing Systems, pages
317–330.

D. Lin. 1998b. Extracting collocations from text corpora.
First Workshop on Computational Terminology, pages
57–63.

C.D. Manning and H. Sch‘eutze. 1999. Foundations of
Statistical Natural Language Processing. MIT Press.

T. McEnery and A. Wilson. 2001. Corpus Linguistics. Ed-
inburgh University Press.

G.A. Miller. 1995. WordNet: A Lexical Database for En-
glish. COMMUNICATIONS OF THE ACM, 38(11):39.

D. Nadeau and S. Sekine. 2007. A survey of named en-
tity recognition and classification. Linguisticae Investi-
gationes.

D. Nadeau, P.D. Turney, and S. Matwin. 2006. Unsuper-
vised named-entity recognition: Generating gazetteers
and resolving ambiguity. 19th Canadian Conference on
Artificial Intelligence.

David Nadeau. 2007. Semi-Supervised Named Entity
Recognition: Learning to Recognize 100 Entity Types
with Little Supervision. Ph.D. thesis, University of Ot-
tawa, November.

T. Pedersen, S. Patwardhan, and J. Michelizzi. 2004.
WordNet::Similarity-Measuring the Relatedness of Con-
cepts. Proceedings of the Nineteenth National Confer-
ence on Artificial Intelligence (AAAI-04).

A. Renouf, A. Kehoe, and J. Banerjee. 2007. WebCorp: an
integrated system for web text search. Corpus Linguis-
tics and the Web.

P. Resnik and A. Elkiss. 2005. The Linguists Search En-
gine: An Overview. Proceedings of the ACL 2005 on
Interactive poster and demonstration sessions, pages 33–
36.

S. Sekine. 2004. Definition, dictionaries and tagger for Ex-
tended Named Entity Hierarchy. Actes LREC.

M. Wessel and R. Moller. 2006. A Flexible DL-based Ar-
chitecture for Deductive Information Systems. IJCAR
Workshop on Empirically Successful Computerized Rea-
soning (ESCoR), pages 92–111.

62

