Summary of the paper

Title Modeling Document Dynamics: an Evolutionary Approach
Authors Jahna Otterbacher and Dragomir Radev
Abstract News articles about the same event published over time have properties that challenge NLP and IR applications. A cluster of such texts typically exhibits instances of paraphrase and contradiction, as sources update the facts surrounding the story, often due to an ongoing investigation. The current hypothesis is that the stories “evolve” over time, beginning with the first text published on a given topic. This is tested using a phylogenetic approach as well as one based on language modeling. The fit of the evolutionary models is evaluated with respect to how well they facilitate the recovery of chronological relationships between the documents. Over all data clusters, the language modeling approach consistently outperforms the phylogenetics model. However, on manually collected clusters in which the documents are published within short time spans of one another, both have a similar performance, and produce statistically significant results on the document chronology recovery evaluation.
Language Language-independent
Topics Document Classification, Text categorisation, Tools, systems, applications
Full paper Modeling Document Dynamics: an Evolutionary Approach
Slides Modeling Document Dynamics: an Evolutionary Approach
Bibtex @InProceedings{OTTERBACHER08.115,
  author = {Jahna Otterbacher and Dragomir Radev},
  title = {Modeling Document Dynamics: an Evolutionary Approach},
  booktitle = {Proceedings of the Sixth International Conference on Language Resources and Evaluation (LREC'08)},
  year = {2008},
  month = {may},
  date = {28-30},
  address = {Marrakech, Morocco},
  editor = {Nicoletta Calzolari (Conference Chair), Khalid Choukri, Bente Maegaard, Joseph Mariani, Jan Odijk, Stelios Piperidis, Daniel Tapias},
  publisher = {European Language Resources Association (ELRA)},
  isbn = {2-9517408-4-0},
  note = {},
  language = {english}

Powered by ELDA © 2008 ELDA/ELRA