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Abstract
The paper presents two experiments of unsupervised classification of Italian noun phrases. The goal of the experiments is to identify
the most prominent contextual properties that allow for a functional classification of noun phrases. For this purpose, we used a Self
Organizing Map is trained with syntactically-annotated contexts containing noun phrases. The contexts are defined by means of a set
of features representing morpho-syntactic properties of both nouns and their wider contexts. Two types of experiments have been run:
one based on noun types and the other based on noun tokens. The results of the type simulation show that when frequency is the most
prominent classification factor, the network isolates idiomatic or fixed phrases. The results of the token simulation experiment, instead,
show that, of the 36 attributes represented in the original input matrix, only a few of them are prominent in the re-organization of the
map. In particular, key features in the emergent macro-classification are the type of determiner and the grammatical number of the noun.
An additional but not less interesting result is an organization into semantic/pragmatic micro-classes. In conclusions, our result confirm
the relative prominence of determiner type and grammatical number in the task of noun (phrase) categorization.

1. Introduction
We describe here an exploratory study on the acquisition of
functional properties of nouns in language use. This work
models contextual and morpho-syntactic information in or-
der to discover fundamental properties of Noun Phrases
(NPs henceforth) in Italian1. Context analysis is crucial
in our investigation: we assume in fact that nouns per se
have no semantic/functional property other than the default
referential one. However, depending on the wider context
in which they occur, nouns or better noun phrases, may be
used in different ways: to predicate, to refer to specific, in-
dividuated entities or they can be be more generally type
referring (Crof and Cruse, 2004).
Our aim in this work is to see whether, given a large set
of (psychologically plausible) morpho-syntactic contextual
features and an unsupervised learning method, (functional)
similarities of nouns emerge from language use. We set up
two simulation experiments using a Self-Organizing Map
learning protocol (section 3.1.). For the present purposes,
we analyze the final organization of a SOM trained with
morphosyntactically-defined contexts of noun phrases in
order to investigate the prominence of the various morpho-
syntactic properties, i.e. the relevant dimensions on the ba-
sis of which the map self-organizes and the correlation to
linguistic functional properties of noun phrases.
The present paper is organized as follows: first we briefly
mention some related works on the acquisition of deep lexi-
cal properties of nouns in languages other than Italian. Sec-
tion 3. presents the methodology adopted: the learning sys-
tem, the dataset and the feature extraction and representa-
tion process. Section 4. describes the experiments based
on noun types and noun tokens and briefly discusses the
outcomes. Finally a discussion of the result and the future
work is given in Figure 5.

1The term Noun Phrase (NP) will be used here as a theory-
independent general label for various kinds of nominal chunks
(noun, determiner+noun, adjective+noun, . . . ).

1.1. Linguistic Background
The standard function of nouns is to name portions of re-
ality, to label entities. A noun typically denotes the kind
of thing that its referent belongs to. Naming is therefore a
kind of categorization. Assuming this, we will say that the
primary cognitive function of nouns is to form a classifica-
tion system of things in the world that we use in referring
to them (Dryer, 2004, 50).
Nouns, however, are seldom used in isolation; noun phrases
(or more generally nominal chunks) may have different,
contextual functions. Functions of noun phrases are to sig-
nal the countability, new vs. given status, generic or indi-
viduated character of the entity referred to, and its degree
of referentiality (Crof and Cruse, 2004; Delfitto, 2002).
In many languages, the type of determiner present in the
NP and the number of the noun are the linguistic cues that
are generally held responsible for signaling the function in
context (countability, givenness and specificity in particu-
lar). However, there is considerable variation both among
and within languages. In some theories, determiners are ac-
knowledged great importance, they are even considered the
heads of noun phrases (i.e. Sugayama and Hudson (2005).
In Cognitive Linguistics, instead, they are assigned a fun-
damental property, they signal the “grounding” of a noun
phrase (its contextual identification within the speech event,
(Langacker, 2004, 77-85)).
Countability is considered responsible for the construal of
an entity as an individuated unit. This difference corre-
sponds to the bound/unbound structural schematization in
Cognitive Linguistics (Langacker, 1987). Countability may
also construe an entity as of a specific type, e.g. chair vs.
furniture (Crof and Cruse, 2004).
Assuming that naming is categorizing and that categories
are not neat, but have fuzzy boundaries, the meaning and
function of nouns cannot be totally pre-established, but
must be construed dynamically in context. Therefore, the
structure of the noun phrase and its surrounding context
should reveal the specific construal of the noun. Put in
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another way, if nouns conceptualize categories then their
functions and denotations should emerge from their actual
use in language.

1.2. Related Works
Works automatic acquisition of so-called deep lexical (or
grammatical) acquisition, in particular of countability (and
specificity), exist for English and for Spanish. All of them
however make use of supervised categorization approaches
in which the possible categories are set a priori.
Baldwin and Bond (2003) for example describe a classifica-
tion system for the acquisition of countability preferences
for English nouns from corpora based on 4 countability cat-
egories. Such categories were determined by theoretical
insights/preconcepts about the grammar and praxis in the
computational linguistics community (i.e. they looked at
the classifications given in COMLEX and in ALT-J/E, dic-
tionaries for a machine translation system.
Peng and Araki (2005) developed a system for discovering
countability of English compound nouns from web data.
Williams (2003) reports on a series of experiments both on
human subjects and using a neural network system for the
acquisition of gender information.
Bel et al. (2007) is an interesting experiment on the ac-
quisition of countability of Spanish nouns from corpus data
using a Decision Tree learner.
Classification systems in general set a priori the number
and types of classes into which they want to classify the
inputs; therefore, a theory of the plausible classes must be
presupposed. Our aim instead is to observe if and what
kind of categorial organization emerges from a morpho-
syntactically described set of nominal contexts and what
are the linguistic features that allow for an organization of
the input. An interesting observations coming from previ-
ous related works is that distributional information of fea-
tures is a good representation for the task of learning deep
properties of lexical items. Bel et al. in particular adopt
a representation format of feature similar to ours: they en-
code the features occurring in the contexts in terms of pres-
ence/absence, i.e. of binary values. This seems to work fine
also for unsupervised approaches as the one described here.

2. The goal
The main goal of the set of experiments presented here is
to study the ‘contextual representations’ of NP construc-
tions based on their morpho-syntactic properties and those
of the contexts in which they appear, in order to investigate
to what extent the cognitive-semantic properties of noun
phrases, as identified in the literature, are actually emer-
gent from the language use, and therefore can be learnt
from texts. More specifically, our research question here is
what kind of and how much morpho-syntactic information
is necessary to obtain a functional classification of noun us-
ages?
The main aim of this exploratory study on the acquisition
of Italian deep lexical properties is to observe the behav-
ior of nouns in post verbal positions in an unsupervised,
auto-organizing system. For this reason, we tried to rep-
resent as much distributional morphosyntactic information

as possible for the target noun contexts, in order to pro-
vide the network with many possible linguistic cues and
observe if it managed to come up with some categorization
and which linguistic cues emerged as most relevant. This
is also a means to find support/disconfirms to theoretical
assumptions on the functional properties of nouns.

3. Methodology
For the investigation on the emergence of functional proper-
ties of nouns phrases we adopt an unsupervised connection-
ist approach using Self-Organizing Maps (Kohonen, 2001).

3.1. Self-Organizing Maps
The Self-Organizing Map (SOM) (Kohonen, 2001) is an
unsupervised neural network algorithm that is able to ar-
range complex and high-dimensional data space into low-
dimensional space so that similar inputs are, in general,
found near each other on the map. The mapping is per-
formed in such a way that the topological relationship in
the n-dimensional input space is maintained when mapped
to the SOM. The final organization of the SOM reflects in-
ternal similarities and frequency distribution of the data in
the training set.
The location of input signals tend to become spatially or-
dered as if some meaningful coordinate system for different
input features were being created over the map. In this per-
spective the location or coordinates of a neuron in the map
correspond to a particular domain of the input patterns. A
SOM, in this sense, is characterized by the formation of a
topographic map of the input patterns in which the spatial
location (the coordinates) of a neuron in the map are indica-
tive of intrinsic features exhibited by the input (Fig. 1).
In the experiments described below, we used a standard
SOM (20x20) learning protocol. The learning protocol pro-
ceeds by first initializing the synaptic strengths (or connec-
tion weights) of the neurons in the map by assigning values
picked from a random or uniform distribution. This point is
crucial because no a priori order or knowledge is imposed
onto the map. After the initialization, the self-organization
process involves two essential steps:

- Step 1: the input data vector x is compared to the
weight vectors mi and the Best Match Unit (BMU)
mc is located.

- Step 2: the neurons within the neighborhood hci of c
are tuned to the input vector x.

These steps are repeated for the entire training corpus.
In Step 1, the BMU to the input vector is found. The BMU
is determined using the smallest Euclidian distance func-
tion, defined as ‖ x−mi ‖. The BMU, mc, is found using
the following equation:

‖ x−mc ‖= min{‖ x−mi ‖} (1)

Once the BMU is found, Step 2 initiates. This is the learn-
ing step in which the map surrounding neuron c is adjusted
towards the input data vector. Neurons within a specified
geometric distance, hci, will activate each other and learn
something from the same input vector x. This will have
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a smoothing effect on the weight vectors in its neighbor-
hood. The number of neurons affected depends upon the
neighborhood function. The learning algorithm is defined
as:

mi(t + 1) = mi(t) + hci(t)[x(t)−mi(t)] (2)

where t = 0, 1, 2, . . . is the discrete-time coordinate. The
function hci(t) is the neighborhood of the winning neuron
c, and acts as the so–called neighborhood function that is a
smoothing kernel defined over the lattice points. The func-
tion hci(t) is usually defined as a Gaussian function:

hci = α(t) · exp

(
−‖ rc − ri ‖2

2σ2(t)

)
(3)

where α(t) is a learning rate and the parameter σ(t) defines
the radius of Nc(t). In the original algorithm (Kohonen,
2001), both α(t) and σ(t) are monotonically decreasing
functions of time.

x

c

hci

Figure 1: A randomly initialized SOM after one learning
step (left panel) and a fully trained SOM (right panel).

The training process is illustrated in Figure 1. First,
the weight vectors are mapped randomly onto a two–
dimensional grid and are represented by arrows pointing
in random direction (left panel of the figure). In the ran-
dom SOM the closest match to input data vector x has
been found in the neuron c (Step 1). The neuron within
the neighborhood hci learn from neuron c (Step 2). The
size of the neighborhood hci is determined by the parameter
Nc(t), which is the neighborhood radius. The weight vec-
tors within the neighborhood hci tune to, or learn from, the
input data vector x. How much the vectors learn depends
upon the learning rate α(t). In Figure 1 (right panel) fully
trained map is displayed. In a fully trained map, a number
of groups should emerge, with the weight vectors between
the groups ‘flowing’ smoothly into the different groups.
Generally the SOM is trained in two phases. The first phase
is a rough training of the map in which the system is al-
lowed to learn a lot from each data vector. Therefore, learn-
ing rate and radius are high in this first phase. The second
phase is a fine-tuning phase, in which the SOM learns less
at a time, but data input are introduced to the map more
times. Thus, learning rate and radius are lower than in the
first phase, but the training length is much higher.

3.2. U-matrix

The distance between the neighboring codebook vectors
highlights different cluster regions in the map, which is thus
a useful visualization tool. The distance for each neuron is
the average distance between neighboring codebook vec-
tors. Neurons at the edges of the map have fewer neigh-
bors. The average of the distance to the nearest neighbors
is called unified distance and the matrix of these values for
all neurons is called U-matrix (Ultsch and Siemon, 1990).
In a U-matrix representation, the distance between adja-
cent neurons is calculated and presented with different col-
orings between adjacent positions on the map. Dark col-
orings highlight areas of the map whose units react consis-
tently to the same stimuli. White coloring between output
units, on the other hand, corresponds to a large distance
(a gap) between their corresponding prototype vectors2. In
short, dark areas can be viewed as clusters, and white areas
as chaotically reacting cluster separators.
In NLP, SOMs have been previously used to model continu-
ous and multidimensional semantic/pragmatic spaces (Rit-
ter and Kohonen, 1989; Honkela et al., 1995) as well as
morphology acquisition in a given language (Calderone et
al., 2007). Li and colleagues (Li et al., 2004), moreover,
have exploited SOMs for simulating the early lexical ac-
quisition by children.

3.3. The Dataset: Feature Extraction and
Representation

As input training data we used a collection of Italian
verb-noun contexts automatically extracted and analyzed
(at chunking level) from a 3 million corpus of contem-
porary Italian newspaper article (the PAROLE subcorpus
(Bindi et al., 2000)3). The training data consist of 847
noun types and 2321 tokens. Each noun token has been
extracted from the corpus with its surrounding context. In
order to normalize the context type and size for each noun,
we selected nouns occurring in post verbal position as
potential direct objects of the verb fare ’do/make’ together
with the verb chunk and two chunks on the right of the
noun.
Ex. <verb chunk: head:fare> <nominal chunk> <chunk 1>

<chunk 2>

Only contexts of fare have been chosen because it is
the most general purpose Italian verb governing a variety
of noun types and it is most often used as a light verb or and
a causative. Therefore, we can (simplistically) assumed
fare to have little impact on the semantic functions of
object noun phrases4.

2Unfortunately, the black and white pictures on the paper here
do not allow a proper appreciation of the map.

3For text chunking we used the Italian NLP Tools developed at
ILC-CNR (Ita, ) and (Lenci et al., 2003), in particular for details
on the chunker.

4Except that it will occur in many support verb constructions.
However, this should not pose problems to our results, rather it
will be interesting to see whether they are classified separately.
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3.3.1. Selected Features
The extracted contexts are represented as vectors of 36 fea-
tures representing the morpho-syntactic properties of their
elements. Given our goals, we did not pick out features
that, in the literature, are considered to be good cues for
noun functions, rather we represent most morpho-syntactic
properties of the entire noun contexts, as resulting from au-
tomatic text chunking. Specifically, for each noun item in
the corpus, we represent as binary features: verb finiteness,
mood, number and person, presence/absence of a causative,
noun gender, number and person, determiner type (zero,
definite or indefinite), type of preposition in the chunk fol-
lowing the noun5.
In the first experiment, the dataset is organized around noun
types and features, therefore, encode frequency indexes for
each variable (i.e. feature). The second experiment, in-
stead, considers noun tokens and features are therefore en-
coded as binary values simply representing the presence/
absence of each feature in the contexts of each occurrence
of the nouns in the corpus.
Running our SOM on the dataset described above we
obtained a semantic-functional clustering of Italian noun
phrases governed by the verb fare ‘do/make’ and we iden-
tify the relevant features. We applied the SOM algorithm
for simultaneous clustering and visualization of the data.
The visualization provided a means for understanding and
qualitatively evaluating the resulting clustering and the fea-
ture selection.

4. Experiments
4.1. Experiment I: Type Simulation
In Experiment I we performed a ‘global’ distributional
analysis of NP contexts, i.e. an analysis based on noun
types.
Let N be the set of 847 noun types, namely N = {ni |
i = 1, . . . , 847}. We take into account the 36 set of
contextual/morpho-syntactic features. It is natural to rep-
resent each NP ni as a vector X(i) = X

(i)
1 , . . . , X

(i)
36 where

each component X
(i)
j represents the frequency of the j-th

contextual/morpho-syntactic features for that particular NP
ni.

4.2. Experiment II: Token Simulation
In Experiment II we performed ‘local’ distributional analy-
sis of NP contexts: contexts are considered on the basis of
noun tokens.
Let N be the set of 2321 NP token, namely N = {ni |
i = 1, . . . , 2321}. Again, we take into account the set of 36
contextual/morpho-syntactic features. It is natural to rep-
resent each NP ni as a vector where each component X

(i)
j

represents the absence/presence (in binary encoding) of the
j-th contextual/morpho-syntactic features for that particu-
lar NP ni.
Figure 3 presents the resulting U-matrix map. For readabil-
ity purposes, the map in Figure 3 has been labeled indicat-
ing the most frequent noun (context) for each neuron. Neu-

5The translation of these features into binary variables yielded
36 components.
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rons in reality represent clusters of noun contexts behaving
in a similar way according to the map.
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Figure 3: Token Simulation: U-matrix with 36 components.

5. Results and Discussion
5.1. Experiment I
Experiment I uses contexts organized by noun types. The
main “categorizing” cue exploited by the SOM appears to
be simply frequency. No morpho-syntactic component rep-
resented in the vectors appear to be prominent. As a result,
we see on the map that the system learns mostly highly
fixed, lexicalized or idiomatic expressions (isolated in the
area at the bottom right corner of the map in 2.
Ex.
far parte (di) ‘lit. make part of’, ‘be part of, belong to’
far riferimento (a) ‘lit. make reference to’, ‘refer to’
far capo (a) ‘lit. make head to’, ‘refer to’
far leva (su) ‘lit. make lever on’, ‘to play on’
far fronte (a) ‘lit. make front to’, ‘to face’
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More precisely, in Experiment I, where nouns are consid-
ered by type (i.e. lemma) and therefore their vectors rep-
resent frequency weights of the morphosyntactic properties
of their contexts, the network learns the most typical con-
texts of nouns.
Given the not very big size of the training corpus, it is nat-
ural that only a few, most fixed and common phrases are
isolated (and in fact it is an interesting result in itself). It
would be interesting to observe the behavior of the SOM
within a larger corpus, both in terms of noun type and to-
ken dimension. With such conditions, we would expect a
larger number of lexicalized phrases to be isolated.
For the goal of the present investigation, however, the re-
sults of this experiment are not of particularly interest, since
they do not show any prominent role of linguistic cues.

5.2. Experiment II

Experiment II, based on NP tokens, instead, gives interest-
ing results. In this case, we clearly observe an organization
of the map into macro classes (Figure 5), where boundaries
are quite neat. The most evident classes are three verti-
cal ones, that appear to be determined by the distribution
of determiners in corpus. Two macro classes (at the top
and bottom of the map) are determined by the distribution
of the form of the verb: i.e. finite and infinite. And two
other macro classes are based on the distribution of gram-
matical number of the noun. Of the 36 features used in the
last set of experiments, only 6 morpho-syntactic contextual
features appear to be relevant for the system to cluster the
noun phrases, namely the type of determiner, the grammat-
ical number of the head noun, and the form of the verb. As
we discussed in the background section, type of determiner
and grammatical number are, in fact, cues that are held re-
sponsible for the expression of the cognitive functions of
noun phrases in the literature (i.e. determiner phrase as a
basic functional category).
In order to test the impact of the the most promi-
nent morpho-syntactic contextual features over the self-
organization of the data set (in token simulation) we iso-
lated the activation of 6 morpho-syntactic features that
seem to influence the SOM topology more than the oth-
ers. The activation of each of the 6 features is displayed on
the SOM grid (Figure 4) according to the activation values.
Also the U-matrix calculated only from these components
is reported (Figure 4). A topological overlapping of this
new U-matrix with the U-matrix using 36 features (Figure
2) confirms, in visualization terms, the prominence of the
features selected.
Secondly, we also observe a learning of semantic/pragmatic
categories: the network organizes the contexts into bundles
of semantically/pragmatically similar nouns, thus provid-
ing another empirical support to the distributional hypoth-
esis. Figure 5 shows some of the most evident semantic
bundles learned by the system.
This result is even more interesting, in that no proper se-
mantic feature has been represented explicitly in the vectors
(a part from features like grammatical gender and number,
which can be considered as morpho-semantic features).

6. Future Work
The work described in the present paper can be seen
as a usage-based modeling of noun “contextual represen-
tations”, where the context acceptation drives the prag-
matic(/semantic) function of the NP itself. Figure 5
presents only the labels for the higher frequent NPs. At the
current stage of the experiments, it is not possible to ana-
lyze in detail the clusters of contexts represented by each
neuron. However, we expect that a more detailed anal-
ysis of the NP-context groupings, especially in the token
simulation SOM, would highlight not only a more consis-
tent number of contextually similar interrelated NPs, but
also sub-areas of “contextual spaces” in which the NPs re-
ceive similar treatment in pragmatic/functional terms. This
qualitative investigation will be the subject of future exper-
iments.
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