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Abstract
We provide an overview of corpus building efforts at the Jena University Language & Information Engineering (JULIE) Lab, which are
focused on life science documents. Special emphasis is laid on semantic annotations in terms of a large amount of biomedical named
entities (almost 100 entity types), semantic relations, as well as discourse phenomena, reference relations in particular.

1. Introduction

The construction of natural language corpora annotated
with various types of linguistic meta data (typically rang-
ing from POS tags over syntactic structure information up
to named entities, semantic relations, and discourse struc-
tures) has been one of the true success stories for NLP.
The PENN TREEBANK (Marcus et al., 1993) and the PENN

PROPBANK (Palmer et al., 2005), e.g., have become ade
facto standard for the coverage of the general newspaper
language of English (though with a slant towards the eco-
nomic domain). Based on the human-supplied annotations
they contain, a variety of supervised machine learning algo-
rithms have been trained on this meta data to subsequently
operate on unlimited amounts of unseen data at different
rates of accuracy.
Soon it turned out that shifts in the genre and the domain
(not to mention language shifts) were considered harmful
for the performance of taggers, parsers, named entity rec-
ognizers, etc. trained on newspaper annotations. In ef-
fect, their performance degraded significantly when ported
to domains such as biology and medicine, or to genres such
as scientific articles or abstracts (Hahn and Wermter, 2004).
In the life sciences, this observation gave rise to the de-
velopment of domain-specific corpora — GENIA being
the first, most prominent example of these efforts (Kim
et al., 2003) (approximately 500,000 tokens annotated
with several entity types), and PENNBIOIE (Kulick et al.,
2004) (approximately 500,000 tokens with 22 distinct en-
tity types) being another example built with more rigor and
taking into consideration some of the shortcomings of GE-
NIA . Still, both corpora are limited in scope because GE-
NIA deals with transcription factors of human blood cells,
while PENNBIOIE deals with oncology and CYP450 pro-
teins only. Again, it was shown that porting named entity
recognizers trained on GENIA or PENNBIOIE data under-
performed in biological fields other than the ones already
covered (Tomanek et al., 2007b).
Obviously, new fields (in the life sciences) not already cov-
ered by existing annotated corpora need new annotations
unless one is willing to pay a high price, cashing in the

performance-degrading effects of domain change with GE-
NIA - or PENNBIOIE-trained ML systems. Since the provi-
sion of new annotations is rather costly in terms of acquir-
ing, training and supervising (life science) expert staff,our
solution was to develop an annotation methodology based
on Active Learning (Tomanek et al., 2007a). It turned out
that applying this approach to the corpus annotation task,
manpower expenses could be lowered by up to 75% for en-
tity annotations, while keeping almost the same level of an-
notation quality. Given such a methodology, it now seems
more feasible to go for (sub)domain changes without com-
mitting to overly excessive annotation costs.
In this paper, we report on our activities to set up two new
life science corpora — one for the domain of gene regu-
lation and expression (of E. coli), the other dealing with
immunogenetics. This corpus construction initiative is em-
bedded in two major projects our lab is involved in,viz. the
BOOTSTREP1 and the STEMNET2 project, respectively.
Both projects deal with the development of information re-
trieval and information extraction systems for the life sci-
ences.
While low-level text formatting and syntactic annotations
are contained in these corpora as well, we here focus on
semantic issues in that we distinguish between annotation
efforts dealing with named entities, relations, and discourse
phenomena in terms of anaphora. While our annotations for
named entities make use of Active Learning, the annota-
tions of relations as well as referential discourse structures
have been performed in the classical manner where a couple
of relevant abstracts were randomly selected for annotation.

2. Semantic Annotation
In the following, we will shortly describe the annotation
environment used for developing the two corpora and then
focus on our biological corpus annotations which deal with
named entities, relations and events, as well as referential
discourse phenomena.

1www.bootstrep.eu
2www.stemnet.de
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2.1. Annotation Environment

All our annotations were performed using the Jena ANno-
tation Environment (JANE) (Tomanek et al., 2007b). It sup-
ports the whole annotation workflow, including the set-up
of annotation projects, user management, annotation itself
via an external editor, monitoring of the annotation pro-
cess, and deployment of the annotated material. In our an-
notation routines, several annotators were involved. Thus,
JANE’s user management had to take care that annotators
work only on those annotation projects they were assigned
to. We also consider the central storage of all annotation-
relevant data in a database as beneficial to keep control of
the distributed annotation efforts.
The most striking innovation behind JANE is its support
for Active Learning (AL) to speed up the annotation pro-
cess with no loss of annotation quality. AL is an intelli-
gent sampling strategy which selects in an iterative manner
those examples (in our case, sentences) for manual anno-
tation which are expected to be the most informative for
classifier learning. JANE employs a committee-based AL
approach (Tomanek et al., 2007a) where in every iteration
an ensemble of classifiers is trained on the already anno-
tated material. Each of these classifiers make a prediction
on the unlabeled examples. Examples on which the com-
mittee’s members highly disagree are considered informa-
tive and thus are directed to human annotators for providing
further labeling advice.
We have extensively employed JANE’s AL facilities dur-
ing our entity annotation cycles since this annotation data
mainly serves as training material for machine-learning-
based entity taggers. Using AL we could thus consider-
ably boost the annotation rate and density (in terms of en-
tity mentions contained in the annotated sentences) without
sacrificing the quality of this meta data.

2.2. Named Entities

Entities are at the heart of any approach to develop semantic
search and information extraction systems. Hence, without
their proper recognition it is usually impossible to identify
and extract the semantic information locked in natural lan-
guage text. Thus far, our annotations encompass 10 en-
tity categories with 97 distinct entity types (see Table 1).
We measured interannotator agreement for three entity cat-
egories (‘cytokine and growth factor receptors’, ‘organisms
and organism attributes’, and ‘transcription regulators and
ligands’) in terms of the “authoritative annotator” F-score
(Kim and Tsujii, 2006). Given two human annotators, this
interannotator agreement metrics basically frames the an-
notations of one annotator to be the “gold standard” against
which the other annotator’s annotations are evaluated. For
the three categories we got interannotator F-scores of 80.2,
85.1, and 65.0, respectively. The reason why the score for
the first entity category is lower than the second one might
be that the first one is a specific protein function which is
rather difficult to annotate. The F-score for the third cat-
egory, down at 65.0, rises to 80.0, when not only exact
matches but also overlapping matches are accepted. This
indicates that finding the right boundaries of entity men-
tions in texts was a particular challenge for the annotators
of transcription regulators and ligands.

For each entity category, a large collection of scientific
abstracts were selected from MEDLINE,3 a huge interna-
tional literature database that covers much of the literature
in medicine and biology, using a MESH4 query.5 From
these abstracts, single sentences were selected by JANE’s
Active Learning component for manual annotation.
Table 1 gives an overview of the semantic types and amount
of entities being annotated. As can be seen, so far we were
able to annotate 97 distinct immunogenetic and gene reg-
ulation entity types, ranging from various specific protein
types (cytokines, growth factors and their receptors, major
and minor histocompatibilty antigens, transcription regula-
tors) and chemicals (ligands) over various kinds of immune
cells (various sorts of T-, B-, NK- and dendritic cells) and
blood progenitor cells to organisms and genomic variations.
The guidelines for these annotations were developed in it-
erations, with annotators first annotating a set of “guideline
consolidation” texts with many possible entity mentions of
the types to be annotated.6 In general, the guidelines stated
to be very strict regarding the inclusion of pre- or postmod-
ifiers of entity terms and only include those which typified
(i.e., characterized distinguishably) the entity under con-
sideration, while those were disregarded which merely de-
scribed (i.e., added additional information to) the entity. In
cases when this was not clear, the modifiers were to be ig-
nored. Guidelines to specific entity categories were then
interactively refined until they were deemed to be stable for
consistent annotations. Once this was attained, the annota-
tion effort was continued via Active Learning in JANE (see
Subsection 2.1.).
With respect to the entities being linked and normalized to
their respective objects in the (biological) world, we en-
sured that all immune and progenitors cell entity types are
anchored to concepts from the OBO Cell Type Ontology.7

Concerning the proteins, we aimed at linking as many of
them as possible to concepts from the (functional branch) of
the Gene Ontology (GO)8 and to the INOH Molecule Role
Ontology.9 This, however, was not always possible, either
due to the high abstraction level of GO concepts (which
makes them hard to link to text entity mentions) or due to
conceptual gaps in both ontologies. This is one of the rare
instances where annotations are guided and influenced by a
dedicated ontology.10

3http://www.ncbi.nlm.nih.gov/sites/entrez
4The Medical Subject Headings (MESH, http://www.

nlm.nih.gov/mesh) is a high-coverage controlled vocabu-
lary created and used for indexing the MEDLINE database by the
United States National Library of Medicine (NLM).

5This query basically consisted of the MESH terms equivalent
to the entity categories in Table 1.

6These texts were selected via matching an entity dictionary
against a collection of MEDLINE abstracts and then selecting
those with the highest number of matches.

7http://obofoundry.org/cgi-bin/detail.
cgi?id=cell

8http://www.geneontology.org
9http://obofoundry.org/cgi-bin/detail.

cgi?id=molecule_role
10Currently, we are also evaluating the performance of auto-

matically linking annotated proteins to their respective biologi-
cally normalized database entries in UNIPROT (www.uniprot.
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domain entity category # of distinct # of tokens
entity types annotated

immunogenetics cytokines and growth factors 7 276,570
immunogenetics cytokine and growth factor receptors 7 223,314
immunogenetics antigens (e.g. CD antigens) 6 196,063
immunogenetics minor histocompatibility antigens 6 187,496
immunogenetics organisms and organism attributes 18 173,943
immunogenetics T cells and natural killer cells 15 158,856
immunogenetics B cells and dendritic cells 14 164,790
immunogenetics hematopoietic progenitor cells 10 146,482
immunogenetics genomic variations 6 139,961
gene regulation transcription regulators and ligands 8 203,900

Σ 97 > 2,011,336

Table 1: Large-scale and entity-rich semantic annotationsfor immunogenetics and gene regulation

2.3. Semantic Relations

Besides information about named entities mentioned in the
texts, we are interested in extracting semantic relations
which hold between the named entities. Obviously, being
able to drill down named entities is a prerequisite for re-
lation extraction. The annotation of semantic relations be-
tween entities is already in the focus of many annotation
initiatives. This holds for newspaper corpora such as MUC-
7 (MUC-7, 1998) or ACE (Doddington et al., 2004), but
also for life science corpora such as BIOINFER (Pyysalo et
al., 2007) or BIOCREATIVE II’s protein-protein interaction
corpus (Hirschman et al., 2007).
We aim to provide a corpus suited for the extraction of se-
mantic relations between entities in the biomedical domain,
especially for the domain of gene regulation. While literal
relation mentions (as in“X regulates Y” or “X binds Y”)
still occur, the majority of relation mentions are described
in a much more complex way. For example, the sentence
“Deletion of the arcA gene caused about a 2-fold increase
in the ptsG expression”contains the description of nega-
tive regulation of ptsG expression by the arcA gene. This
relation, however, can only be inferred from the following
statements mentioned in the text above by a reader with a
sound biomedical background:“deletion of arcA” and“in-
crease in the ptsG expression”. Proper detection of these
statements is crucial for the identification of the semantic
relation between the‘arcA’ and the‘ptsG’ gene. Given such
complex expressions of semantic relations in our domain
of gene regulation, we aim to provide annotations in such
a way that they are also helpful for the automatic detec-
tion of complex and indirectly mentioned gene regulation
relations. The corpus contains thus two general types of
annotations:

• Annotations of relations between entities

Each semantic relation is defined as an ordered binary
relation between named entities occurring in the same
sentence.

• Annotations of relation triggers

org) and ENTREZ GENE (http://www.ncbi.nlm.nih.
gov/sites/entrez?db=gene).

Relation triggers are text spans (mostly single words)
which refer to statements relevant to the detection of
semantic relation of interest. Verbs and their normal-
izations constitute the major part of relation triggers.
In our example sentence,‘deletion’, ‘increase’ and
‘expression’are the relation triggers.

Currently, our annotations cover the domain of the
regulation of gene expression inE. coli, only. We
focus particularly on interactions between proteins
in the process of gene regulation. Here, the key
players are genes (proteins) that can participate in
the relation regulation Of Gene Expression
(arg1, arg2) where arg1 is the regulatory
gene (or agent) andarg2 is the regulated gene (pa-
tient or participant). This relation can be enriched
with further, biologically relevant, information, e.g.,
about the polarity of the relation (positive,
negative and unspecified), or information about
the physical contact between the actors (arg1
and arg2) involved (which can betrue (direct bind-
ing), false (no direct binding) orunspecified).
Thus, for our example sentence we instantiate the rela-
tion regulation Of Gene Expression (arcA,
ptsG), with attributespolarity = negative and
physical contact = unspecified.
For the annotation of gene regulation relations, we se-
lected three types of relation triggers that may occur when
the relation of interest is dealt with in the text: First,
gene expression is defined as the mention of the
process by which a coding sequence of a gene is con-
verted into a mature gene product (or products). Sec-
ond, gene regulation is defined as the mention of
any process that refers to the modulation of the fre-
quency, rate or extent of gene expression. Finally,
experimental intervention is defined as the men-
tion of any process of experimental genetic modifications.
Accordingly, we annotate our example sentence as shown
in Figure 1.
The annotated corpus contains currently 309 PubMed11 ab-
stracts which boils down to 3,140 sentences and approxi-
mately 86,000 tokens.

11http://www.pubmed.org
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<regulation_Of_Gene_Expression polarity = negative physical_contact = unspecified>
<experimental_intervention>Deletion</experimental_itervention>
of the arcA gene caused about a 2-fold
<gene_regulation>increase</gene_regulation>
in the ptsG
<gene_expression>gene expression</gene_expression>

</regulation_Of_Gene_Expression>

Figure 1: Annotation Example for the Semantic Relationregulation Of Gene Expression

2.4. Referential Expressions

The need to cope with referential expressions (corefer-
ences, basically) for information extraction (IE) has been
acknowledged and embedded as a special task in recent IE
challenges such as MUC-6 (MUC-6, 1995), MUC-7 (MUC-
7, 1998) or ACE2005 (Doddington et al., 2004)). Also for
an information extraction system for court opinions, Al-
Kofahi et al. (1999), for instance, show that the resolution
of referential expressions has a positive impact on the over-
all system performance.
In the life sciences domain, however, in none of the bio-
NLP challenges, up until now, coreference resolution has
been considered as (part of) a task. Consequently, there are
no MUC- or ACE-comparable life sciences corpora includ-
ing reference annotations. Only few corpora, e.g., MED-
STRACT (Castãno et al., 2002; Pustejovsky et al., 2007),
BIOINFER (Pyysalo et al., 2007) and GENIA,12 have al-
ready extended their annotations to incorporate reference
expressions as well. As a drawback, however, in these al-
ready existing corpora only few documents were annotated.
Annotating corpora with referential expressions is a com-
plex activity because both linguistic expertise and domain
knowledge is required for a sound annotation. Existing
MUC or ACE annotations guidelines cannot be simply
transferred without taking into consideration the particu-
larities of the biomedical sublanguage. Furthermore, ref-
erential expressions annotated in existing biomedical cor-
pora are limited to coreference annotations (disregarding
other relations such aspart-of orderives-from, see
Poprat and Hahn (2007a)). In addition, some difficulties
with respect to the annotation boundaries and the influence
of linguistic modifiers have not been sufficiently addressed
yet.
Therefore, we decided to define more comprehensive
guidelines and to annotate referential expressions in
biomedical abstracts in a more detailed manner (Poprat and
Hahn, 2007b). Basically, our guidelines define as anno-
tations mostly the heads of base nominal phrases (NPs).
However, in some complex base NPs, we also have to an-
notate parts of base NPs (e.g., “IL-2-dependent” – “ IL2”) in
particular when these expressions can be paraphrased (here:
“dependent on IL-2”). Furthermore, our guidelines also
allow to annotate modifiers (mainly prepositional phrases
and adjectives), if necessary. This is the case when the
head of the NP is modified in order to distinguish it from
other (monotonous) heads. For instance, in the mentions
“cells from mouse” and “cells from zebrafish” occurring in
the same text, “cells” are further distinguished by the or-
ganism “mouse” and “zebrafish”, respectively. In the ex-

12http://nlp.i2r.a-star.edu.sg/medco.html

ample “CD34(+) cells” vs. “purified CD34(+) cells” vs.
“ irradiated CD34(+) cells”, the common head “CD34(+)
cells” is modified by the adjectives “purified” and “irradi-
ated”. Taking modifiers into account influences the deci-
sion whether a linguistic entity is still coreferential or not.
Finally, in our guidelines we also have (currently informal)
rules that define the annotation of relations between refer-
ential expressions.
For now, our corpora comprise 56 abstracts, with 21,530 to-
kens. The annotations were carried out by a graduate biol-
ogist trained in a basic understanding of linguistic notions
(such as what constitutes a modifier, a base noun phrase,
etc.). In these documents we found 1,178 coreferential ex-
pressions (954 repetitions, 107 pronominal and 117 nomi-
nal anaphora), 130 subgrouping expressions and 95 bridg-
ing anaphora (e.g., part-of relations). These numbers, at
the first glance, may not be so shiny but are more than on
a par with comparable efforts. In comparison, the first ver-
sion of MEDSTRACT (Castãno et al., 2002) comprised 32
abstracts (about 6,000 tokens) with (only) 72 coreferences
and 13 subgrouping anaphora. The second version of MED-
STRACT (still not publicly available) will contain around
1,300 coreference annotations from 370 abstracts (Puste-
jovsky et al., 2007). Though lot of work remains to be done
(e.g., checking the quality of both the guidelines and the an-
notations), the annotations contained in our corpus are the
most differentiated and, in quantitative terms, largest ones
currently available for the biomedical domain.

3. Conclusion and Outlook
Empirical evidence indicates that genre and domain
changes almost always dictate a need for new annotations,
at the semantic level, in particular. The need comes with an-
notation costs in time, manpower, etc. In the JULIE Lab, we
support our entity annotations with Active Learning – both
in terms of annotation methodology and tool-based technol-
ogy – which reduces the amounts of efforts for annotations
significantly, while preserving, by and large, the same level
of annotation quality.
Semantic meta data is annotated in two different corpora
for two different domains in the life sciences,viz.gene reg-
ulation and expression, as well as immunogenetics, both ar-
eas not covered by any annotation activities before. These
efforts reflect our involvement in two major biomedical
text mining projects, BOOTSTREPand STEMNET, respec-
tively. We deal with crucial named entities in these fields,
with numbers of entity types (97 types) and fine concep-
tual granularity – reflecting challenging requirements of
our task domain – unmatched by existing corpora. These
entity annotations are currently complemented by relation
and event annotations only recently provided in the GE-
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NIA corpus (PENNBIOIE does not provide any relations).
Finally, we augment entity and relation annotations by a
wide range of referential discourse phenomena not found in
any of the already available resources (although the GENIA

team announced the distribution of reference annotations in
the near future).
Our goal is to create a semantic meta data resource that
compares to GENIA and PENNBIOIE in terms of quantita-
tive coverage parameters but excels in terms of depth and
annotation quality. We also consider our work as a test case
for the feasibility of diverse and large-scale corpus anno-
tations, once Active Learning is the annotation methodol-
ogy of choice. This is a crucial goal because domain and
genre shifts will almost always require (new) annotations.
Hence, coping with this bottleneck is a prerequisite for flex-
ible adaptation of HLT tools (not only) in the life sciences
field. The real benefit of all this annotation work, however,
will only become evident when sufficiently reliable inter-
annotator agreement values are communicated and system
modules trained on this meta data are integrated into a com-
mon architecture to deliver sophisticated text analytics.
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Jośe Castãno, Jason Zhang, and James Pustejovsky. 2002.
Anaphora resolution in biomedical literature. InPro-
ceedings of the International Symposium on Reference
Resolution for Natural Language Processing. Alicante,
Spain, June 3-4, 2002.

George Doddington, Alexis Mitchell, Mark Przybocki,
Lance Ramshaw, Stephanie Strassel, and Ralph
Weischedel. 2004. The Automatic Content Extraction
(ACE) Program: Tasks, data, & evaluation. InLREC
2004 – Proceedings of the 4th International Conference
on Language Resources and Evaluation. Vol. 3, pages
837–840. Lisbon, Portugal, 26-28 May 2004.

Udo Hahn and Joachim Wermter. 2004. High-performance
tagging on medical texts. InCOLING Geneva 2004
– Proceedings of the 20th International Conference on
Computational Linguistics, volume 2, pages 973–979.
Geneva, Switzerland, August 23-27, 2004.

Lynette Hirschman, Martin Krallinger, and Alfonso Valen-
cia, editors. 2007.Proceedings of the Second BioCre-
ative Challenge Evaluation Workshop. Madrid: CNIO
Centro Nacional de Investigaciones Oncológicas.

Jin-Dong Kim and Jun’ichi Tsujii. 2006. Corpora and their
annotation. In Sophia Ananiadou and John McNaught,
editors,Text Mining for Biology and Biomedicine, pages
179–211. Norwood, MA: Artech House.

Jin-Dong Kim, Tomoka Ohta, Yuka Teteisi, and Jun’ichi
Tsujii. 2003. GENIA corpus: A semantically annotated
corpus for bio-textmining.Bioinformatics, 19(1):i180–2

Seth Kulick, Ann Bies, Mark Liberman, Mark Mandel,
Ryan McDonald, Martha Palmer, Andrew Schein, Lyle
Ungar, Scott Winters, and Pete White. 2004. Integrated
annotation for biomedical information extraction. In
Proceedings of the HLT-NAACL 2004 Workshop ‘Linking
Biological Literature, Ontologies and Databases: Tools
for Users – BioLink 2004’, pages 61–68. Boston, MA,
USA, May 2004.

Mitchell P. Marcus, Beatrice Santorini, and Mary Ann
Marcinkiewicz. 1993. Building a large annotated cor-
pus of English: The PENN TREEBANK. Computational
Linguistics, 19(2):313–330.

MUC-6. 1995. Proceedings of the 6th Message Under-
standing Conference. Columbia, Maryland, November
6-8, 1995. San Mateo, CA: Morgan Kaufmann.

MUC-7. 1998. Proceedings of the 7th Message Under-
standing Conference, NYU.

Martha Palmer, Daniel Gildea, and Paul Kingsbury. 2005.
The Proposition Bank: An annotated corpus of semantic
roles.Computational Linguistics, 31(1):71–106.

Michael Poprat and Udo Hahn. 2007a. An investigation
into the reusability of biomedical terminologies for the
resolution of referential expressions. InBioLINK 2007
– Proceedings of the BioLINK SIG 2007. The Annual
Meeting of the ISMB BioLINK Special Interest Group on
Text Data Mining, in Association with ISMB 2007, pages
39–42. Vienna, Austria, July 19, 2007.

Michael Poprat and Udo Hahn. 2007b. Quantitative data
on referring expressions in biomedical abstracts. In
BioNLP at ACL 2007 – Proceedings of the Workshop on
Biological, Translational, and Clinical Language Pro-
cessing, pages 193–194. Prague, Czech Republic, June
29, 2007.
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