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Abstract 
In languages that use diacritical characters, if these special signs are stripped-off from a word, the resulted string of characters may not 
exist in the language, and therefore its normative form is, in general, easy to recover. However, this is not always the case, as presence 
or absence of a diacritical sign attached to a base letter of a word which exists in both variants, may change its grammatical properties 
or even the meaning, making the recovery of the missing diacritics a difficult task, not only for a program but sometimes even for a 
human reader. We describe and evaluate an accurate knowledge-based system for automatic recovering the missing diacritics in MS-
Office documents written in Romanian. For the rare cases when the system is not able to reliably make a decision, it either provides the 
user a list of words  with their recovery suggestions, or probabilistically choose one of the possible changes, but  leaves a trace (a 
highlighted comment) on each word the modification of which was uncertain.  
 

1. Introduction 
Spell checking is one of the oldest natural language 
processing applications that is used on large scale. Most 
of the spell checkers, rely on large word-form lexica and  
are designed to detect spelling errors and suggest possible 
corrections. In keyboarding a text most users make typing 
errors, the majority of them due to transposing characters, 
pressing the key next to the intended one, omitting a 
character, inserting an unnecessary character, or omitting 
a space between words. A different class of errors (called 
cognitive errors) refers to those situations where the user 
does not know the correct orthography of a word and uses  
a plausible near-miss. Yet, there is another important 
aspect of spelling verification and correction which, 
although does not occur in English, is relevant for almost 
all European languages (see (Mihalcea, 2002), Table 1): 
restoring the diacritics wherever they are missing. 

Having an automatic procedure for restoring the 
missing diacritics is worthy not only for old valuable texts 
stored in electronic form, but also for contemporary 
electronic texts as they continue to be produced in non-
diacritical form. The reasons for this could be many, 
including the lack of localized and standardized 
keyboards. Ergonomic factors can also be mentioned (if 
someone is supposed to press more than two keys to get a 
diacritical character, then, mainly in informal 
communication (e.g. e-mail), he/she will probably take the 
easiest one-stroke solution). 

The problem of diacritics restoration has been, and 
continues to be, addressed by various researchers with 
respect to different languages. There are two major 
approaches in solving this problem, one based on words 
and the other one based on characters. While the word-
based approaches are, in general, informed systems, 
relying on lexica and language models (thus being 
language dependent), the character-based methods are 
language independent uninformed algorithms that do the 
job based on statistical information on n-grams extracted 
from given training data. Each approach has merits and 

drawbacks; the informed word-based systems require 
large lexical resources (which are never completely 
covering any new text) and their maintenance, additional 
processing tasks (e.g. tokenization, tagging) and, thus, 
need more time to finish the job. The character based 
systems are easy to implement, need only raw training 
data for the languages of interest and are very fast. On the 
other hand, for languages where the diacritics have 
grammatical and/or semantic role, the word-based 
systems are much more reliable than the character-based 
systems. For such languages, the lack of, or mistakenly 
added diacritical signs may be extremely annoying 
especially in texts meant for publication. For languages 
where the absence of required diacritics is context-
independent detectable, a character-based (n-gram) 
approach can do the work almost equally accurate but 
much faster and with little development effort.  

The decision on the approach to follow in the 
development of a diacritics restoration program depends 
on many factors: the grammatical and/or semantic role of 
the diacritics in the language of interest, the availability of 
adequate language resources, the required processing 
speed, the users' requirements and needs.   

We describe and evaluate an accurate knowledge-based 
system, called DIAC+, for automatic recovering the 
missing diacritics in MS-Office documents written in 
Romanian. The out of lexicon words (usually, very rare) 
are processed by a character-based back-off procedure. 
The present system builds on our previous work (Tufiş 
and Chiţu, 1999), extending the former DIAC system in 
many ways and significantly improving its performance 
and appearance.  

2. Related work 
Word-based implementations of diacritics restoration 

programs have been described, among the others, in (El-
Bèze et al, 1994), (Yarowsky, 1994), (Spriet & El-Bèze 
(1997), (Simard, 1998), (Tufiş & Chiţu, 1999), etc. 

El-Bèze and his colleagues (1994) use POS-tagging of 
French texts to exploit the contextual information and N-
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gram statistics to decide whether or not an accent has to 
be added for the word under investigation. In a follow-up 
paper, Spriet and El-Bèze (1997) describe the use of an N-
gram model on parts-of-speech for re-accentuation of 
French texts. They evaluate their method on a 19,000 
word test corpus consisting of news articles and obtain a 
99.31% accuracy. In this corpus, only 2.6% of the words 
were unknown, among which 89.5% did not need accents. 
The resulting error rate (0.3%) accounts for nearly one 
half of the total error rate, but is so small that it is not 
worth trying to guess accentuation for unknown words 
(cf. Zweigenbaum & Grabar, 2002). 

Yarowsky (1994) addresses this problem for Spanish 
(mainly) and French but instead of POS tagging, he 
reports the best performance with a decision-list 
framework.  

 Simard (1998)  also uses the POS tagging technology, 
but as all the previously mentioned systems, leaves the 
out-of-lexicon words untouched.  

The methodology described in  (Tufiş & Chiţu, 1999) is 
similar to the one presented in (Simard, 1998), but the 
system, developed for Romanian language, have a better 
success rate, although, compared to French, Romanian 
makes more intensive use of diacritical signs and their 
absence creates much more difficulties. As before, this 
system ignores the unknown words.   

The character-based approaches became quite popular 
lately, mainly because of their simplicity, language 
independence, good performance and easy to get training 
data (which is simply, raw texts containing the required 
diacritics). The expensive wide-coverage lexicons are not 
required by these methods. 

Mihalcea (2002) addresses the restoration of diacritical 
characters in a Romanian electronic dictionary using an n-
gram model and made experiments with a memory-based 
learning system (TIMBL) and a decision tree classifier 
(C4.5). She reports in each case very good precisions 
(letter-based), with average accuracy beyond 99%.  

Using the same evaluation data as used by Mihalcea 
(2002) Bobiceva (2008) describes another letter-based 
implementation of the diacritics recovery for Romanian. 
She applied a statistical method used in text data 
compression (PPM- prediction by partial matching) and 
shows that her method obtains comparable results to 
Mihalcea's. Both methods have hard times with dealing 
with the a-ă (the average precision is 96,15%) mainly 
when the respective letters are word final1. 

Zweigenbaum and Grabar (2002) describe a system 
specifically designed for recovering the various diacritical 
versions of 'e' (é, è, ê, ë) in specialized French lexicon (the 
French version of MeSH). They use two different 
methods: a finite state transducer and Brill's tagger to 

                                                            
1 In Romanian this is the most difficult case, since feminine 
nouns and adjectives ending in "a" are definite forms while 
when ending in "ă" they are indefinite forms. Also, the verb-
final "a/ă" distinguishes among tenses (present vs. simple 
perfect). When embedded, this alternation frequently changes 
the meaning of the word (par=pole, versus păr=hair or pear tree). 

learn contextual transformation rules for the letter 'e' (each 
proper word, containing an 'e' is split into its constituent 
letters which are considered the tokens to be tagged). 

When dealing with resource-scarce languages, as 
African languages described in (Wagacha et. al. 2006) or 
(De Pauw et. al. 2007), the character-based methods 
hardly have a choice competitor.   

3. Diacritics in Romanian 
Romanian language has 5 diacritical characters: ă,â,î,ş 
and ţ (plus their uppercase variants). A text missing the 
diacritics will usually have these characters substituted by 
a (for both ă and â), i, s and t respectively. For a 
significant part of the words with the diacritics stripped-
off their recovering is deterministic, because the non-
diacritical variants of those words are not legal lexemes of 
Romanian. But in most of the cases, the absence of 
diacritics creates genuine ambiguity, hard to resolve 
sometimes even for a human (when given only a limited 
context). 

Here are some examples of strings with missing 
diacritics that are not valid Romanian words (the real 
word and its translation are specified between 
parentheses): 

A) padure (pădure - forest), tufis (tufiş - bush), cantar 
(cântar - balance), carare (cărare - pathway), casmir 
(caşmir - cashmere), macar (măcar - at least), fara (fără - 
without), cati (câţi - how many),  etc.  

Such strings, which could be unambiguously recovered  
by relying on a adequate lexicon, are called U-words. 

To exemplify the ambiguity caused by the lack of 
diacritics, let us consider the string fata. In a text where 
the diacritics were removed, this string could stand for 
any of the following words: 

B) fata – the girl, fată – a girl; or (about animals) gives 
birth , fâţa  – the quick-swimming little fish/the coquette, 
fâţă – a quick-swimming little fish/a coquette, faţa –  the 
face, faţă –  a face, făta –  (about animals) to give birth; 
gave birth,  fătă  –   (about animals) just gave birth. 

All the strings of the fata type above (i.e which could 
stand for more than one diacritical or non-diacritical 
word) are referred to in the following as ambiguous 
stripped words, or A-words. The strings that are neither U-
words nor A-words are simply referred to as words. 

We found that the morpho-syntactical information 
disambiguates most A-words. Yet, there exist subsets of 
A-words for which morpho-syntactic descriptions are 
identical and diacritics restoration distinction could be 
made only based on meaning: 

C) fata (Ncfsry) – the girl, fâţa (Ncfsry) – the quick-
swimming little fish/the coquette, faţa (Ncfsry) – the face. 

These words, which we call S-words, require sense 
disambiguation. The S-words are a subset of A-words. 

The Table 1 displays data we extracted from our 
reference corpora. The journalism corpus consists of 
articles from the weekly magazine “Agenda” from 
Timişoara (years 2003-2006). The juridical corpus is a 
collection of around 6000 Romanian documents extracted 
from the Jrc-Acquis corpus (Steinberger et al., 2006). The 
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part-of-speech annotation was made with our tiered tagger 
in order to reduce as much as possible the number of 
tagging errors. The total number of words shown in Table 
1 (line 1) does not include numbers or tokens containing 
one or more digits, proper names, foreign words (tagged 
by the X tag), abbreviations (tagged by the Y tag), dates 
(tagged by the DATE tag) and punctuation. From the total 
number of tokens in the mentioned texts, the discarded 
tokens account for 36% and 26% respectively. The big 
difference between the number of discarded items in the 
two corpora is due to the fact that journalism corpus 
contains lots of numbers (in the "Sport" sections one can 
find scores, minutes, timings, distances etc) dates, foreign 
words and abbreviations. These categories are not 
significant for the diacritics restoration problem because, 
in the vast majority of cases, they do not contain 
diacritical signs. However, the proper names in Romanian 
are words that might contain diacritics, thus being 
relevant for the diacritics restoration task. Yet, in the 
juridical corpus, although the names are quite frequent, 
none of them contained diacritics. Thus, in order to make 
a meaningful comparison among the two register data, we 
excluded the proper names from our analysis.  

There are two different figures for S-words, depending 
on what tagset was used in POS tagging: a reduced tagset 
(Ctag-set in line 5) and the lexicon morpho-syntactic 
descriptors tagset (MSDtag-set in line 6). The two figures 
demonstrate that the diacritics restoration is more 
accurately done when the system has access to more 
linguistic contextual information. On the other hand, in 
general, using a reduced tagset as compared to a large 
one, increases the tagging accuracy, which is vital for our 
approach in diacritics restoration. The Ctag-set and 
MSDtag-set and the way we solved the tension between 
tagset cardinality and tagging accuracy are briefly 
discussed in section 4.2. 

 
Corpus Journalism Juridical 
1. Words 6680448 3511093
1* Characters 37008236 21404666
2. Words with diacritics (of 
1.) 

2004763 
(30,01%) 

1026385  
(29,23%)

2*. Diacritics 2351220 1192875

3. U-words (of 2.) 238132 
(11,88%) 

175822 
(17,13%)

4. A-words (of 2.) 1766631 
(88,12%) 

850563 
(82,87%)

5. S-words (Ctag-set, of 4) 58420 
(3,31%) 

38323 
(4,51%)

6. S-words (MSDtag-set, 
of 4) 

24916 
(1,41%) 

16463 
(1,94%)

 
Table 1. The distribution of the words with diacritics in 

texts of different registers 
 

As one can notice in the table above, in regular 
Romanian texts, almost one third of the words contain at 
least one diacritical character (30% of the words in the 
journalism data contain on average 1,17 diacritical signs, 

while 29% of the words in the juridical texts contain on 
average 1,16 diacritical signs). Out of the diacritical 
words only a small percentage are U-words (12% in the 
journalism data and 17% in the juridical texts). That is, in 
an ideal setting, with a fully coverage dictionary available 
and a text with no typographical error other than the 
missing diacritics, about 25% (#A-words/#Words) of the 
total number of words in a running Romanian text would 
remain ambiguous. In a more realistic setting, this figure 
is significantly higher because no dictionary fully covers 
any possible text and most texts contain typing errors 
(other than missing diacritics). In our supposedly error 
free data we identified 72722 (1.09%) typing errors in the 
journalism texts and  29387 (0.84%) typing errors in the 
juridical texts. Below we list the main categories of errors: 

a) even if a word contains diacritics, it might not 
contain all of the necessary ones (e.g. "invăţămant"2 vs. 
"învăţământ", "lacătuş"  vs. "lăcătuş" etc.); 

b) even if a word contains diacritics, one or more of 
them might be wrong (e.g. "sărmă" vs. "sârmă", "câtre" 
vs. "către", "neâncăpător" vs. "neîncăpător" etc.) 

c) even if a word contains diacritics, they might not be 
in accordance with the current orthography of Romanian 
(e.g. "considerînd" vs. "considerând", "curînd" vs. 
"curând" etc.) 

d) the words (with or without diacritics) might be 
misspelled  (e.g. "înopta" vs. "înnopta", "indenmizaţie" 
vs. "indemnizaţie", "compensdiu" vs. "compendiu" etc.) 
or miss-tokenized (e.g. "5%pentru" vs. "5% pentru"  etc.) 

e) a lexical token might be distorted by a combination 
of the above cases, making it very difficult to be 
recovered.  

One could argue that a traditional spell-checker could 
identify these error-cases and a user might fix them,  but 
at least for Romanian, this is not entirely so, because of 
what we called A-words (words which remain legal words 
of the language even after the diacritics removal, e.g. 
"peste" (over) versus "peşte" (fish), "scoală" (wake up) 
versus "şcoală" (school), "barca" (the boat) versus "barcă" 
(a boat) etc. A standard spell-checker (such as A-spell  or 
the one included into MS Office) would not even detect 
the A-words as possibly problematic.   

In a traditional spell-checker solution, the "out of the 
dictionary" words are highlighted and the user is expected 
to select one correction from a list of possible choices 
(which might not include the proper correction). In our 
approach, most of the corrections (all but the S-words) are 
automatically performed without user going through each 
individual token. While the automatic procedure is 
practically done in no time, the manual procedure is error 
prone and even when assisted by a spell-checker might 
require hours, days or even months for very large textual 
data. For the S-words occurring in a text, the system 
behaves like a spell-checker, i.e. it requires the user to 
make a choice, out of a list of contextually plausible 
corrections. A contextual plausible correction should 

                                                            
2 All the examples in this paper are extracted from the corpora  
described in Table 1. 
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comply with the linguistic restrictions specified by the 
morpho-syntactic description associated to the respective 
S-word. For instance, if the S-word "fata" was tagged as a 
feminine noun, in a direct case, definite singular form, the 
plausible solutions are "fata" (the girl), "faţa" (the face), 
"fâţa" (the quick-swimming little fish/the coquette) all 
characterized by the same morpho-lexical attributes as the 
original S-word. All the other variants (fată, faţă, fâţă, 
făta, fătă) should be ignored due to different morpho-
syntactic descriptors (indefinite nouns or verbs). 

The last two lines in Table 1 show that when we use a 
tag-set of finer granularity (614 tags in the MSDtagset 
versus 92 tags in the Ctagset) the number of S-words (the 
tokens for which the diacritical forms cannot be 
deterministically recovered) is more than twice less than 
before. We noticed that the majority of the S-words in this 
case are genuine spelling errors, very few of them 
requiring sense disambiguation. 

In the next sections we will briefly describe the 
underlying technologies used by our diacritics restoration 
system DIAC+, provide an evaluation and few details on 
its implementation and conclude with a comparison 
between DIAC+ and its ancestor described in (Tufis, Chitu 
1999). 

4. Text pre-processing 
Since the DIAC+ was designed to work with MS 
formatted documents, the system extracts the textual data 
from the input file and stores it in an internal format 
adequate for our pre-processing tools, using as database a 
full-text search engine – Lucene3. The textual data 
extracted from the input file is tokenized and tiered-
tagged, thus creating a linguistic knowledge space for the 
current text within which the proper restoration of 
diacritics takes place. 

4.1 Tokenization 
The tokenizer is a program that identifies within the input 
text the elementary processing units called lexical tokens. 
A lexical token usually corresponds to the generally 
accepted idea of a word, namely a sequence of characters 
delimited by white spaces. However, several words may 
form a natural single unit (such as “pentru că” – because) 
or on the contrary, a sequence of characters delimited by 
white spaces may be split into distinct lexical units (such 
as “dă-mi-le” – you_(singular) give  to_me them = give 
them to me). The tokenizer also recognizes dates 
expressed in a large variety of formats (1 ianuarie, 1999; 
01/01/99; 01-ian-99, etc), abbreviations (dl, dna, dra, dr.  
etc.), various types of punctuation, etc. 

4.2 Tiered tagging 
In highly inflectional languages, encoding the morpho-

lexical properties of the word-forms requires a large set of 
description codes. The Multext European project in co-
operation with EAGLES Lexical Specification Group 
developed a set of recommendations for the languages in 
                                                            
3 http://www.apache.org/dyn/closer.cgi/lucene/java/ 

Western Europe. Starting with these specifications, the 
Multext-East Copernicus project further developed them 
so that to account for the specificity of six other languages 
from Central and Eastern Europe – Bulgarian, Czech, 
Estonian, Hungarian, Romanian and Slovene (see 
http://nl.ijs.si/ME/). The set of morpho-syntactic 
descriptors (MSDs) specific to Romanian contains 615 
codes.  

It is well known that the larger the tag-set, the larger 
the training corpora needed and unfortunately this is not a 
linear dependency. To avoid severe data sparseness and 
accuracy degradation, a huge amount of manual work 
would be necessary for building appropriately large 
training corpora.  

Tiered tagging (Tufiş, 1999, 2000) is a two-stage 
technique addressing the issue of data-sparseness. In 
general terms, tiered tagging uses a hidden tagset (we call 
it Ctag-set) of a smaller size (in our case 92 tags) on the 
basis of which a language model (LM) is built. This LM 
serves for a first level of tagging. Then, a second phase 
replaces the tags from the small tagset with contextually 
the most probable tags from the large tagset (we call it 
MSDtag-set) which contains 615 tags (MSDs). The 
fundamental idea in using the tiered tagging approach is 
that the attribute values in a MSD and the word-form are 
not independent. That is to say, having a MSD-based 
word-form lexicon, from a word-form and a subset of 
attribute-value pairs one could, in the vast majority of 
cases, deduce all the rest of the feature-values pairs 
characterizing the current word-form. In (Tufis, 1999) we 
call this property the MSD-recoverability. The subset of 
the features in the MSDtag-set having the recoverability 
property represents the set of attributes in terms of which 
the Ctag-set is defined. In (Tufis, 1999) we provided an 
algorithm to construct the Ctag-set from a MSD-based 
lexicon. In (Tufis, 2000) we demonstrated that the 
algorithm is language independent and that the tiered-
tagging approach is working very well for a completely 
different language than Romanian. In (Tufis, 
Dragomirescu, 2004) we presented a further enhanced 
version of the Ctag-set automatic design and 
demonstrated its effectiveness on six languages (Czech, 
English, Estonian, Hungarian, Romanian and Slovene).  

The lexicon, underlying the induction of the Ctag-set 
and backing-up the tiered tagging approach, contains the 
words annotated with the MSD tags, an entry having the 
form: <word> <lemma> <msd>. For Romanian, this 
lexicon, referred to in the following as LEX,  contains 
more than 800,000 entries.  

For a small number of the C-tags, the recovering 
process can face some ambiguities which have to be 
solved by using additional knowledge resource. In (Tufis, 
1999) this new resource is a set of hand-written contextual 
disambiguation rules. The applicability of both the 
deterministic and the rule-based recovering is limited only 
to the words recorded in the MSD tag-set lexicon. We 
replaced the second phase of the tiered tagging process 
with a maximum entropy-based MSD recovery (Ceauşu, 
2006). In this approach, the rules for Ctag to MSD 
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conversion are automatically learnt from the corpus and 
their application does not require looking-up the MSD 
tag-set lexicon. Therefore, even the Ctags assigned to 
unknown words can be converted into MSD tags. If an 
MSD-lexicon is available, replacing the Ctags for the 
known words by the appropriate MSD tags is almost 
100% accurate. 

5. Diacritics insertion 
The overall architecture of DIAC+ is shown in Figure 1.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
Figure 1. General architecture of DIAC+ 

 
From the LEX lexicon, mentioned in the previous 

section, the system derives a diacritical words only 
lexicon (D0),  and a diacritics stripped-off lexicon (D1) 
which are used to generate the hypotheses search space 
for the current text. Additionally, the system builds on the 
fly a list of words in the current text which are not in the 
previous dictionaries but which could be considered 
typographical errors (D2):  

- D0 dictionary is the subset of LEX containing all the 
words containing at least one diacritical character; 

- D1 dictionary is the diacritics stripped-off version of 
LEX; one should bear in mind that the entries from D0 
corresponding to A-words will differ among each other 
only by POS information 

- D2 dictionary contains words in the current text which 
are neither in D0 nor in D1 and which are suspected of 
being typing errors; they are derived from the words in 
D0∪D1 differing by plus or minus one character or by 
switching two consecutive characters (additionally, the 
switched characters should be neighbors on the keyboard). 

The procedure for automatic insertion of diacritics in 
Romanian texts has four stages:  

(i) TOKENIZATION. The input text is segmented into 
lexical tokens according to the rules specified as external 
resources. 

(ii) HYPOTHESES GENERATION. In the hypotheses 
generation step, a word is first searched in the union of D0 
and D1 dictionary because in a text without diacritics or 
with partial diacritics one cannot be sure if a word is in its 
regular form or not unless contextual information is 
available.  

If the word cannot be found in the union of D0 with D1 
it is searched in the D2 dictionary. A word which is not 
found in any of the system's lexicons is considered 
unknown and irrecoverable by the word-based approach,  
and its processing is left in charge of a character-based 
recovery module.  

In this step, a word W, occurring in the current text, 
may be associated with several entries in the LEX word-
form lexicon and as such it will be associated with a set of 
pairs <surface-formk MSDk> provided that the diacritics 
stripped-off versions of the surface-formk and of W are 
identical. The information provided by the next tagging 
step will be used to filter this set and eventually to select 
the single contextually correct <surface-formi>.  

(iii) TIERED TAGGING. The text is tiered-tagged (tagged 
with the reduced tag-set, then each C-tag is mapped to a 
MSD-tag by the ME-tagger (Ceauşu, 2006); for this stage, 
only the MSDs from the hypothesis generation step are 
taken into consideration). In the case of unknown words 
the tagger chooses the best alternative resulted from the 
maximum entropy model. For tagging texts with partial or 
missing diacritics we used a special HMM language 
model in which the transition probabilities were computed 
from the regular training corpora (i.e. with diacritics) and 
the emission probabilities were computed from the 
diacritics stripped-off training corpora. This way the 
ambiguity classes for the words in the probabilistic 
lexicon and their respective POS lexical probabilities 
were modified, but the transition probabilities remained 
unchanged. For instance, the two unambiguous words 
peste/Spsa (eng. over) and peşte/Ncms-n (eng. fish) in the 
diacritics stripped-off training corpora will be represented 
by the same token type (peste) which in this case will 
become POS ambiguous (Spsa or Ncms-n). It is obvious 
that the spurious ambiguities created by the lack of 
diacritics degrade the tagging accuracy, but as discussed 
in (Tufis, Chitu, 1999) not all tagging errors are harmful 
for the diacritics restoration process.  

(iv) CANDIDATE SELECTION. The U-words are replaced 
with their diacritical counterpart. The A-words which are 
not S-words are replaced by the surface-form identified by 
the MSD assigned by the tagger to the respective A-word. 
For the S-words, depending on the DIAC+ variant (see 
further) either the user is presented with a list of 
contextually meaningful choices or the replacement is 
automatically done based on lexical probabilities or some 
probabilistic preferences. 

(v) UNKNOWN WORD PROCESSING is used as backup for 
the candidate selection stage where no equivalent word-
form was found in the lexicon. This case is quite rare – 

Input text 

Output text & spelling 
alternatives 

(i) Tokenization 

(iii) Tiered tagging 

(ii) Hypotheses  
generation 

(iv) Candidate selection 

(v) Unknown words 
processing 
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Language 
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very few words are not covered by the 800000 entries 
lexicon. The stage of unknown word processing can be 
designed to work in parallel with the stage of candidate 
selection. For processing unknown words, we used a 
character-based N-gram model similar to the one used in 
(Mihalcea, 2002). 

 
Model 
order Perplexity Accuracy  

(no spaces) 
Model 

size 
2-gram 12.42 93.67% 20.8 KB 
3-gram 9.72 95.52% 223 KB 
4-gram 7.11 97.72% 1.29 MB 
5-gram 5.77 98.59% 4.82 MB 
6-gram 5.29 98.79% 13.1 MB 
7-gram 5.17 98.84% 27.7 MB 
8-gram 5.18 98.85% 48.4 MB 

 
Table 2. Evaluation of several character models for 

unknown words processing 
 
We opted to use Viterbi estimation with a 5-gram 

character model to find the most probable string for the 
unknown word. We used SRILM - SRI Language 
Modeling Toolkit (Stolcke, 2002) to train several 
character models. The training corpus contained 5124277 
characters (including spaces) in 48308 sentences and the 
test corpus has 613234 characters in 6411 sentences. 
Table 2 displays a comparison of the perplexity, accuracy 
and size for the models of different order.  

6. Evaluation 
For the evaluation purposes we used a reference corpus R, 
containing about 118,000 words and about 502,000 
characters. The reference corpus was hand tagged and 
lemmatized. We removed all the diacritics, from R but 
preserved the original tagging. This version of R is what 
we call the idealized DIAC+ tagged text (TT): it has no 
tokenization or tagging errors, and no diacritical character 
is present in the text. Running DIAC+ on TT provided us 
with an evaluation of the upper-limit of the system's 
accuracy (when perfect tagging is available). 

For a more realistic setting we further removed from 
TT the associated tags getting a raw tokenized text (RT) 
on which we applied the processing chain (tagging with 
the reduced tag-set, mapping the C-tags to MSD and 
DIAC+). In both of these experiments DIAC+ was used 
without any user interaction (that is with the S-words 
automatically dealt with). 

The results of these evaluations are synthesized in 
Table 3. Unlike the statistics in Table 1, here, no tokens 
were removed from the evaluation.  

In order to asses the diacritics insertion accuracy we 
developed a baseline system. The baseline system was 
built using the Agenda corpus (10 million tokens). The 
system uses a dictionary of non-diacritical forms with 
their valid counterparts ordered by the number of 
occurrences. The baseline system replaces the non-
diacritical form with the most frequent word-form. The 
correct surface forms differences in the two experiments 

(1,27%) can be ascribed entirely to the tagging errors, but 
as mentioned before not all the tagging errors generate 
diacritics restoration errors. A significant part of the 
incorrect surface forms were S-words (321), which should 
have received the user attention and choice. 

In Table 4 we show the evaluation results of the same 
experiments, but this time in terms of characters.  As it 
can be seen, the accuracy evaluation on characters shows 
a performance of over 99% even for the baseline system. 
One should note that the error score in the character-based 
evaluation (0,6%) looks much better then the error score 
in the word-based evaluation (2,25%). This supports our 
previous intuition (see the footnote 4) that one could 
easily estimate one evaluation score (word or character 
based) knowing the other score and if the average word 
length is smaller than the average distance between two 
diacritical characters.  

However, based on the log file they could be easily 
corrected. The rest of the incorrect surface forms resulted 
from tagging errors. Some of these tagging errors in 
Romanian are very difficult to solve in a limited context. 

 

 
DIAC on 

tagged text 
(TT) 

DIAC on 
raw text 

(RT) 

Baseline 
system 

Tokens 117 909 
Words with 
diacritics 34745 (29,47%) 

S-words 361 
Unknown 
words 2130 (1,8%) 

Correct 
word-forms 

116 810 
(99,06%) 

115 262 
(97,75%) 

113 491 
(96,25%) 

Incorrect 
word-forms 

1 092 
(0,94%) 

2 609 
(2,25%) 

4 418 
(3,75%) 

 
Table 3. Word-form accuracy evaluation DIAC+ 

 
Most of them refer to the tense value attribute (present 
and imperfect tenses) of verbs in the first class 
conjugation, the infinitive form of which ends in "a".  
Their resolution would require a post-tagging processing 
with an inspection of the neighboring clauses and an 
analysis of sequence-of-tenses (hoping that the 
neighboring verbs are not in the same conjugation class). 
 

 
Table 4. Character accuracy evaluation DIAC+ 

 
DIAC on 

tagged 
text (TT) 

DIAC on 
raw text 

(RT) 

Baseline 
system 

Characters (no 
spaces) 501735 

Diacritics  41144 
Correct characters 
(no spaces) 

500400 
(99.73%) 

498764 
(99.40%) 

497096 
(99,07%) 

Incorrect characters 
(no spaces) 

1335 
(0,27%) 

2971 
(0,6%) 

4639 
(0,93%) 
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7. Implementation 
The DIAC+ system is available in two implementations: 
as a web service, requiring a licensed access on our 
linguistic web-services platform for natural language 
processing and as a stand-alone variant, intended for local 
recovering of the diacritics in case of sensitive documents 
which the author might be reluctant to send via internet.  

The web-service accepts a MS-Word document and 
autonomously decides on the required corrections . The S-
words are corrected according to the user preferences, but 
a logfile is generated documenting each correction (initial 
word-form, possible replacements and the actual one). 
Optionally, the logfile can include for each replacement 
the sentence in which it was operated. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The stand-alone version of the application is embedded 
into the Microsoft Office suite and complements the MS 
spell checker.  

Once an MS-Office document is opened, pressing the 
Search button of the DIAC+ interface will launch the 
entire processing chain (text extraction, tokenization, 
tiered-tagging and multi-criteria indexing) discussed in 
the previous sections. As a result, all the words in the 
current document, potentially requiring diacritics 
restoration, will be listed in the left pane (Suggestions) of 
the DIAC+ interface as shown in Figure 2. 

Each word-form listed in the Suggestion window is 
preceded by a '+' unfolding button and a "check" box. If 
the "check" box is checked-out ( ) the system signals 
that for the respective word it found a unique correction. 
Selecting a word-form in the "Suggestions" window, will 
bring-up in the "Context" window (left window in the 
DIAC+ interface) the sentence containing the respective 
occurrence and scroll the document window highlighting 
the selected. 

Pressing the "Insert all checked" will operate the 
respective corrections and in the "Suggestions" pane will 
remain only the words for which the system could not 

make an informed decision. These words are preceded by 
an unchecked box and pressing the '+' unfolding button 
will show the contextually possible diacritical forms. Each 
possible solution has a "check" button allowing the user to 
specify his option.  
The system can correct a few typographical errors such as 
transposed characters, wrong typed characters, or omitted 
characters. The MS spell-checker underlines all the 
unknown words, thus allowing the user to further inspect 
spelling errors which are out of reach for DIAC. 

8. Conclusions 
In comparing accuracies of two diacritics restoring 

systems, one has to take into account the processing unit 
(word or letter) and the way accuracy is defined because, 
otherwise the comparison might be very misleading. For 
instance, a very easy evaluation method starts with a 
regular text (containing all the required diacritics), strips 
off all the diacritics, run the automatic recovery and 
compares the original text with the text produced by the 
recovery algorithm. Non-identical units (words or 
characters) are considered mistakes. By dividing the 
number of mistakes to the total number of units in the text 

Figure 2. Diacritics recovery in Microsoft Word 2003
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(words or characters) one gets what usually is reported as 
the error rate of the algorithm. This score depends on the 
considered unit, but also on the average character-length 
of a word (awg-length) and on average distance (awg-dist) 
between two consecutive correct diacritical characters. 
These two numbers may be language or even genre  
dependent. For languages where the average distance  
(avg-dist) between two correct diacritical characters is 
comparable or higher than the average length of a word 
(avg-length), as the is the case for Romanian and for 
many other languages, the evaluation of the character-
based error rate looks always better the word-based error 
rate4 (approximately avg-lenth better) . 

As compared to our previous version (Tufis, Chitu, 
1999), the present DIAC+ implementation includes 
spelling corrector and processing for unknown words. It is 
more accurate due to the significant improvements in the 
underlying language model (the underlying lexicon is 
almost triple in size) as well as due to the increased 
accuracy of our tiered tagger. Also, in the previous 
version we used a combined language model (requiring 
the text to be re-tagged with each of the available 
language models and in the end combining the results (see 
(Tufis, 1999) for details). DIAC+ is much faster because it 
uses a single tagging step, thus avoiding the time 
overhead of combined language model tagging (at a price 
of a less than 0.3% decrease of accuracy5). Since the 
coverage of the DIAC+ essentially depends on the 
statistical underlying dictionary and the language model 
used by the tiered tagger, the system checks, on a regular 
basis, our linguistic web-service platform for newer 
language models and lexicons and updates itself 
accordingly. 

The stand-alone version of DIAC+ is implemented as a 
DLL and incorporates all the required information and 
processing tools. The web-service version does not have 
this problem, as the DIAC+ code runs independently of 
MS-Office programs and thus, it is more appropriate for 
mass document processing than the DLL-based stand-
alone version. 

9. References 
Bèze, M., Mérialdo,  B., Rozeron, B., Serouault, A., M. 

(1994). Accentuation automatique de texte par des 
méthodes probabilistes. Technique et sciances 
informatiques, 13(6) pp. 797-815 

Bobiceva, V. (2008). O altă metodă de restabilire a 
semnelor diacritice. In Pistol I., Cristea D. Tufiş D. 

                                                            
4 An informal explanation: on average, each wrong diacritical 
character produces one wrong word (avg-dist > avg-length) so 
the nominators of the two scores are approximately the same; 
however the denominator of the character-based evaluation 
score is awg-length times larger than the denominator of the 
word-based evaluation score; 
5 Recall that not all tagging errors generate diacritics recovering 
errors: a 2% improvement of the tagging quality, has not a 
significant effect at diacritics restoration level. 

(eds.): Resurse Lingvistice şi Instrumente pentru 
Prelucrarea Limbii Române, pp.179-188 

Ceauşu, Al. (2006). Maximum Entropy Tiered Tagging, 
Janneke Huitink & Sophia Katrenko (editors), 
Proceedings of the Eleventh ESSLLI Student Session, 
ESSLLI 2006, pp. 173-179 

Mihalcea, R. (2002). Diacritics Restoration: Learning 
from Letters versus Learning from Words. In 
Proceedings of CICLing, pp. 339-348. 

De Pauw, G, Wagacha, P. W., de Schryver, G-M (2007). 
Automatic Diacritic Restoration for Resource-Scarce 
Language. In  V. Matousek and P. Mautner (Eds.): TSD 
2007, LNAI 4629, pp. 170–179 

Simard, M. (1998). Automatic Insertion of Accents in 
French Texts. In Ide & Vuotilainen (eds) Proceedings 
of the Third Conference on Empirical Methods in 
Natural Language Processing , Granada, Spain, 27-35 

Spriet T. and El-Bèze M. (1997). Réaccentuation automa-
tique de textes. In FRACTAL 97, Besançon. 

Steinberger, R., Pouliquen, B., Widiger, A., Ignat, C., 
Erjavec, T., Tufiş, D., Varga D. (2006). The JRC-
Acquis: A multilingual aligned parallel corpus with 20+ 
languages. Proceedings of the 5th International 
Conference on Language Resources and Evaluation 
(LREC'2006). Genoa, Italy, pp.2142-2147 

Stolcke, A. (2002). SRILM - An Extensible Language 
Modeling Toolkit, in Proc. Intl. Conf. Spoken 
Language Processing, Denver, Colorado, September 
2002 

Tufiş, D., Chiţu, A. (1999). Automatic Insertion of 
Diacritics in Romanian Texts. In Proceedings of the 5th 
International Workshop on Computational 
Lexicography COMPLEX, Pecs, Ungaria, 1999, pp. 
185-194 

Tufiş, D. (1999). Tiered Tagging and Combined 
Classifiers. In F. Jelinek, E. Nth (eds) Text, Speech and 
Dialogue, Lecture Notes in Artificial Intelligence, 
Springer, pp. 28-33 

Tufiş, D. (2000). Using a Large Set of EAGLES-
compliant Morpho-Syntactic Descriptors as a Tagset 
for Probabilistic Tagging, International Conference on 
Language Resources and Evaluation LREC’2000, 
Athens, 2000, pp. 1105-1112 

Tufiş, D., Dragomirescu, L.(2004). Tiered Tagging 
Revisited. In Proceedings of the 4th LREC Conference, 
Lisabona, 2004, pp. 39-42 

Zweigenbaum, P., Grabar, N. (2002). Accenting unknown 
words in a specialized language. In Proceedings of the 
Workshop on Natural Language Processing in the 
Biomedical Domain, ACL 2002 Philadelphia, July 
2002, pp. 21-28.  

Yarowsky, D. (1994). A Comparison of Corpus-based 
Techniques for Restoring Accents in Spanish and 
French Texts. In Proceedings of the Second Annual 
Workshop on Very Large Corpora, Kyoto, Japan 

Wagacha, P.W., De Pauw, G. , Githinji,  P. W. (2006). A 
Grapheme-Based Approach for Accent Restoration in 
Gĩkũyũ. In Proceedings of LREC2006, Genoa, Italy, pp. 
1937–1940. 

174


