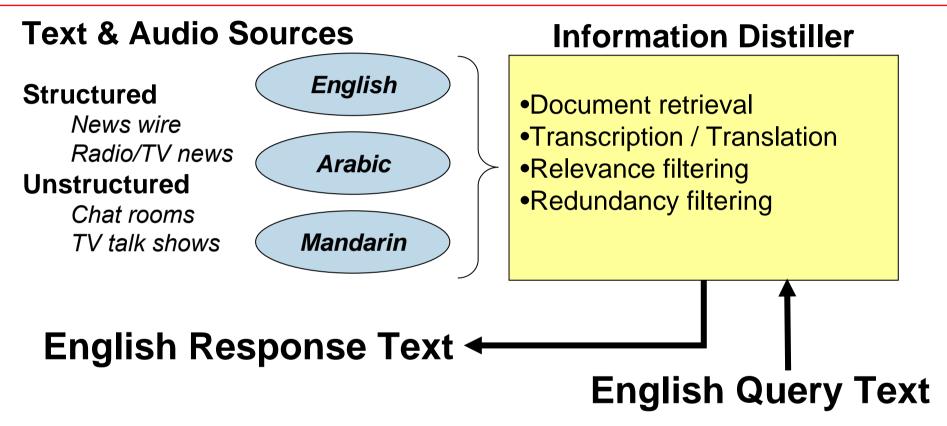


# Statistical Evaluation of Information Distillation Systems

J.V. White, D. Hunter, J.D. Goldstein

BAE Systems, AIT (Advanced Information Technologies)


LREC 2008, Marrakech, Morocco May 30, 2008



#### Overview

- Information distillation
- Evaluation objectives
- Data analysis and statistical methodology
- Simple examples

#### Information distillation



 English queries produce English response texts, even with foreign text/audio sources

### Acknowledgement

- Our evaluation methodology was developed for the GALE program (Global Autonomous Language Exploitation) under DARPA/IPTO support
- Our methodology may be used for other evaluations that share similar objectives
  - Evaluate unstructured response texts for information content
  - Penalize responses for irrelevance, redundancy, and missing information
  - Provide comprehensive statistical performance metrics (recall, precision, F-value, proficiency, ...)

#### System evaluation scope

- Our methodology focuses on overall *system* performance not component performance
  - We evaluate the distiller response for relevance to the input query
  - The performance evaluation penalizes redundant, missing, and irrelevant information, as well as any gibberish in the response
  - We don't use transcription and translation metrics, but such errors reduce the system-level performance that we do measure
- This presentation doesn't describe our methodology for evaluating document citations
- Nor does this presentation address usability, readability, or utility metrics

## Technical approach

- Annotators divide the distiller's relevant response text into *information nuggets* and group these into *nugs* 
  - *Nugs* are fuzzy sets of more-or-less equivalent nuggets
  - The *nuggets* are manually identified by annotators in GALE
  - In principle, nuggets may be automatically parsed
- Annotators analyze the information content of the nuggets for relevance to the query
- Annotation tasks include
  - Grouping nuggets into nugs based on their meanings
  - Assigning *Relevance weights* to the nugs
  - Assigning Degrees of membership to relatively imprecise nuggets that overlap more specific nuggets in meaning

## Nug 1

• Query: How are Joan and Bill related to each other?

| Nug text                                                               | Nug<br>relevance | Distiller<br>ID | Nugget text                                            | Degree of<br>membership |
|------------------------------------------------------------------------|------------------|-----------------|--------------------------------------------------------|-------------------------|
| They authored<br>the book,<br><i>Evaluation</i><br><i>Made Simple.</i> | 1.0              | A               | They are joint authors.                                | 0.5                     |
|                                                                        |                  | В               | They authored the book, <i>Evaluation Made Simple.</i> | 1.0                     |
|                                                                        |                  | С               | (No nugget provided.)                                  | 0.0                     |
|                                                                        |                  | D               | (No nugget provided.)                                  | 0.0                     |

- The Nug is a fuzzy equivalence class of nuggets
- Meaning of Nug = meaning of its most precise Nugget

## Nug 2

#### • Query: How are Joan and Bill related to each other?

| Nug meaning                                                      | Nug<br>relevance | Distiller<br>ID | Nugget text                                                                      | Degree of<br>membership |
|------------------------------------------------------------------|------------------|-----------------|----------------------------------------------------------------------------------|-------------------------|
| They wrote the<br>paper, "Further<br>thoughts on<br>evaluation." | 1.0              | A               | They are joint authors.                                                          | 0.5                     |
|                                                                  |                  | В               | They wrote the paper, "Further thoughts on evaluation."                          | 1.0                     |
|                                                                  |                  | С               | They wrote the paper, "Further thoughts on evaluation."                          | 1.0                     |
|                                                                  |                  | С               | <i>Redundant nugget:</i> They wrote the paper, "Further thoughts on evaluation." | 1.0                     |
|                                                                  |                  | D               | (No nugget provided.)                                                            | 0.0                     |

## Nug 3

#### • Query: Where does Joan live? (looking for address)

| Nug meaning                | Nug<br>relevance    | Distiller<br>ID | Nugget text                                              | Degree of membership |
|----------------------------|---------------------|-----------------|----------------------------------------------------------|----------------------|
| Joan lives in Rome, Italy. | 0.5<br>(no address) | А               | Joan lives in Italy.                                     | 0.5                  |
|                            |                     | В               | Joan lives in Rome,<br>Italy.                            | 1.0                  |
|                            |                     | С               | Joan lives in Italy's capital.                           | 1.0                  |
|                            |                     | С               | <i>Redundant, imprecise nugget:</i> Joan lives in Italy. | 0.5                  |
|                            |                     | D               | (No nugget provided.)                                    | 0.0                  |

#### Nug analysis for a set of queries

- Count the nugs and count the nuggets from each distiller being evaluated
- Compute statistics for each distiller
  - # relevant nugs
  - *# redundant* nuggets (more than one nugget in a nug)
  - *# missed* nugs that were found by other distillers
- Nug analysis determines whether or not different distillers provide nuggets that mean essentially the same thing, no matter how they are expressed

#### Classical statistical methodology

- For each distiller, use a 2x2 contingency table and two indicator variables (*x*, *y*) to define four contingencies involving nugs and nuggets
  - (x=1, y=1) Relevant nug and distiller contributes a nugget to it
  - (x=1, y=0) **Relevant nug** and **distiller does not contribute** a nugget
  - (x=0, y=1) Irrelevant nug and distiller contributes a nugget to it
  - (x=0, y=0) Irrelevant nug and distiller does not contribute a nugget to it

#### **BAE SYSTEMS**

#### Classical contingency table for a distiller

|       | <i>y</i> = 0 | y = 1   |
|-------|--------------|---------|
| x = 0 | # Other      | # Wrong |
| x = 1 | # Missing    | # Right |

This classical approach ignores the *relevance weight* of each nug, the *degree of membership* for each nugget, and fails to count *redundant* nuggets as being wrong

#### Relevance and degree of membership

- To measure *relevance, redundancy,* and *degrees of membership*, define three fuzzy descriptors for each distiller
  - *R*<sup>*k*</sup> = relevance weight of nug *k* 
    - *R* generalizes the relevance indicator *x*
  - Dk = largest degree of membership in nug k (for distiller of interest)
    - *D* generalizes the existence indicator y
  - D<sub>kj</sub> = degree of membership of the *j*-th redundant nugget in nug k (redundant nuggets have degrees of membership that do not exceed Dk)
  - All of these fuzzy measures take values on the unit interval [0, 1]

## Contingency table based on fuzzy counts

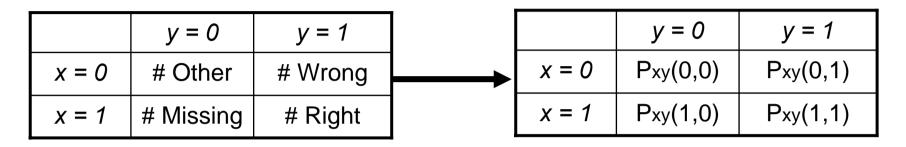
• The counts in the contingency table for a specified distiller satisfy these sums over all nugs

# Right = 
$$\sum_{k} R_k D_k$$
  
# Wrong =  $\sum_{k} \left( (1 - R_k) D_k + \sum_{j} D_{kj} \right)$  + Estimated # Wrong in un-nuggetized text

# Missing = 
$$\sum_{k} R_k (1 - D_k)$$

# Other =  $\sum_{k} (1 - R_k)(1 - D_k)$  + Estimate of # Other in the corpora

- Each nug contributes at most one count to the table
- As  $R \rightarrow x$  and  $D \rightarrow y$ , counting statistics  $\rightarrow$  classical values
- Fractional counts are distributed so that relevance and degree-ofmembership contributions are statistically independent


#### Estimating # wrong nugs in irrelevant text

- Irrelevant text is not nuggetized
- Therefore, the # Wrong (irrelevant) nugs is estimated from the total number of non-blank characters (# Char) in the distiller's response text

$$\# \operatorname{Wrong} = \max\left(0, \frac{\# \operatorname{Char}}{40} - \# \operatorname{Right}\right)$$

• 40 is the average number of non-blank characters per nug (empirically determined)

#### Classical performance metrics



- Compute the *joint probability distribution* P<sub>xy</sub> by normalizing the contingency table
- Classical performance metrics are functions of Pxy
  - Recall =  $P_{y|x}(1,1) = P_{xy}(1,1) / P_{x}(1)$
  - Precision =  $P_{x|y}(1,1) = P_{xy}(1,1) / P_y(1)$
  - F-value = 2 x Recall x Precision / (Recall + Precision)

### Proficiency metric

- *Proficiency* measures the fraction of information delivered by the distiller, relative to the total relevant information from all the distillers
- Proficiency = normalized mutual information between x and y indicator variables

Proficiency = 
$$\frac{I_{XY}}{H_X}$$
  
 $I_{XY}$  = mutual information =  $\sum_x \sum_y P(x, y) \log_2 \frac{P(x, y)}{P(x)P(y)}$   
 $H_X$  = entropy =  $-\sum_x P(x) \log_2 P(x)$ 

#### Interpretation of Proficiency

- Takes values on the unit interval [0, 1]
- Value 0 means that the distiller provides no relevant information
- Value 0.75 means that the distiller provides 75% of the relevant information delivered by all the distillers being considered

#### Bayesian analysis

- For small samples, we recommend a Bayesian correction to the contingency table (CT)
- For example, add 1/4 pseudo count to each cell of the CT
  - This avoids zero counts and zero probabilities caused by small sample sizes
  - The performance metrics are then always well defined and take reasonable values, even with small amounts of evidence
  - With no data, the prior values for recall and precision are each 1/2, and the proficiency is 0

#### **BAE SYSTEMS**

#### Example performance metrics (1/2)

- We use contingency tables based on Nugs 1 – 3
- We assume the corpora contain on order of 10^5 nugs
- # Wrong in *irrelevant text* (not shown) is estimated from character counts

#### **Estimated # Wrong**

| Distiller | # Wrong |  |
|-----------|---------|--|
| A         | 1.50    |  |
| В         | 1.00    |  |
| С         | 0.75    |  |
| D         | 0.00    |  |

## Example performance metrics (2/2)

#### **Based on raw empirical probabilities**

| Distiller | Precision   | Recall | Proficiency |
|-----------|-------------|--------|-------------|
| A         | 0.417       | 0.500  | 0.400       |
| В         | 0.625       | 1.000  | 0.909       |
| С         | 0.154       | 0.333  | 0.234       |
| D         | (undefined) | 0.000  | 0.000       |

These extreme -values reflect the small sample size

#### **Based on Bayesian probabilities**

| Distiller | Precision | Recall | Proficiency |
|-----------|-----------|--------|-------------|
| A         | 0.429     | 0.500  | 0.400       |
| В         | 0.611     | 0.917  | 0.811       |
| С         | 0.200     | 0.375  | 0.271       |
| D         | 0.500     | 0.083  | 0.066       |

The *Proficiency* provides rank ordering of distillers based on relative information content

#### Conclusion

- Information distillers generate English response text from both structured and unstructured multilingual sources
- We have developed a statistical methodology for evaluating such distillers, which measures
  - Relevance
  - Redundancy
  - Recall
  - Precision
  - Proficiency (quantity of information provided)