Parser Evaluation and the BNC

Jennifer Foster and Josef van Genabith

National Centre for Language Technology
School of Computing
Dublin City University

29th May 2008
What is this work about?

1. Creating a set of gold standard parse trees for 1,000 sentences from the BNC
2. Using these trees as a test set to evaluate various parsers
Outline

BNC Gold Standard

Parser Evaluation
 The Parsers
 The Metrics
 Evaluation Results
The British National Corpus

The BNC is a one hundred million word balanced corpus of British English (Burnard, 2000)

- 90% of the BNC is written text
 - 75% factual
 - 25% fiction
- The 10% spoken component consists of
 - informal dialogue
 - business meetings
 - speeches
The British National Corpus

The BNC is a one hundred million word balanced corpus of British English (Burnard, 2000)

- 90% of the BNC is written text
 - 75% factual
 - 25% fiction
- The 10% spoken component consists of
 - informal dialogue
 - business meetings
 - speeches
The British National Corpus

The BNC is a one hundred million word balanced corpus of British English (Burnard, 2000)

- 90% of the BNC is written text
 - 75% factual
 - 25% fiction
- The 10% spoken component consists of
 - informal dialogue
 - business meetings
 - speeches
BNC Test Set: Choosing the sentences

1,000 sentences in test set

- Not chosen completely at random
- They are different from WSJ training data:
 - Contain a verb in BNC but not in WSJ2-21
 - 25,874 verb lemmas in BNC but not in WSJ2-21
 - 14,787 occur only once in BNC (e.g. jitter, unfade, transpersonalize, kerplonk)
 - 537 occur greater than 100 times (e.g. murmur, frown, damn)
 - Likely to represent a difficult test for WSJ-trained parsers
BNC Test Set: Choosing the sentences

1,000 sentences in test set

- Not chosen completely at random
 - They are *different* from WSJ training data:
 - Contain a verb in BNC but not in WSJ2-21
 - 25,874 verb lemmas in BNC but not in WSJ2-21
 - 14,787 occur only once in BNC (e.g. *jitter*, *unfaded*, *transpersonalize*, *kerplonk*)
 - 537 occur greater than 100 times (e.g. *murmur*, *frown*, *damn*)
 - Likely to represent a difficult test for WSJ-trained parsers
BNC Test Set: Choosing the sentences

1,000 sentences in test set

- Not chosen completely at random
- They are different from WSJ training data:
 - Contain a verb in BNC but not in WSJ2-21
 - 25,874 verb lemmas in BNC but not in WSJ2-21
 - 14,787 occur only once in BNC (e.g. jitter, unfade, transpersonalize, kerplonk)
 - 537 occur greater than 100 times (e.g. murmur, frown, damn)
- Likely to represent a difficult test for WSJ-trained parsers
BNC Test Set: Choosing the sentences

1,000 sentences in test set

- Not chosen completely at random
- They are *different* from WSJ training data:
 - Contain a verb in BNC but not in WSJ2-21
 - 25,874 verb lemmas in BNC but not in WSJ2-21
 - 14,787 occur only once in BNC (e.g. *jitter*, *unfade*, *transpersonalize*, *kerplonk*)
 - 537 occur greater than 100 times (e.g. *murmur*, *frown*, *damn*)
 - Likely to represent a difficult test for WSJ-trained parsers
BNC Test Set: Choosing the sentences

1,000 sentences in test set

- Not chosen completely at random
- They are different from WSJ training data:
 - Contain a verb in BNC but not in WSJ2-21
 - 25,874 verb lemmas in BNC but not in WSJ2-21
 - 14,787 occur only once in BNC (e.g. jitter, unfade, transpersonalize, kerplonk)
 - 537 occur greater than 100 times (e.g. murmur, frown, damn)
 - Likely to represent a difficult test for WSJ-trained parsers
BNC Test Set: Choosing the sentences

1,000 sentences in test set

- Not chosen completely at random
- They are different from WSJ training data:
 - Contain a verb in BNC but not in WSJ2-21
 - 25,874 verb lemmas in BNC but not in WSJ2-21
 - 14,787 occur only once in BNC (e.g. jitter, unfade, transpersonalize, kerplonk)
 - 537 occur greater than 100 times (e.g. murmur, frown, damn)
 - Likely to represent a difficult test for WSJ-trained parsers
BNC Test Set: Some examples

<table>
<thead>
<tr>
<th>Text Type</th>
<th>#</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spoken</td>
<td>10</td>
<td>The seconder of formally seconded</td>
</tr>
<tr>
<td>Poem</td>
<td>9</td>
<td>Groggily somersaulting to get airborne</td>
</tr>
<tr>
<td>Caption</td>
<td>4</td>
<td>Community Personified</td>
</tr>
<tr>
<td>Headline</td>
<td>2</td>
<td>Drunk priest is nicked driving to a funeral</td>
</tr>
</tbody>
</table>

Average sentence length: 28 words
BNC Test Set: Some examples

<table>
<thead>
<tr>
<th>Text Type</th>
<th>#</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spoken</td>
<td>10</td>
<td>The seconder of formally seconded</td>
</tr>
<tr>
<td>Poem</td>
<td>9</td>
<td>Groggily somersaulting to get airborne</td>
</tr>
<tr>
<td>Caption</td>
<td>4</td>
<td>Community Personified</td>
</tr>
<tr>
<td>Headline</td>
<td>2</td>
<td>Drunk priest is nicked driving to a funeral</td>
</tr>
</tbody>
</table>

Average sentence length: 28 words
BNC Test Set: Annotation Process

- One annotator
- Two passes through the data
- Approximately 100 hours
- As references, the annotator used
 1. Penn Treebank bracketing guidelines (Bies et al 1995)
 2. Penn Treebank itself
- Functional tags and traces not annotated
BNC Test Set: Annotation Difficulties

What happens when the references clash?

- The noun phrase *almost certain death* occurs in BNC gold standard sentence.
- According to the guidelines, it should be annotated as
 $(NP \ (ADJP \ almost \ certain) \ death)$
- A search for *almost* in the Penn Treebank yields the following example
 $(NP \ almost \ unimaginable \ speed)$
- In such cases, annotator chose the analysis set out in the guidelines.
BNC Test Set: Annotation Difficulties

What happens when the references clash?

► The noun phrase *almost certain death* occurs in BNC gold standard sentence
► According to the guidelines, it should be annotated as
 \((NP (ADJP almost certain) death)\)
► A search for *almost* in the Penn Treebank yields the following example
 \((NP almost unimaginable speed)\)
► In such cases, annotator chose the analysis set out in the guidelines
BNC Test Set: Annotation Difficulties

What happens when the references clash?

- The noun phrase *almost certain death* occurs in BNC gold standard sentence
- According to the guidelines, it should be annotated as

 \((NP \ (ADJP \ almost \ certain) \ death)\)

- A search for *almost* in the Penn Treebank yields the following example

 \((NP \ almost \ unimaginable \ speed)\)

- In such cases, annotator chose the analysis set out in the guidelines
BNC Test Set: Annotation Difficulties

What happens when the references clash?

- The noun phrase *almost certain death* occurs in BNC gold standard sentence
- According to the guidelines, it should be annotated as

 \[(NP (ADJP almost certain) death)\]

- A search for *almost* in the Penn Treebank yields the following example

 \[(NP almost unimaginable speed)\]

- In such cases, annotator chose the analysis set out in the guidelines
BNC Test Set: Annotation Difficulties

What happens when the references clash?

- The noun phrase *almost certain death* occurs in BNC gold standard sentence.
- According to the guidelines, it should be annotated as

 \[(NP (ADJP almost certain) death)\]

- A search for *almost* in the Penn Treebank yields the following example

 \[(NP almost unimaginable speed)\]

- In such cases, annotator chose the analysis set out in the guidelines.
BNC Test Set: Annotation Difficulties

69 sentences marked as difficult

- Attachment ambiguities

 He has had to come to terms with the tragic loss of friends from the very start of his climbing career.

- Adverbials

 a few seats down from them
BNC Test Set: Annotation Difficulties

69 sentences marked as difficult

- Attachment ambiguities
 He has had to come to terms with the tragic loss of friends from the very start of his climbing career.

- Adverbials
 a few seats down from them
BNC Test Set: Annotation Difficulties

69 sentences marked as difficult

- Attachment ambiguities

 He has had to come to terms with the tragic loss of friends from the very start of his climbing career.

- Adverbials

 a few seats down from them
BNC Test Set: Annotation Difficulties

- Noun phrase structure
 a war of words with Damascus

- Miscellaneous
 - As likely to be queuing at a supermarket checkout as at a communion rail
 - day in day out
 - Other than that he showed up Giggs...
BNC Test Set: Annotation Difficulties

- **Noun phrase structure**

 a war of words with Damascus

- **Miscellaneous**
 - *As likely to be queuing at a supermarket checkout as at a communion rail*
 - *day in day out*
 - *Other than that he showed up Giggs...*
Outline

BNC Gold Standard

Parser Evaluation
 The Parsers
 The Metrics
 Evaluation Results
Which Parsers?

Various versions of the Charniak parser

- History-based generative statistical parser (Charniak, 2000)
 - Reranking parser (Charniak and Johnson, 2005)
 - First-stage generative parser
 - Discriminative reranker re-orders n-best list returned by first-stage parser
Which Parsers?

Various versions of the Charniak parser

- History-based generative statistical parser (Charniak, 2000)
- Reranking parser (Charniak and Johnson, 2005)
 - First-stage generative parser
 - Discriminative reranker re-orders n-best list returned by first-stage parser
Which Parsers?

Various versions of the Charniak parser

- NANC self-trained parser (McClosky et al, 2006)
 - Reranking parser parses NANC sentences
 - First-stage parser is retrained with NANC trees plus WSJ gold standard trees

- BNC self-trained parser (Foster et al, 2007)
Which Parsers?

Various versions of the Charniak parser

- NANC self-trained parser (McClosky et al, 2006)
 - Reranking parser parses NANC sentences
 - First-stage parser is retrained with NANC trees plus WSJ gold standard trees
- BNC self-trained parser (Foster et al, 2007)
Any other parsers?

Berkeley parser (Petrov et al, 2006)

- Unlexicalised PCFG parser
- To learn PCFG:
 1. Start with x-bar grammar read from Penn Treebank
 2. Split each nonterminal category into two subcategories
 3. Train a grammar (using Expectation Maximisation learning)
 4. For each pair of subcategories
 - Merge the subcategories
 - Measure the information loss after the merge
 - If loss is small, keep the merge
 5. Repeat steps 2-4
- We use PCFG obtained using 5 split/merge iterations
Any other parsers?

Berkeley parser (Petrov et al, 2006)

- Unlexicalised PCFG parser
 - To learn PCFG:
 1. Start with x-bar grammar read from Penn Treebank
 2. Split each nonterminal category into two subcategories
 3. Train a grammar (using Expectation Maximisation learning)
 4. For each pair of subcategories
 - Merge the subcategories
 - Measure the information loss after the merge
 - If loss is small, keep the merge
 5. Repeat steps 2-4
 - We use PCFG obtained using 5 split/merge iterations
Any other parsers?

Berkeley parser (Petrov et al, 2006)

- Unlexicalised PCFG parser
- To learn PCFG:
 1. Start with x-bar grammar read from Penn Treebank
 2. Split each nonterminal category into two subcategories
 3. Train a grammar (using Expectation Maximisation learning)
 4. For each pair of subcategories
 - Merge the subcategories
 - Measure the information loss after the merge
 - If loss is small, keep the merge
 5. Repeat steps 2-4

- We use PCFG obtained using 5 split/merge iterations
Any other parsers?

Berkeley parser (Petrov et al, 2006)

- Unlexicalised PCFG parser
- To learn PCFG:
 1. Start with x-bar grammar read from Penn Treebank
 2. Split each nonterminal category into two subcategories
 3. Train a grammar (using Expectation Maximisation learning)
 4. For each pair of subcategories
 - Merge the subcategories
 - Measure the information loss after the merge
 - If loss is small, keep the merge
 5. Repeat steps 2-4
- We use PCFG obtained using 5 split/merge iterations
Evaluation Metrics

Phrase-structure evaluation

1. Parseval (evalb implementation) (Black et al, 1991)
2. Leaf Ancestor (Sampson and Barbarczy, 2002)
3. Tree Distance (Emms, 2008)

Dependency evaluation
Relies on constituent to dependency conversion
Parseval

- Tree as a set of *labelled spans*
- Precision, recall and f-score over gold and test sets

Gold:

- S
 - NP
 - Linguists
 - VP
 - love
 - grammar

Test:

- S
 - VP
 - Linguists
 - NP
 - love
 - grammar

Gold: \{ (S Linguists love grammar), (NP Linguists), (VP love grammar) \}
Test: \{ (S Linguists love grammar), (VP Linguists love), (NP grammar) \}
Parseval

- Tree as a set of *labelled spans*
- Precision, recall and f-score over gold and test sets

Gold:

```
(S Linguists love grammar), (NP Linguists), (VP love grammar)
```

Test:

```
(S Linguists love grammar), (VP Linguists love), (NP grammar)
```
Parser Evaluation and the BNC
Jennifer Foster and Josef van Genabith

BNC Gold Standard
Parser Evaluation
The Parsers
The Metrics
Evaluation Results

Parseval

- Tree as a set of *labelled spans*
- Precision, recall and f-score over gold and test sets

Gold

- **S**
 - **NP**
 - Linguists
 - **VP**
 - love grammar

Test

- **S**
 - **VP**
 - Linguists love
 - **NP**
 - grammar

Gold: \{ (S Linguists love grammar), (NP Linguists), (VP love grammar) \}
Test: \{ (S Linguists love grammar), (VP Linguists love), (NP grammar) \}
Leaf Ancestor

- Tree as a set of lineages
- Each lineage in test set assigned a score
- Score based on edit distance from gold lineage
- Lineage scores are averaged

Gold:

```
S
  NP
    Linguists
  VP
    love
    grammar
```

Test:

```
S
  VP
    love
    grammar
  NP
    Linguists
```
Leaf Ancestor

- Tree as a set of *lineages*
- Each lineage in test set assigned a score
- Score based on edit distance from gold lineage
- Lineage scores are averaged

Gold:

```
S
  NP
  Linguists
  VP
  love
  grammar
```

Test:

```
S
  VP
  Linguists
  love
  grammar
```

Gold: \[\{<\text{Linguists} \ NP \] \ [S > , \ < \text{love} [\ VP \ S > , \ < \text{grammar} \ VP \ S >] > \}\]

Test: \[\{<\text{Linguists} \ VP \ [S > , \ < \text{love} \ VP \] \ S > , \ < \text{grammar} [\ NP \ S >] > \}\]
Leaf Ancestor

- Tree as a set of *lineages*
- Each lineage in test set assigned a score
- Score based on edit distance from gold lineage
- Lineage scores are averaged

Gold:

```
S
   NP
   | Linguists
      VP
      love grammar
```  

Test:

```
S
   VP
   Love grammar
```  

Gold: \{ <Linguists NP > S>, <love VP S>, <grammar VP S> \}

Test: \{ <Linguists VP > S>, <love VP > S>, <grammar NP S> \}
Tree Distance

- Edit distance on actual trees
- Calculate the minimum cost of transforming test tree to gold tree
Tree Distance

- Edit distance on actual trees
- Calculate the minimum cost of transforming test tree to gold tree
Tree Distance

- Edit distance on actual trees
- Calculate the minimum cost of transforming test tree to gold tree

![Diagram of tree transformations]

Editing Operations:
- **Delete** (\rightarrow_{del})
- **Add** (\rightarrow_{add})
- **Substitute** (\rightarrow_{sub})
Tree Distance

- Edit distance on actual trees
- Calculate the minimum cost of transforming test tree to gold tree

![Tree Diagram]

- Tree Distance
 - Edit distance on actual trees
 - Calculate the minimum cost of transforming test tree to gold tree

![Tree Diagram]

- Tree Distance
 - Edit distance on actual trees
 - Calculate the minimum cost of transforming test tree to gold tree

![Tree Diagram]
Tree Distance

- Edit distance on actual trees
- Calculate the minimum cost of transforming test tree to gold tree

\[
\begin{align*}
S & \rightarrow_{del} S \\
VP & \rightarrow_{add} S \\
NP & \rightarrow_{sub} S \\
& \rightarrow_{sub} S
\end{align*}
\]
Tree Distance

- Edit distance on actual trees
- Calculate the minimum cost of transforming test tree to gold tree

```
S
  /\    ▶del
 /  \      
VP    NP    S
  |     ▶add
 |   
Linguists love grammar

S
  /\    ▶sub
 /  
VP    NP    S
  |     ▶sub
 |   
Linguists love grammar
```

```
S
  /\    ▶del
 /  
VP    NP    S
  |     ▶add
 |   
Linguists love grammar

S
  /\    ▶sub
 /  
NP    NP    S
  |     ▶sub
 |   
Linguists love grammar
```

```
S
  /\    ▶del
 /  
NP    VP    S
  |     ▶add
 |   
Linguists love grammar

S
  /\    ▶sub
 /  
NP    VP    S
  |     ▶sub
 |   
Linguists love grammar
```
Dependency Evaluation

- Tree as a set of word-word dependency tuples
 \(<\text{word}, \text{head}, \text{label}>\)
 (Linguists, love, subj), (grammar, love, obj)
- Automatic conversion procedure (Johansson and Nugues, 2007)
- Works better when Penn-II functional tags are available
- Use automatic functional tag labeller of Chrupala et al, 2007
Evaluation Results

<table>
<thead>
<tr>
<th>Parser</th>
<th>Parseval</th>
<th>TreeDist</th>
<th>LA</th>
<th>Dep</th>
</tr>
</thead>
<tbody>
<tr>
<td>Berkeley</td>
<td>82.0</td>
<td>89.8</td>
<td>91.1</td>
<td>81.6</td>
</tr>
<tr>
<td>Charniak</td>
<td>82.5</td>
<td>90.0</td>
<td>91.6</td>
<td>82.5</td>
</tr>
<tr>
<td>C&J Rerank</td>
<td>83.4</td>
<td>90.3</td>
<td>91.8</td>
<td>82.8</td>
</tr>
<tr>
<td>C&J NANC</td>
<td>83.9</td>
<td>90.6</td>
<td>91.7</td>
<td>83.0</td>
</tr>
<tr>
<td>C&J BNC</td>
<td>85.4</td>
<td>91.3</td>
<td>92.6</td>
<td>84.2</td>
</tr>
</tbody>
</table>

- Approx 7% drop moving from WSJ23 to BNC
- Evaluation metrics tell roughly the same story
- Reranking improves performance
- Best parser on the BNC test data is BNC self-trained parser
- Using in-domain data for self-training appears to be more effective
Evaluation Results

<table>
<thead>
<tr>
<th>Parser</th>
<th>Parseval</th>
<th>TreeDist</th>
<th>LA</th>
<th>Dep</th>
</tr>
</thead>
<tbody>
<tr>
<td>Berkeley</td>
<td>82.0</td>
<td>89.8</td>
<td>91.1</td>
<td>81.6</td>
</tr>
<tr>
<td>Charniak</td>
<td>82.5</td>
<td>90.0</td>
<td>91.6</td>
<td>82.5</td>
</tr>
<tr>
<td>C&J Rerank</td>
<td>83.4↑</td>
<td>90.3</td>
<td>91.8</td>
<td>82.8</td>
</tr>
<tr>
<td>C&J NANC</td>
<td>83.9</td>
<td>90.6</td>
<td>91.7</td>
<td>83.0</td>
</tr>
<tr>
<td>C&J BNC</td>
<td>85.4↑</td>
<td>91.3</td>
<td>92.6</td>
<td>84.2</td>
</tr>
</tbody>
</table>

- Approx 7% drop moving from WSJ23 to BNC
- Evaluation metrics tell roughly the same story
- Reranking improves performance
- Best parser on the BNC test data is BNC self-trained parser
- Using *in*-domain data for self-training appears to be more effective
Evaluation Results

<table>
<thead>
<tr>
<th>Parser</th>
<th>Parseval</th>
<th>TreeDist</th>
<th>LA</th>
<th>Dep</th>
</tr>
</thead>
<tbody>
<tr>
<td>Berkeley</td>
<td>82.0</td>
<td>89.8</td>
<td>91.1</td>
<td>81.6</td>
</tr>
<tr>
<td>Charniak</td>
<td>82.5</td>
<td>90.0</td>
<td>91.6</td>
<td>82.5</td>
</tr>
<tr>
<td>C&J Rerank</td>
<td>83.4↑</td>
<td>90.3</td>
<td>91.8</td>
<td>82.8</td>
</tr>
<tr>
<td>C&J NANC</td>
<td>83.9</td>
<td>90.6</td>
<td>91.7</td>
<td>83.0</td>
</tr>
<tr>
<td>C&J BNC</td>
<td>85.4↑</td>
<td>91.3</td>
<td>92.6</td>
<td>84.2</td>
</tr>
</tbody>
</table>

- Approx 7% drop moving from WSJ23 to BNC
- Evaluation metrics tell roughly the same story
- Reranking improves performance
- Best parser on the BNC test data is BNC self-trained parser
- Using in-domain data for self-training appears to be more effective
Evaluation Results

<table>
<thead>
<tr>
<th>Parser</th>
<th>Parseval</th>
<th>TreeDist</th>
<th>LA</th>
<th>Dep</th>
</tr>
</thead>
<tbody>
<tr>
<td>Berkeley</td>
<td>82.0</td>
<td>89.8</td>
<td>91.1</td>
<td>81.6</td>
</tr>
<tr>
<td>Charniak</td>
<td>82.5</td>
<td>90.0</td>
<td>91.6</td>
<td>82.5</td>
</tr>
<tr>
<td>C&J Rerank</td>
<td>83.4↑</td>
<td>90.3</td>
<td>91.8</td>
<td>82.8</td>
</tr>
<tr>
<td>C&J NANC</td>
<td>83.9</td>
<td>90.6</td>
<td>91.7</td>
<td>83.0</td>
</tr>
<tr>
<td>C&J BNC</td>
<td>85.4↑</td>
<td>91.3</td>
<td>92.6</td>
<td>84.2</td>
</tr>
</tbody>
</table>

- Approx 7% drop moving from WSJ23 to BNC
- Evaluation metrics tell roughly the same story
- Reranking improves performance
- Best parser on the BNC test data is BNC self-trained parser
- Using in-domain data for self-training appears to be more effective
Evaluation Results

<table>
<thead>
<tr>
<th>Parser</th>
<th>Parseval</th>
<th>TreeDist</th>
<th>LA</th>
<th>Dep</th>
</tr>
</thead>
<tbody>
<tr>
<td>Berkeley</td>
<td>82.0</td>
<td>89.8</td>
<td>91.1</td>
<td>81.6</td>
</tr>
<tr>
<td>Charniak</td>
<td>82.5</td>
<td>90.0</td>
<td>91.6</td>
<td>82.5</td>
</tr>
<tr>
<td>C&J Rerank</td>
<td>83.4↑</td>
<td>90.3</td>
<td>91.8</td>
<td>82.8</td>
</tr>
<tr>
<td>C&J NANC</td>
<td>83.9</td>
<td>90.6</td>
<td>91.7</td>
<td>83.0</td>
</tr>
<tr>
<td>C&J BNC</td>
<td>85.4↑</td>
<td>91.3</td>
<td>92.6</td>
<td>84.2</td>
</tr>
</tbody>
</table>

- Approx 7% drop moving from WSJ23 to BNC
- Evaluation metrics tell roughly the same story
- Reranking improves performance
- Best parser on the BNC test data is BNC self-trained parser
- Using in-domain data for self-training appears to be more effective
Evaluation Results

<table>
<thead>
<tr>
<th>Parser</th>
<th>Parseval</th>
<th>TreeDist</th>
<th>LA</th>
<th>Dep</th>
</tr>
</thead>
<tbody>
<tr>
<td>Berkeley</td>
<td>82.0</td>
<td>89.8</td>
<td>91.1</td>
<td>81.6</td>
</tr>
<tr>
<td>Charniak</td>
<td>82.5</td>
<td>90.0</td>
<td>91.6</td>
<td>82.5</td>
</tr>
<tr>
<td>C&J Rerank</td>
<td>83.4↑</td>
<td>90.3</td>
<td>91.8</td>
<td>82.8</td>
</tr>
<tr>
<td>C&J NANC</td>
<td>83.9</td>
<td>90.6</td>
<td>91.7</td>
<td>83.0</td>
</tr>
<tr>
<td>C&J BNC</td>
<td>85.4↑</td>
<td>91.3</td>
<td>92.6</td>
<td>84.2</td>
</tr>
</tbody>
</table>

- Approx 7% drop moving from WSJ23 to BNC
- Evaluation metrics tell roughly the same story
- Reranking improves performance
- Best parser on the BNC test data is BNC self-trained parser
- Using *in*-domain data for self-training appears to be more effective
Evaluation Results

<table>
<thead>
<tr>
<th>Parser</th>
<th>Parseval</th>
<th>TreeDist</th>
<th>LA</th>
<th>Dep</th>
</tr>
</thead>
<tbody>
<tr>
<td>Berkeley</td>
<td>82.0</td>
<td>89.8</td>
<td>91.1</td>
<td>81.6</td>
</tr>
<tr>
<td>Charniak</td>
<td>82.5</td>
<td>90.0</td>
<td>91.6</td>
<td>82.5</td>
</tr>
<tr>
<td>C&J Rerank</td>
<td>83.4↑</td>
<td>90.3</td>
<td>91.8</td>
<td>82.8</td>
</tr>
<tr>
<td>C&J NANC</td>
<td>83.9</td>
<td>90.6</td>
<td>91.7</td>
<td>83.0</td>
</tr>
<tr>
<td>C&J BNC</td>
<td>85.4↑</td>
<td>91.3</td>
<td>92.6</td>
<td>84.2</td>
</tr>
</tbody>
</table>

- Approx 7% drop moving from WSJ23 to BNC
- Evaluation metrics tell roughly the same story
- Reranking improves performance
- Best parser on the BNC test data is BNC self-trained parser
- Using in-domain data for self-training appears to be more effective
Error Analysis

Problematic areas for all parsers

- Coordination
 The pistol had been a prop in the film in which my father had starred and after filming was over he forgot to return it.

- Adverbs
 Incidentally Ciccolini also plays several works for piano 4 hands

- Noun/verb confusions
 In winter that walk back home must have been hell.
 This faithful rig has been served to ground-run engines.
Error Analysis

Problematic areas for all parsers

- **Coordination**

 The pistol had been a prop in the film in which my father had starred and after filming was over he forgot to return it.

- **Adverbs**

 Incidentally Ciccolini also plays several works for piano 4 hands

- **Noun/verb confusions**

 In winter that walk back home must have been hell.

 This faithful rig has been served to ground-run engines.
Error Analysis

Problematic areas for all parsers

► Coordination

The pistol had been a prop in the film in which my father had starred and after filming was over he forgot to return it.

► Adverbs

Incidentally Ciccolini also plays several works for piano 4 hands

► Noun/verb confusions

In winter that walk back home must have been hell.

This faithful rig has been served to ground-run engines.
Error Analysis

Problematic areas for all parsers

- **Coordination**

 The pistol had been a prop in the film in which my father had starred and after filming was over he forgot to return it.

- **Adverbs**

 Incidentally Ciccolini also plays several works for piano 4 hands

- **Noun/verb confusions**

 In winter that walk back home must have been hell.

 This faithful rig has been served to ground-run engines.
Error Analysis

More problematic areas

- **Fragments**

 Moles burrowing away underground out of sight of each other but with a common purpose.

- **Parentheticals**

 ...but and here’s the rub-a-dub, it was at least three pits further out.

Self-training on BNC data gives modest improvements in most areas
Error Analysis

More problematic areas

- **Fragments**

 Moles burrowing away underground out of sight of each other but with a common purpose.

- **Parentheticals**

 ...but and here’s the rub-a-dub, it was at least three pits further out.

Self-training on BNC data gives modest improvements in most areas
Error Analysis

More problematic areas

- **Fragments**

 Moles burrowing away underground out of sight of each other but with a common purpose.

- **Parentheticals**

 …*but and here’s the rub-a-dub*, it was at least three pits further out.

Self-training on BNC data gives modest improvements in most areas.
Error Analysis

More problematic areas

- **Fragments**

 Moles burrowing away underground out of sight of each other but with a common purpose.

- **Parentheticals**

 ...but *and here’s the rub-a-dub*, it was at least three pits further out.

Self-training on BNC data gives modest improvements in most areas
Concluding remarks

Future Work

► More detailed error analysis
 ► Behaviour of Leaf Ancestor metric
 ► Difference between Berkeley and Charniak parser
 ► Difference between BNC Test Set and WSJ23
► Annotation of traces and functional tags

Another parsing test set for English - 1,000 BNC sentences
Available at http://nclt.computing.dcu.ie/~jfoster/resources

Thank you for listening
Concluding remarks

Future Work

- More detailed error analysis
 - Behaviour of Leaf Ancestor metric
 - Difference between Berkeley and Charniak parser
 - Difference between BNC Test Set and WSJ23
- Annotation of traces and functional tags

Another parsing test set for English - 1,000 BNC sentences
Available at
http://nclt.computing.dcu.ie/~jfoster/resources

Thank you for listening
Concluding remarks

Future Work

- More detailed error analysis
 - Behaviour of Leaf Ancestor metric
 - Difference between Berkeley and Charniak parser
 - Difference between BNC Test Set and WSJ23
- Annotation of traces and functional tags

Another parsing test set for English - 1,000 BNC sentences
Available at http://nclt.computing.dcu.ie/~jfoster/resources

Thank you for listening

Grzegorz Chrupala, Nicolas Stroppa, Josef van Genabith, and Georgiana Dinu.
2007.
Better training for function labeling.

Jennifer Foster, Joachim Wagner, Djamé Seddah, and Josef van Genabith.
2007.
Adapting wsj-trained parsers to the british national corpus using in-domain self-training.
In *Proceedings of the Tenth International Workshop on Parsing Technologies (IWPT-07)*, pages 33–35, Prague, Czech Republic.

David McClosky, Eugene Charniak, and Mark Johnson.
2006.
Reranking and self-training for parser adaptation.

Geoffrey Sampson and Anna Babarczy.
2002.
A test of the leaf-ancestor metric for parse accuracy.
In John Carroll, Anette Frank, Dekang Lin, Detlef Prescher, and Hans Uszkoreit, editors, *Proceedings of the “Beyond Parseval - Towards Improved Evaluation Measures for Parsing Systems”*.
Workshop at the 3rd International Conference on Linguistic Resources and Evaluation (LREC), Las Palmas, Gran Canaria.