Evaluating a German Sketch Grammar:
A Case Study on Noun Phrase Case

Kremena Ivanova*, Ulrich Heid*, Sabine Schulte im Walde*,
Adam Kilgarriff○, Jan Pomikálek○▷

*Institute for Natural Language Processing, University of Stuttgart, Germany
○Lexical Computing Ltd, Brighton, UK
▷Masaryk University, Brno, Czech Republic

{ivanovka, heid, schulte}@ims.uni-stuttgart.de,
adam@lexmasterclass.com, xpomikal@fi.muni.cz

Marrakech, Morocco, May 28, 2008
The Sketch Engine (Kilgarriff et al. 2004)
A system for corpus exploration

• Input: preprocessed corpora, e.g. tokenized, POS-tagged, lemmatized, ...

• Functions:
 – concordancing
 – collocation extraction with a sketch grammar, i.e. a set of regular expression search patterns over the corpus

• Output: Word sketches
 Sets of significant word pairs, grouped by grammatical relations, e.g. adjective + noun, verb + subject noun, coordinated elements, etc.
The Sketch Engine (Kilgarriff et al. 2004)
A system for corpus exploration

- Input: preprocessed corpora, e.g. tokenized, POS-tagged, lemmatized, ...
- Functions:
 - concordancing
 - collocation extraction with a *sketch grammar*, i.e.
 a set of regular expression search patterns over the corpus
The Sketch Engine (Kilgarriff et al. 2004)
A system for corpus exploration

- Input: preprocessed corpora, e.g. tokenized, POS-tagged, lemmatized, ...

- Functions:
 - concordancing
 - collocation extraction with a sketch grammar, i.e. a set of regular expression search patterns over the corpus

- Output: Word sketches
 Sets of significant word pairs, grouped by grammatical relations, e.g. adjective + noun, verb + subject noun, coordinated elements, etc.
The Sketch Engine – word sketches
A sample word sketch: collection of cooccurrence data

Node word + ‘collocates’:
Word sketch for verb *öffnen* ‘open’:
Lemma of cooccurrence partner – frequency (in BNC) – significance

<table>
<thead>
<tr>
<th>subj</th>
<th>subj</th>
<th>3017</th>
<th>5.1</th>
<th>obj-acc</th>
<th>282</th>
<th>5.9</th>
<th>adv</th>
<th>140</th>
<th>5.2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tür</td>
<td>subj</td>
<td>238</td>
<td>49.37</td>
<td>Tür</td>
<td>39</td>
<td>36.24</td>
<td>täglich</td>
<td>12</td>
<td>22.68</td>
</tr>
<tr>
<td>Pforte</td>
<td>Pforte</td>
<td>35</td>
<td>35.20</td>
<td>Auge</td>
<td>26</td>
<td>26.67</td>
<td>versehentlich</td>
<td>3</td>
<td>16.92</td>
</tr>
<tr>
<td>Türe</td>
<td>Türe</td>
<td>29</td>
<td>33.78</td>
<td>Pforte</td>
<td>7</td>
<td>22.71</td>
<td>leicht</td>
<td>6</td>
<td>13.89</td>
</tr>
<tr>
<td>Tor</td>
<td>Tor</td>
<td>62</td>
<td>32.34</td>
<td>Wohnungstür</td>
<td>3</td>
<td>21.61</td>
<td>weit</td>
<td>13</td>
<td>13.61</td>
</tr>
<tr>
<td>Auge</td>
<td>Auge</td>
<td>114</td>
<td>32.29</td>
<td>Türe</td>
<td>5</td>
<td>19.38</td>
<td>gleichzeitig</td>
<td>4</td>
<td>12.37</td>
</tr>
<tr>
<td>Fenster</td>
<td>Fenster</td>
<td>49</td>
<td>28.69</td>
<td>Datei</td>
<td>4</td>
<td>12.23</td>
<td>automatisch</td>
<td>3</td>
<td>11.42</td>
</tr>
<tr>
<td>Schleuse</td>
<td>Schleuse</td>
<td>10</td>
<td>23.27</td>
<td>Tor</td>
<td>4</td>
<td>11.7</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Source: *DeWaC*, 10 million words
Sketch Grammars

Regular expression-based: sequence patterns

Example:

• Adjective + Noun combination:
 2:[tag="ADJA"] 1:[tag="NN"]

– finds sequences adjective + noun
– counts frequency, calculates significance
– allows for display of pair in list of adjective collocates of a given noun (1:...), e.g.

 klein
 'small'
 274
 37.68

• Modified nouns

 Ausschnitt
 'extract'
 188
 37.49

 Junge
 'boy'
 325
 33.91

 Dorf
 'village'
 274
 32.80

 Meerjungfrau
 'mermaid'
 46
 31.19

Simple model of a noun phrase as a POS sequence:

DET? ADV* ADJA* NOUN

Ivanova et al. (LREC 2008)
Sketch Grammars
Regular expression-based: sequence patterns

Example: POS sequences

- Adjective + Noun combination: 2:[tag="ADJA"] 1:[tag=NN]
Sketch Grammars
Regular expression-based: sequence patterns

Example: POS sequences

- Adjective + Noun combination: `2:[tag="ADJA"] 1:[tag=NN"]`
 - finds sequences adjective + noun
Sketch Grammars
Regular expression-based: sequence patterns

Example: POS sequences

- Adjective + Noun combination: 2: [tag="ADJA"] 1: [tag=NN]
 - finds sequences adjective + noun
 - counts frequency, calculates significance
Sketch Grammars
Regular expression-based: sequence patterns

Example: POS sequences

- Adjective + Noun combination: 2:[tag="ADJA"] 1:[tag=NN]
 - finds sequences adjective + noun
 - counts frequency, calculates significance
 - allows for display of pair in

* list of adjective collocates of a given noun (1:...), e.g. *Dorf*

<table>
<thead>
<tr>
<th>Modifying adjectives</th>
<th>Freq</th>
<th>Sign</th>
</tr>
</thead>
<tbody>
<tr>
<td>klein</td>
<td>274</td>
<td>37.68</td>
</tr>
<tr>
<td>umliegend</td>
<td>39</td>
<td>37.30</td>
</tr>
<tr>
<td>malerisch</td>
<td>20</td>
<td>28.96</td>
</tr>
<tr>
<td>entlegen</td>
<td>16</td>
<td>28.58</td>
</tr>
</tbody>
</table>
Sketch Grammars
Regular expression-based: sequence patterns

Example: POS sequences

- Adjective + Noun combination: $2: [\text{tag="ADJA"}]$ $1: [\text{tag=NN}]$
 - finds sequences adjective + noun
 - counts frequency, calculates significance
 - allows for display of pair in

* list of adjective collocates of a given noun (1:...), e.g. *Dorf*

<table>
<thead>
<tr>
<th>Modifying adjectives</th>
<th>Freq</th>
<th>Sign</th>
</tr>
</thead>
<tbody>
<tr>
<td>klein ‘small’</td>
<td>274</td>
<td>37.68</td>
</tr>
<tr>
<td>umliegend ‘surrounding’</td>
<td>39</td>
<td>37.30</td>
</tr>
<tr>
<td>malerisch ‘picturesque’</td>
<td>20</td>
<td>28.96</td>
</tr>
<tr>
<td>entlegen ‘remote’</td>
<td>16</td>
<td>28.58</td>
</tr>
</tbody>
</table>

* list of noun nodes of a given adjective (2:...), e.g. *klein*

<table>
<thead>
<tr>
<th>Modified nouns</th>
<th>Freq</th>
<th>Sign</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ausschnitt ‘extract’</td>
<td>188</td>
<td>37.49</td>
</tr>
<tr>
<td>Junge ‘boy’</td>
<td>325</td>
<td>33.91</td>
</tr>
<tr>
<td>Dorf ‘village’</td>
<td>274</td>
<td>32.80</td>
</tr>
<tr>
<td>Meerjungfrau ‘mermaid’</td>
<td>46</td>
<td>31.19</td>
</tr>
</tbody>
</table>
Sketch Grammars
Regular expression-based: sequence patterns

Example: POS sequences

- Adjective + Noun combination: \[2: \text{[tag="ADJA"]} \ 1: \text{[tag=NN"\]}\]
 - finds sequences adjective + noun
 - counts frequency, calculates significance
 - allows for display of pair in

 * list of adjective collocates of a given noun (1: ...), e.g. Dorf

<table>
<thead>
<tr>
<th>Modifying adjectives</th>
<th>Freq</th>
<th>Sign</th>
</tr>
</thead>
<tbody>
<tr>
<td>klein</td>
<td>274</td>
<td>37.68</td>
</tr>
<tr>
<td>umliegend</td>
<td>39</td>
<td>37.30</td>
</tr>
<tr>
<td>malerisch</td>
<td>20</td>
<td>28.96</td>
</tr>
<tr>
<td>entlegen</td>
<td>16</td>
<td>28.58</td>
</tr>
</tbody>
</table>

 * list of noun nodes of a given adjective (2: ...), e.g. klein

<table>
<thead>
<tr>
<th>Modified nouns</th>
<th>Freq</th>
<th>Sign</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ausschnitt</td>
<td>188</td>
<td>37.49</td>
</tr>
<tr>
<td>Junge</td>
<td>325</td>
<td>33.91</td>
</tr>
<tr>
<td>Dorf</td>
<td>274</td>
<td>32.80</td>
</tr>
<tr>
<td>Meerjungfrau</td>
<td>46</td>
<td>31.19</td>
</tr>
</tbody>
</table>

- Simple model of a noun phrase as a POS sequence:
 DET? ADV* ADJA* NOUN
Sketch Grammars
Identifying grammatical relations, e.g. verb + object noun
Sketch Grammars
Identifying grammatical relations, e.g. verb + object noun

• EN (configurational): by position wrt the verb:
 Subject < Verb < Object
 (Kilgarriff et al. 2004)
Sketch Grammars
Identifying grammatical relations, e.g. verb + object noun

- EN (configurational): by position wrt the verb: Subject < Verb < Object (Kilgarriff et al. 2004)
- CHI: by position and particles (Kilgarriff 2005)

- CZ, SLO (inflecting): by inflectional affixes:
 - SLO l´ epa h ´ ıˇ sa (NOM-SG)
 - l´ epi h ´ ıˇ si (DAT-SG | LOC-SG (+ Prep.) (Kilgarriff et al. 2004, Krek/Kilgarriff 2006)

Ivanova et al. (LREC 2008) German Sketch Grammar
Sketch Grammars
Identifying grammatical relations, e.g. verb + object noun

- EN (configurational): by position wrt the verb: Subject < Verb < Object
 (Kilgarriff et al. 2004)
- CHI: by position and particles
 (Kilgarriff 2005)
- CZ, SLO (inflecting): by inflectional affixes:
 SLO lépa híša (“beautiful house”): NOM-SG
 lépi híši: DAT-SG | LOC-SG (+ Prep.)
 (Kilgarriff et al. 2004, Krek/Kilgarriff 2006)
Sketch Grammars
Identifying grammatical relations in German texts

• not via word order:
 den Mitarbeiter Acc
 lobt der Chef Nom
 ("the boss speaks highly of the collaborator")

• not often via inflection:
 Hans Nom/Acc
 lobt Maria Nom/Acc
 weil der Chef Acc
der Firma Gen/Dat
 in Berlin PP
 empfahl, . . . zu . . .

Only ca. 21% of all NPs are unambiguous wrt case (Evert 2004)

⇒ harder than in other languages
Sketch Grammars
Identifying grammatical relations in German texts

- not via word order:

 \[\text{den Mitarbeiter}_{\text{Acc}} \text{ lobt der Chef}_{\text{Nom}} \]

 ("the boss speaks highly of the collaborator")

 Constituent order is relatively free in German
Sketch Grammars
Identifying grammatical relations in German texts

- not via word order:
 \(\text{den Mitarbeiter}_{\text{Acc}} \text{ lobt der Chef}_{\text{Nom}}\)
 ("the boss speaks highly of the collaborator")
 Constituent order is relatively free in German

- not often via inflection:
 \(\text{Hans}_{\text{Nom/Acc}} \text{ lobt Maria}_{\text{Nom/Acc}}\)
 \(\text{weil der Chef}_{\text{Acc}} \text{ der Firma}_{\text{Gen/Dat}} \text{ in Berlin}_{\text{PP}} \text{ empfahl, } \ldots \text{zu } \ldots\)
 Only ca. 21% of all NPs are unambiguous wrt case (Evert 2004)
Sketch Grammars
Identifying grammatical relations in German texts

- not via word order:
 \[\text{den Mitarbeiter} \text{Acc} \text{ lobt der Chef} \text{Nom} \]
 (“the boss speaks highly of the collaborator”)
 Constituent order is relatively free in German

- not often via inflection:
 \[\text{Hans} \text{Nom/Acc} \text{ lobt Maria} \text{Nom/Acc} \]
 \[\text{weil der Chef} \text{Acc} \text{ der Firma} \text{Gen/Dat in Berlin} \text{PP empfahl, ... zu ...} \]
 Only ca. 21% of all NPs are unambiguous wrt case (Evert 2004)

⇒ harder than in other languages
A Sketch Grammar for German
Knowledge for the identification of grammatical relations

1 \{gender, number, case\} of nouns \leftrightarrow inflectional affixes
A Sketch Grammar for German
Knowledge for the identification of grammatical relations

1. \{gender, number, case\} of nouns \leftrightarrow inflectional affixes
2. Preferential constituent ordering:
 verb-final constituent order model is more regular than others
A Sketch Grammar for German
Knowledge for the identification of grammatical relations

1. \{gender, number, case\} of nouns \leftrightarrow inflectional affixes
2. Preferential constituent ordering:
 verb-final constituent order model is more regular than others
3. Constraints on subcategorization patterns, e.g.
 ‘No two identical grammatical functions in one sentence’
 (cf. ‘coherence’ in LFG)
A Sketch Grammar for German
Proportion between preprocessing (offline) and query (online)

1. Gender, number, case:
 not annotated: STTS: "NN" (UPenn: "NNS" – "NNP")
 → Need to identify these within the sketch grammar

2. Preferential constituent ordering under V-final:
 → Search in a subset of the corpus sentences

3. Constraints on subcategorization patterns:
 → Implementation as patterns in the sketch grammar
A Sketch Grammar for German
Proportion between preprocessing (offline) and query (online)

1. Gender, number, case: not annotated: STTS: "NN" (UPenn: "NNS" – "NNP") → Need to identify these within the sketch grammar

2. Preferential constituent ordering under V-final: → Search in a subset of the corpus sentences

3. Constraints on subcategorization patterns: → Implementation as patterns in the sketch grammar

⇒ To assess usefulness of these types of information: Different versions of the sketch grammar which include the different types of information
A Sketch Grammar for German
Versions of the grammar with different types of information (1/2)
Conditions for the evaluation

Morphological restrictions: alternatives
Morphological restrictions: alternatives

- **inflection:**
 case guessing from the form of affixes (affix sequences)

 \[
 \text{dem}_{\text{Dat}} \ \text{kleine}_n_{\text{Dat}} \ \text{Haus}_{\text{Nom/Dat/Acc}}
 \]
Morphological restrictions: alternatives

- **inflection:**
 case guessing from the form of affixes (affix sequences)
 \[dem_{Dat} \textit{kleine}n_{Dat} \textit{Haus}_{Nom/Dat/Acc}\]

- **affix-gender:**
 case and gender guessing
 from derivational affixes and inflectional affixes
 \[den_{ACC-SG-MASC/DAT-PL-FEM} \textit{Schwierigkeiten}_{ANY-PL-FEM}\]
 \[\Rightarrow\] subset of nouns with known agreement properties
A Sketch Grammar for German

Versions of the grammar with different types of information (2/2)

Conditions for the evaluation

Structural restrictions: alternatives
A Sketch Grammar for German

Versions of the grammar with different types of information (2/2)

Conditions for the evaluation

Structural restrictions: alternatives

- no-structure(-constraints):
 extraction without any structural constraints
A Sketch Grammar for German
Versions of the grammar with different types of information (2/2)
Conditions for the evaluation

Structural restrictions: alternatives

- **no-structure(-constraints):**
 extraction without any structural constraints

- **verb-final:**
 extraction only from verb-final sentences (≡ subclauses),
 according to constraints on subcategorization patterns
A Sketch Grammar for German
Versions of the grammar with different types of information (2/2)
Conditions for the evaluation

Structural restrictions: alternatives

- **no-structure(-constraints):**
 extraction without any structural constraints

- **verb-final:**
 extraction only from verb-final sentences (= subclauses),
 according to constraints on subcategorization patterns

- **all-clauses:**
 extraction from an explicit model of all verb position models
 (V1, V2, Vlast), according to subcategorization patterns
Evaluation: comparing versions of the Sketch Grammar
Combining the restrictions

<table>
<thead>
<tr>
<th>no affix-gender</th>
<th>no structure</th>
<th>verb-final (R)</th>
<th>all-clauses (R)</th>
</tr>
</thead>
</table>

inflection = minimum knowledge

(1) inflection + no-structure
(2) inflection + affix-gender + no-structure
(3) inflection + verb-final
(4) inflection + affix-gender + verb-final
(5) inflection + all-clauses
(6) inflection + affix-gender + all-clauses

- fewest restrictions (R)
- structural restrictions (R)
- most restr. (R)
Evaluation: comparing versions of the Sketch Grammar

Gold standard corpus

- 1000 randomly selected sentences from DeWaC

Example:

Ich musste meine Arbeit schon sehr gut machen, um anerkannt zu werden. 'I had to do my work really well to be approved.'
Evaluation: comparing versions of the Sketch Grammar
Gold standard corpus

- 1000 randomly selected sentences from DeWaC
- Manual annotation for NP (one annotator):
 - start and end point
 - case
- Example:
 \[
 [Ich]_{NP_{nom}} \text{ musste } [meine Arbeit]_{NP_{akk}} \text{ schon sehr gut machen, um anerkannt zu werden .}
 \]
 ‘I had to do my work really well to be approved.’
Evaluation: comparing versions of the Sketch Grammar
Gold standard corpus

• 1000 randomly selected sentences from DeWaC
• Manual annotation for NP (one annotator):
 – start and end point
 – case
• Example:
 \[Ich\]_{NP_{nom}} musste [meine Arbeit]_{NP_{akk}} schon sehr gut machen, um anerkannt zu werden.
 ‘I had to do my work really well to be approved.’
• Figures: NPs in the 1000 sentences

<table>
<thead>
<tr>
<th>Case</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nominative</td>
<td>1,709</td>
</tr>
<tr>
<td>Genitive</td>
<td>437</td>
</tr>
<tr>
<td>Dative</td>
<td>149</td>
</tr>
<tr>
<td>Accusative</td>
<td>618</td>
</tr>
</tbody>
</table>
Evaluation: comparing versions of the Sketch Grammar
Results: recall and precision

Evaluated per case and per condition:
Exception: Genitive not implemented under conditions 3 + 4:
No verb with genitive object in the corpus, we only consider genitives in NPs

<table>
<thead>
<tr>
<th>Case</th>
<th>N</th>
<th>Conditions incl. inflection</th>
<th>Conditions incl. inflection + affix-gender</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>R</td>
<td>P</td>
</tr>
<tr>
<td>Nominative</td>
<td>1,709</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Accusative</td>
<td>618</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dative</td>
<td>149</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Genitive</td>
<td>437</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Ivanova et al. (LREC 2008) German Sketch Grammar 5/28/2008
Evaluation: comparing versions of the Sketch Grammar
Recall vs. precision

<table>
<thead>
<tr>
<th>Case</th>
<th>N</th>
<th>incl. inflection</th>
<th>Conditions</th>
<th>incl. inflection + affix-gender</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>incl.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>R</td>
<td>P</td>
<td>R</td>
</tr>
<tr>
<td>Nominative</td>
<td>1,709</td>
<td>85</td>
<td>28</td>
<td>7</td>
</tr>
<tr>
<td>Accusative</td>
<td>618</td>
<td>64</td>
<td>24</td>
<td>6</td>
</tr>
<tr>
<td>Dative</td>
<td>149</td>
<td>62</td>
<td>9</td>
<td>21</td>
</tr>
<tr>
<td>Genitive</td>
<td>437</td>
<td>78</td>
<td>34</td>
<td>65</td>
</tr>
</tbody>
</table>
Evaluation: comparing versions of the Sketch Grammar
Recall vs. precision

<table>
<thead>
<tr>
<th>Case</th>
<th>N</th>
<th>Conditions incl. inflection</th>
<th>Conditions incl. inflection + affix-gender</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>R</td>
<td>P</td>
</tr>
<tr>
<td>Nominative</td>
<td>1,709</td>
<td>85</td>
<td>28</td>
</tr>
<tr>
<td>Accusative</td>
<td>618</td>
<td>64</td>
<td>24</td>
</tr>
<tr>
<td>Dative</td>
<td>149</td>
<td>62</td>
<td>9</td>
</tr>
<tr>
<td>Genitive</td>
<td>437</td>
<td>78</td>
<td>34</td>
</tr>
</tbody>
</table>

- Condition 1 vs. condition 2: ⊕ precision ⊖ recall
 Adding derivation-based gender-guessing
Evaluation: comparing versions of the Sketch Grammar
Recall vs. precision

<table>
<thead>
<tr>
<th>Case</th>
<th>N</th>
<th>Conditions</th>
<th>incl. inflection</th>
<th>incl. inflection + affix-gender</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>R</td>
<td>P</td>
</tr>
<tr>
<td>Nominative</td>
<td>1,709</td>
<td></td>
<td>85</td>
<td>28</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>43</td>
<td>53</td>
</tr>
<tr>
<td>Accusative</td>
<td>618</td>
<td></td>
<td>64</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>51</td>
<td>30</td>
</tr>
<tr>
<td>Dative</td>
<td>149</td>
<td></td>
<td>62</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>55</td>
<td>13</td>
</tr>
<tr>
<td>Genitive</td>
<td>437</td>
<td></td>
<td>78</td>
<td>34</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>60</td>
<td>82</td>
</tr>
</tbody>
</table>

- Condition 1 vs. condition 2: \oplus precision \ominus recall
 Adding derivation-based gender-guessing
- Condition 1 vs. 3, 2 vs. 4: \oplus precision \ominus recall
 Verb-final clauses: ca. 20% of all corpus sentences
 Stronger changes than in condition 1 vs. 2
Evaluation: comparing versions of the Sketch Grammar
Recall vs. precision

<table>
<thead>
<tr>
<th>Case</th>
<th>N</th>
<th>incl. inflection</th>
<th>incl. inflection + affix-gender</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>R</td>
<td>P</td>
<td>R</td>
</tr>
</tbody>
</table>
| Nominative| 1,709| 85 | 28 | 7 | 76 | 26 | 65 | 43 | 53 | 9 | 81 | 28 | 60
| Accusative| 618 | 64 | 24 | 6 | 37 | 18 | 41 | 51 | 30 | 6 | 35 | 14 | 45
| Dative | 149 | 62 | 9 | 21 | 34 | 41 | 35 | 55 | 13 | 25 | 59 | 40 | 74
| Genitive | 437 | 78 | 34 | 65 | 79 | 57 | 44 | 60 | 82 |

- Condition 1 vs. condition 2: \oplus precision \ominus recall
 Adding derivation-based gender-guessing

- Condition 1 vs. 3, 2 vs. 4: \oplus precision \ominus recall
 Verb-final clauses: ca. 20% of all corpus sentences
 Stronger changes than in condition 1 vs. 2

- Cond. 4 vs. 6: better precision (!) and increased recall
 - recall: all-clauses is less restrictive than verb-final
 - precision: usefulness of explicit modelling?
Evaluation: comparing versions of the Sketch Grammar

Which German sketch grammar to choose?

So far: developer evaluation:

<table>
<thead>
<tr>
<th>Case</th>
<th>N</th>
<th>Conditions incl. inflection</th>
<th>Conditions incl. inflection + affix-gender</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>R</td>
<td>P</td>
<td>R</td>
<td>P</td>
</tr>
<tr>
<td>Nominative</td>
<td>1,709</td>
<td>85</td>
<td>28</td>
</tr>
<tr>
<td>Accusative</td>
<td>618</td>
<td>64</td>
<td>24</td>
</tr>
<tr>
<td>Dative</td>
<td>149</td>
<td>62</td>
<td>9</td>
</tr>
<tr>
<td>Genitive</td>
<td>437</td>
<td>78</td>
<td>34</td>
</tr>
</tbody>
</table>

- Best recall: condition 1: least constrained
- Best precision: condition 6: morph. + structural constraints
Evaluation: comparing versions of the Sketch Grammar
Which German sketch grammar to choose?

So far: developer evaluation:

<table>
<thead>
<tr>
<th>Case</th>
<th>N</th>
<th>Conditions incl. inflection</th>
<th>Conditions incl. inflection + affix-gender</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>R</td>
<td>P</td>
</tr>
<tr>
<td>Nominative</td>
<td>1,709</td>
<td>85</td>
<td>28</td>
</tr>
<tr>
<td>Accusative</td>
<td>618</td>
<td>64</td>
<td>24</td>
</tr>
<tr>
<td>Dative</td>
<td>149</td>
<td>62</td>
<td>9</td>
</tr>
<tr>
<td>Genitive</td>
<td>437</td>
<td>78</td>
<td>34</td>
</tr>
</tbody>
</table>

- Best recall: condition 1: least constrained
- Best precision: condition 6: morph. + structural constraints

User evaluation: “Clients” would have to decide (ongoing work)

- Lexicographers: need high-precision data (→ condition 6)
- NLP researchers: may prefer large amounts of candidates (→ cond. 1)

But: decision to be taken on Word Sketches, not on precision/recall
Word sketch for noun *Pflanze* ‘plant’

<table>
<thead>
<tr>
<th>attr-adj</th>
<th>1566</th>
<th>2.0</th>
<th>subj-of</th>
<th>905</th>
<th>2.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>gentechnisch</td>
<td>94</td>
<td>47.14</td>
<td>wachsen</td>
<td>26</td>
<td>24.45</td>
</tr>
<tr>
<td>verändert</td>
<td>100</td>
<td>42.3</td>
<td>gedeihen</td>
<td>6</td>
<td>18.46</td>
</tr>
<tr>
<td>genmanipuliert</td>
<td>30</td>
<td>39.44</td>
<td>anbauen</td>
<td>5</td>
<td>18.30</td>
</tr>
<tr>
<td>fleischfressend</td>
<td>16</td>
<td>35.93</td>
<td>werden</td>
<td>73</td>
<td>15.91</td>
</tr>
<tr>
<td>transgenen</td>
<td>16</td>
<td>34.59</td>
<td>können</td>
<td>44</td>
<td>15.15</td>
</tr>
<tr>
<td>exotisch</td>
<td>24</td>
<td>30.00</td>
<td>sollen</td>
<td>30</td>
<td>15.03</td>
</tr>
<tr>
<td>transgener</td>
<td>8</td>
<td>28.45</td>
<td>gießen</td>
<td>4</td>
<td>14.52</td>
</tr>
</tbody>
</table>
Beyond the current state

We have presented

- a methodology for testing and evaluating (sketch) grammars for data extraction from corpora: applicable also to other languages
- a draft sketch grammar for German with different types and portions of linguistic knowledge

Ivanova et al. (LREC 2008)
Beyond the current state

We have presented

- a methodology for testing and evaluating (sketch) grammars for data extraction from corpora: applicable also to other languages
- a draft sketch grammar for German with different types and portions of linguistic knowledge

Next
Beyond the current state

We have presented

- a methodology for testing and evaluating (sketch) grammars for data extraction from corpora: applicable also to other languages
- a draft sketch grammar for German with different types and portions of linguistic knowledge

Next

- further restrict the grammar, to improve precision, with a view to lexicographic use
Beyond the current state

We have presented

- a methodology for testing and evaluating (sketch) grammars for data extraction from corpora: applicable also to other languages
- a draft sketch grammar for German with different types and portions of linguistic knowledge

Next

- further restrict the grammar, to improve precision, with a view to lexicographic use
- integrate lexical resources (e.g. on noun gender), to improve precision and to compensate for flat tagset
Beyond the current state

We have presented

- a methodology for testing and evaluating (sketch) grammars for data extraction from corpora: applicable also to other languages
- a draft sketch grammar for German with different types and portions of linguistic knowledge

Next

- further restrict the grammar, to improve precision, with a view to lexicographic use
- integrate lexical resources (e.g. on noun gender), to improve precision and to compensate for flat tagset
- possibly use more deeply preprocessed data
Beyond the current state

We have presented

- a methodology for testing and evaluating (sketch) grammars for data extraction from corpora: applicable also to other languages
- a draft sketch grammar for German with different types and portions of linguistic knowledge

Next

- further restrict the grammar, to improve precision, with a view to lexicographic use
- integrate lexical resources (e.g. on noun gender), to improve precision and to compensate for flat tagset
- possibly use more deeply preprocessed data
- evaluate quality of word sketches from a lexicographic viewpoint