Robust Parsing with a Large HPSG Grammar

Yi Zhang Valia Kordoni

Language Technology Lab
German Research Center for Artificial Intelligence, Germany

Department of Computational Linguistics
Saarland University, Germany

LREC 2008
Outline

1. Background

2. A Two-Stage Robust Parsing Algorithm

3. Summary
Outline

1 Background

2 A Two-Stage Robust Parsing Algorithm

3 Summary
Parsinng with Rule-based Precision Grammars

- Precise description with strong linguistic motivation and high generalization
- Usually lacks of robust processing mechanism due to unpredictable noise in real world texts

Question

- How to define and extract partial analysis when not all constraints in the grammar are satisfied?
Previous Work

With bottom-up chart-based parsing, partial parse as a set of non-overlapping adjacent passive passing edges that covers the entire input sequence:

- Longest-edge approach: prefer larger fragment analysis
- Shortest-path approach [Kasper et al., 1999]: (heuristically) weighted fragment analyses
- Statistical partial parse selection model [Zhang et al., 2007a]: more elaborated (approximate) disambiguation models for partial parses
Remaining Issues

- Upper-part of the derivation tree is missing
- Disambiguation models have more than one components, and are hard to train
Outline

1. Background
2. A Two-Stage Robust Parsing Algorithm
3. Summary
A Two-Stage Model

1. HPSG grammar is used to build bottom-up local analyses
2. A CFG backbone grammar extracted from HPSG treebank (LOGON) is used to continue parsing with the passive edges built by HPSG

- Results are complete (pseudo-) derivation trees
- The CFG backbone grammar is generally more relaxed and allows robust construction
An Example

the Lakers wins
An Example
An Example

```
subjh
  hspec
    det_the_le
      the
    plur_noun
      Lakers
  third_sg_fin_verb
    u_unerg_le
      wins
```
Implementation Issues

The two-stage parsing model is implemented as extension to the PET parser, and experimented with ERG

- Disambiguation model
- Efficiency Concerns
- Semantic Composition
Disambiguation model

- Most of the features used in [Toutanova et al., 2002]'s model can be obtained from derivation tree (feature structures are not necessary)
- Strictly speaking, the model is approximate, for the difference in tree language (T) of CFG and HPSG.
- Practically, the approximation largely simplified the training process, and the same disambiguation model is used for both full and partial parse disambiguation.

\[
P(t|w) = \frac{\exp \sum_{j=1}^{n} \lambda_j f_j(t, w)}{\sum_{t' \in T} \exp \sum_{j=1}^{n} \lambda_j f_j(t', w)}
\]
Efficiency Concerns

- Packing is used to reduce local structural ambiguity
 - Subsumption-based packing for Stage I (HPSG parsing)
 - Equivalence-based packing for Stage II (CFG parsing)
- Selective unpacking [Zhang et al., 2007b] is invoked to extract best partial readings from pseudo-parse forest
Robust Semantic Composition

- CFG rules can be paired with semantic composition rules
- Can provide informative partial description of semantics in the framework of RMRS
Evaluation

- Manually evaluated a subset of sentences from PARC 700 Dependency Bank with full lexical span in ERG
- 213 parsed by ERG out-of-the-box
- Pseudo-derivation trees are built for 41 out of 54 sentences without full parse
- 13 with no cross-bracketing; 18 with ≤ 2 cross-bracketings
- Many errors are related to missing lexical entries
Outline

1. Background
2. A Two-Stage Robust Parsing Algorithm
3. Summary
Summary

- A two-stage parsing algorithm is proposed to achieve robust parsing.
- Partial parse as pseudo-derivation tree is more informative than a set of passive parsing edges.
- The model can be generalized to use other less restrictive grammar in the second stage.
- Robust semantic composition is possible.
For Further Reading I

