LREC 2008 Marrakech, Morocco 28th May 2008

Some Fine Points of Hybrid Natural Language Processing

Peter Adolphs, DFKI GmbH, Language Technology Lab, Berlin

Stephan Oepen, Universitetet i Oslo, Department of Informatics Ulrich Callmeier, acrolinx GmbH, Berlin Berthold Crysmann, Universität Bonn Dan Flickinger, Stanford University, CSLI Bernd Kiefer, DFKI GmbH, Language Technology Lab, Saarbrücken

Motivation

- hybrid processing, integrating annotations of 'shallow' tools into HPSG parsing
- different tools make different assumptions
- example: PTB-style tokenizers for English
 - e.g.: Don't you! \rightarrow <do, n't, you, !>
 - contracted verb forms are split
 - punctuation is split off the preceding word form
- we need to adapt annotations of different tools to the requirements of our grammar
- goal: a declarative, expressive, scalable device

Token Feature Structures

- feature structures for describing tokens
- different annotations provided as feature structures
- lattice of structured categories (token feature structures) as input to the parser

Generalized Chart

- tools may assume different tokenization (paradigm case: input from speech recognizers)
- chart: dag whose vertices are abstract objects rather than indexed token boundary positions

- chart mapping: non-monotonic rewrite mechanism on feature structure chart edges
- general format:

[CONTEXT :] INPUT \rightarrow OUTPUT

- CONTEXT, INPUT, OUTPUT are sequences of feature structures (each possibly empty)
- resource-sensitive: chart edges that let a rule fire may be removed (namely, all INPUT edges)

Chart Mapping – Example

$$\begin{bmatrix} \mathsf{FORM} \ /^{(.+)} \ \text{$/$} \\ \mathsf{TO} \quad 1 \end{bmatrix}, \begin{bmatrix} \mathsf{FORM} \ \texttt{"n't"} \\ \mathsf{FROM} \quad 1 \end{bmatrix} \rightarrow \begin{bmatrix} \mathsf{FORM} \ / \ \texttt{1n't/} \end{bmatrix}$$

- example: recombining split contracted forms
- rules extended with regular expression matches
- regex capture groups can be referred to in the output
- rules themselves described as feature structures, thus we can use re-entrancies

Chart Mapping – Examples

light-weight named entity recognition

FORM /^([0-2]?[0-9]:[0-5][0-9])\$/]
$$\rightarrow \begin{bmatrix} FORM / 1/\\ CLASS \ clockTime \end{bmatrix}$$

fixing broken tokenization

 $\begin{bmatrix} \mathsf{FORM} / (.+:) ([a-zA-Z0-9].*) / \end{bmatrix} \rightarrow \begin{bmatrix} \mathsf{FORM} / 1 / \end{bmatrix}, \begin{bmatrix} \mathsf{FORM} / 2 / \end{bmatrix}$

Previous Architecture (Simplified)

- preprocessing has to provide the input chart as expected by the grammar
- this has to be ensured by specialized conversion routines without recourse to the grammar
- changes to the grammar have to be reflected in these data adaptation routines

Proposed Architecture (Simplified)

- proposal: token mapping performs certain preprocessing steps within the grammar
- advantages:
 - full control for the grammar writer, using the same formalism as for the grammar
 - makes assumptions by the grammar explicit
 - removes complexity from preprocessing

Hybrid Processing

- shaping the search space of the parser:
 - widening search
 space (e.g. unknown
 word handling)
 - narrowing search space (e.g. removing / postponing the processing of edges)

- constraints on the search space
 - hard: categorial conditions for introduction / removal of chart edges
 - soft: probabilistic disambiguation, prioritize parser's tasks on the agenda

Lexical Instantiation

- native and generic lexical entries (les)
- selection of appropriate generic lexical entries originally controlled by the parser (hard-coded)
- strategy:
 - map from part-of-speech tags to generic les
 - instantiate generic le for highest ranked pos tag where no native le is available
- disadvantage:
 - not flexible enough (e.g. no chain of responsibility)
 - partial lexical coverage: We'll bus to Paris.

Lexical Instantiation

- proposal: try to instantiate all generic les for all tokens
- token feature structure is unified into a predefined path in the lexical entry
- selection of compatible tokens by constraints on the token feature structure
- example:

```
genericname := \begin{bmatrix} SYNSEM & noun\_nocomp\_synsem, \\ LOCAL.CAT.HEAD.MINORS.MIN named\_rel, \\ TOKENS & \langle [POS.TAGS \langle NNP, ... \rangle ] \rangle \end{bmatrix}
```


Lexical Filtering

- after lexical instantiation, native and generic les may be available in the same chart cell
- we can restrict lexical instantiation by positing constraints on the token feature structures
- but we might also want to prevent some lexical chart edges in certain contexts (set operations)
- proposal: lexical filtering phase
- same formalism as for token mapping: chart mapping rules with empty OUTPUT list

Proposed Architecture

- use feature structures to describe tokens
- chart mapping: resourcesensitive rewriting of feature structure items
- chart mapping on token fs
- generic instantiation driven by compatibility with token fs
- lexical filtering with chart mapping

Applications

- fine grained control over instantiation of generic lexical entries
- mapping external morphological information into the grammar's universe
- chart dependency filter (optimizing parsing performance)
- activate syntactic rules only for certain spans of the input (e.g., in hybrid grammar checking)

Conclusions

- versatile device for many applications
- external information is made accessible to the grammar
- pre-processing can be better controlled with grammar-specific means
- reduces the need for special code inside and outside the parser
- outlook: consilidation of our current parsers and grammars

Thank you!

Acknowledgements

- DELPH-IN community and beyond, especially Nuria Bertomeu, Ann Copestake, Remy Sanouillet, Ulrich Schäfer and Benjamin Waldron for numerous in-depth discussions
- funding:
 - ProFIT program of the German federal state of Berlin and the EFRE program of the EU (to the DFKI project Checkpoint)
 - the University of Oslo (through its scientific partnership with CSLI)

