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* Introduction to Active Learning

« Stopping Conditions
 Experiments & Results
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 Pro: stopping condition directly based on classifier
performance

« Contra: requires labeled gold standard
> not applicable in practice as gold standard not available

« Goal:

- Estimate the (progression of) learning curve without need
for gold standard
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« Approach:

- Based on agreement among committee members
- Does not require extra labeling effort

- Agreement curve approximates progression of learning
curve

> We can tell relative position in annotation process from it:

» relative trade-off between annotation effort and gain
in classifier performance from it

- Steep slope ?
- Convergence ?
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Intuition:

- Agreement among committee:
 Low in early AL iterations

* High in later ones

> When agreement among committee members
converges, also learning curve does
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Approximating the
Learning Curve

« Where to calculate the agreement:

- On separate validation set

* Not be involved in AL selection process itself
« Agreement values comparable over different AL iteration

- Otherwise agreement curve often not reliable
approximation due to ,,simulation dilemma*“

« When e.qg. agreement calculated on examples selected in
each AL iteration:

- Approximation of learning curve usually works well in
simulation scenarios, because...

» few hard cases left in later AL iterations (perfect
agreement)

- But fails in real-world annotation scenarios, because...
» in practice AL will always find tricky cases... E
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« For annotation of Named Entity mentions

« Whole sentences selected (20 each round)
« Simulation on CoNLL-2003 corpus
- News-paper, MUC entities (PERS, LOC, ORG)
- AL pool: ~ 14,000 sentences
- Gold Standard: ~ 3,500 sentences

« For learning curve
 For agreement curve (labels ignored)
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« AL has high potential to reduce annotation effort

* Proper stopping point necessary to profit from savings
> Method to monitor progress of annotation needed
« Agreement curve

- Works well: good approximation of learning curve

- No extra annotation effort: does not require labeled gold
standard
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Thanks. Questions ?

http://www.julielab.de/
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