Approximating Learning Curves for Active-Learning-Driven Annotation

Katrin Tomanek and Udo Hahn

Jena University Language and Information Engineering (JULIE) Lab

Agenda

- Introduction to Active Learning
- Stopping Conditions
- Experiments & Results

Passive versus Active Selection

passive annotation scenario (aka Random Sampling)

Passive versus Active Selection

passive annotation scenario (aka Random Sampling)

active annotation scenario (aka Active Learning)

Committee-based AL Framework

Reduction of Annotation Effort

tokens

Reduction of Annotation Effort

tokens

tokens

Stopping Condition based on Learning Curve ?

- Pro: stopping condition directly based on classifier performance
- Contra: requires **labeled** gold standard
- not applicable in practice as gold standard not available
- Goal:
 - Estimate the (progression of) learning curve without need for gold standard

Approximating the Learning Curve

- Approach:
 - Based on agreement among committee members
 - Does not require extra labeling effort
 - Agreement curve approximates *progression* of learning curve
 - We can tell relative position in annotation process from it:
 - relative trade-off between annotation effort and gain in classifier performance from it
 - Steep slope ?
 - Convergence ?

Approximating the Learning Curve

- Intuition:
 - Agreement among committee:
 - Low in early AL iterations
 - High in later ones
 - When agreement among committee members converges, also learning curve does

Approximating the Learning Curve

- Where to calculate the agreement:
 - On separate validation set
 - Not be involved in AL selection process itself
 - Agreement values comparable over different AL iteration
 - Otherwise agreement curve often not reliable approximation due to "simulation dilemma"
 - When e.g. agreement calculated on examples selected in each AL iteration:
 - Approximation of learning curve usually works well in simulation scenarios, because...
 - » few hard cases left in later AL iterations (perfect agreement)
 - But fails in real-world annotation scenarios, because...
 - » in practice AL will always find tricky cases...

- For annotation of Named Entity mentions
- Whole sentences selected (20 each round)
- Simulation on CoNLL-2003 corpus
 - News-paper, MUC entities (PERS, LOC, ORG)
 - AL pool: ~ 14,000 sentences
 - Gold Standard: ~ 3,500 sentences
 - For learning curve
 - For agreement curve (labels ignored)

Results

Summary & Conclusions

- AL has high potential to reduce annotation effort
- Proper stopping point necessary to profit from savings
 - Method to monitor progress of annotation needed
- Agreement curve
 - Works well: good approximation of learning curve
 - No extra annotation effort: does not require labeled gold standard

Approximating Learning Curves for Active-Learning-Driven Annotation

Thanks. Questions ?

http://www.julielab.de/

