Tilburg University

Evaluating Dialogue Act Tagging

with Naive & Expert annotators

Jeroen Geertzen & Volha Petukhova & Harry Bunt

LREC 2008 / Marrakech / May 28th

Evaluating dialogue act schemes I

► A dialogue act scheme should be reliable in application:

assignment of the categories does not depend on individual judgement, but on shared understanding of what the categories mean and how they are to be used.

¹(Cohen, 1960; Carletta, 1996)

Evaluating dialogue act schemes I

- ▶ A dialogue act scheme should be reliable in application:
 - assignment of the categories does not depend on individual judgement, but on shared understanding of what the categories mean and how they are to be used.
- ► Reliability is often evaluated using inter-annotator agreement:
 - Observed agreement (p_o);
 - Standard kappa¹ taking expected agreement (p_e) into account:

$$\kappa = \frac{p_o - p_e}{1 - p_e}$$

¹(Cohen, 1960; Carletta, 1996)

Evaluating dialogue act schemes II

- ▶ But what kind of annotators to use: naive (NC) or expert (EC) coders?
 - Carletta: for subjective codings there are no real experts
 - Krippendorf², Carletta: that what counts is how totally naive coders manage based on written instructions.

²(Krippendorf, 1980)

Evaluating dialogue act schemes II

- ▶ But what kind of annotators to use: naive (NC) or expert (EC) coders?
 - Carletta: for subjective codings there are no real experts
 - Krippendorf², Carletta: that what counts is how totally naive coders manage based on written instructions.
- ► For naive coders, factors such as instruction clarity or annotation platform have more impact
- Using expert coders makes sense with complex tagsets and when aiming for as-accurate-as-possible annotations

²(Krippendorf, 1980)

Research question

- Annotation by both NC and EC are insightful:
 - NC: insight in clarity of concepts
 - EC: reliability when errors due to conceptual misunderstanding and lack of experience are minimized

Research question

- ▶ Annotation by both NC and EC are insightful:
 - NC: insight in clarity of concepts
 - EC: reliability when errors due to conceptual misunderstanding and lack of experience are minimized

- How do both annotator groups differ in annotating?
 - => contrast NC annotations with EC annotations and evaluate on both inter annotator agreement (IAA) and tagging accuracy (TA)
 - => qualitative analysis of observed differences

Experiment outline I

- Naive coders:
 - 6 undergraduate students, not linguistically trained
 - 4 hour session explaining data, tagset, and annotation platform
- ► Expert coders:
 - 2 PhD students, not linguistically trained
 - working with the scheme for more than two years
- Data consisted of task-oriented dialogue in Dutch:

corpus	domain	type	#utt
OVIS	train connections	H-M	193
DIAMOND	operating a fax machine	H-M	131
		H-H	114
DUTCH MAPTASK	map task	Н-Н	120

558

Experiment outline II

- Gold standard:
 - established agreement by 3 experts (all authors)
 - few cases with fundamental disagreement / unclarity excluded

Experiment outline II

- Gold standard:
 - established agreement by 3 experts (all authors)
 - few cases with fundamental disagreement / unclarity excluded
- ▶ Dialogue act tagset, DIT⁺⁺:
 - Comprehensive, also containing concepts from other schemes
 - Clearly defined notion of dimension; fine-grained feedback acts
 - In each of the 11 dimensions a specific aspect of communication can be addressed:
 Task, Auto-feedback, Allo-feedback, Own Communication, Partner Communication, Turn, Contact, Time, Dialogue Structuring, Topic, and Social Obligations.
 - For each dimension, at most one act can be assigned.

Results on inter annotator agreement

	naive annotators			e	xpert a	nnotato	rs	
Dimension	p _o	p _e	κ_{tw}	<i>ap</i> -r	p _o	p _e	κ_{tw}	ap-r
task	0.63	0.17	0.56	0.81	0.85	0.16	0.82	0.78
auto feedback	0.67	0.48	0.36	0.53	0.92	0.57	0.82	0.64
allo feedback	0.53	0.29	0.33	0.02	0.85	0.24	0.81	0.38
time	0.87	0.84	0.20	0.51	0.98	0.87	0.88	0.89
contact	0.80	0.66	0.41	0.19	0.75	0.38	0.60	0.50
dialogue struct.	0.80	0.30	0.71	0.32	0.92	0.38	0.88	0.65
social obl.	0.95	0.28	0.93	0.72	0.93	0.24	0.91	0.86

Results on inter annotator agreement

	naive annotators				e:	xpert a	nnotato	rs
Dimension	p_o	p_e	$\kappa_{\sf tw}$	<i>ap</i> -r	p _o	p_e	$\kappa_{\sf tw}$	<i>ap</i> -r
task	0.63	0.17	J.50	0.81	0.85	0.16	0.82	0.78
auto feedback	0.67	0.48	0.36	0.53	0.92	0.57	0.82	0.64
allo feedback	6-53	0.00	0 22	2.02	0.05	0.04	0.81	0.38
time	Taxon	nomica ll y w	eighted	kappa :		Α	0.88	0.89
contact			C1	C2 C3	YNA		0.60	0.50
dialogue struct.	A is B ye	this correc	t? A	YNA CNF	TIVE	1	0.88	0.65
social obl.	C1 ar	nd C2 show	more pa	artial	CNF		0.91	0.86
	agree	ement than	C1 and	C3				

Results on inter annotator agreement

	naive annotators				expert	annotato	ors	
Dimension	p _o	p _e	κ_{tw}	ap-r	p_o	p _e	κ_{tw}	<i>ap</i> -r
task	0.63	0.17	0.56	0.81	0.8	5 0.16	0.82	0.78
auto feedback	0.67	0.48	0.36	0.53	0.9	2 0.57	0.82	0.64
allo feedback	0.53	0.29	0.33	0.02	0.8	5 0.24	0.81	0.38
time	0.87	0.84	0.20	0.51	0.9	8 0.87	0.88	0.89
contact	0.80	0.66	0.41	0.19	0.7	5 0.38	0.60	0.50
dialogue struct.	0.80	0.30	0.71	0.32	0.9	2 0.38	0.88	0.65
social obl.	0.95	0.28	0.93	0.72	0.9	3 0.24	0.91	0.86

Results on tagging accuracy

	naive	e annot	ators	expe	rt anno	tators
Dimension	p _o	p _e	κ_{tw}	p_o	p _e	κ_{tw}
task	0.64	0.16	0.58	0.91	0.16	0.90
auto feedback	0.74	0.46	0.52	0.94	0.48	0.88
allo feedback	0.58	0.19	0.48	0.95	0.22	0.94
time	0.92	0.81	0.57	0.99	0.88	0.94
contact	1.00	0.60	1.00	0.91	0.48	0.83
dialogue struct.	0.89	0.36	0.82	0.87	0.34	0.81
social obl.	0.96	0.26	0.94	0.95	0.23	0.94

Results on tagging accuracy

	naive annotators			ехре	rt anno	tators
Dimension	p _o	p_e	κ_{tw}	p_o	p_e	$\kappa_{\sf tw}$
task	0.64	0.16	0.58	0.91	0.16	0.90
auto feedback	0.74	0.46	0.52	0.94	0.48	0.88
allo feedback	0.58	0.19	0.48	0.95	0.22	0.94
time	0.92	0.81	0.57	0.99	0.88	0.94
contact	1.00	0.60	1.00	0.91	0.48	0.83
dialogue struct.	0.89	0.36	0.82	0.87	0.34	0.81
social obl.	0.96	0.26	0.94	0.95	0.23	0.94

▶ When generalising over all dimensions & calculating a single accuracy score for each group, naive annotators score 0.67 and experts score 0.92

Individual scores of annotators

Observations I

- Sometimes, NC showed less disagreement than EC
- ► Example for co-occurrence WH-ANSWER INSTRUCT:

	utterance	expert 1	expert 2
S_1	do you want an overview of the codes?	YN-Q	YN-Q
U_1	yes	YN-A	YN-A
S ₂ S ₃ S ₄	press function press key 13 a list is being printed	INSTRUCT INSTRUCT INFORM	WH-A WH-A WH-A

► Where NC followed question-answer adjacency pairs, EC generally disagreed on specificity

Observations II

- ► In general, and specifically in turn-management, EC recognised multi-functionality more than NC
- Example:

	utterance	naive	expert
A_1	to the left	TAS:WH-A	TAS:WH-A TUM:KEEP
A_2	and then slightly around	TAS:WH-A	TAS:WH-A TUM:KEEP

Conclusions

► Codings by both NC and EC provide complementary insights

Conclusions

- ► Codings by both NC and EC provide complementary insights
- ► Calculating TA requires a ground truth, which can be established when concepts are not too subjective

- ► Codings by both NC and EC provide complementary insights
- Calculating TA requires a ground truth, which can be established when concepts are not too subjective
- ▶ NC disagree more (with each other and gold standard) whether or not to annotate in a specific dimension

- ► Codings by both NC and EC provide complementary insights
- Calculating TA requires a ground truth, which can be established when concepts are not too subjective
- ▶ NC disagree more (with each other and gold standard) whether or not to annotate in a specific dimension
- ► EC show more agreement on when to annotate in a specific dimension, but as a result are also addressing more difficult cases

- ► Codings by both NC and EC provide complementary insights
- Calculating TA requires a ground truth, which can be established when concepts are not too subjective
- NC disagree more (with each other and gold standard) whether or not to annotate in a specific dimension
- ► EC show more agreement on when to annotate in a specific dimension, but as a result are also addressing more difficult cases
- ▶ Distinguishing agreement on whether or not to annotate in a dimension from agreement on the dialogue act within a dimension is essential

Thanks for your attention! Any questions?

Announcement:

8th International Conference on Computational Semantics January 7-9 2009, Tilburg, The Netherlands Submission deadlines: 1 Oct (long papers) & 27 Oct (short papers)

See: iwcs.uvt.nl

Comparing NC and EC with machine learners

