
Using the Complexity of the Distribution of Lexical Elements as a Feature in
Authorship Attribution

L.M. Spracklin, D.Z. Inkpen, A. Nayak

University of Ottawa
Ottawa, Canada

lspra072@uottawa.ca, diana@site.uottawa.ca, anayak@site.uottawa.ca

Abstract
Traditional Authorship Attribution models extract normalized counts of lexical elements such as nouns, common words and punctuation

and use these normalized counts or ratios as features for author fingerprinting. The text is viewed as a �bag-of-words� and the order of
words and their position relative to other words is largely ignored. We propose a new method of feature extraction which quantifies the
distribution of lexical elements within the text using Kolmogorov complexity estimates. Testing carried out on blog corpora indicates that
such measures outperform ratios when used as features in an SVM authorship attribution model. Moreover, by adding complexity
estimates to a model using ratios, we were able to increase the F-measure by 5.2-11.8%

1. Introduction
Determining the author of a text is an important

problem in computational linguistics. It has applications
to plagiarism, copyright infringement and the analysis of
anonymously written texts. Normally a machine learning
system for authorship attribution extracts features which
represent the counts of a variety of lexical elements which
are normalized over the length of the text. For example
the number of nouns, verbs, common words or
punctuation characters may be counted. This is done to
fingerprint an author. A model is created based on these
features and texts of unknown origin are classified using
the model.

The problem with extracting counts of elements
is that information is lost. The text is viewed as a �bag-
of-words� and the distribution of elements within the text
is ignored. It would be useful to have a method of
quantifying the distribution of lexical elements within a
text. For example, are most of the common words
clustered in one part of the text or are they distributed in a
near random fashion throughout the text? If one could
quantify the distribution of lexical elements then the
question still remains as to whether this is a useful feature
for authorship attribution and if so is it as good as or
better than using only the counts of lexical elements.

This paper proposes a method of quantifying the
distribution of lexical elements by using compression.
The set of tokens is represented by a binary string. The
Kolmogorov complexity of a binary string is the length of
the shortest program which can output the string on a
universal Turing machine and then stop (Li, 1997). It can
be approximated using any lossless compression
algorithm. The degree of compression of the string gives
an upper bound on the Kolmogorov complexity (Li,
1997).

In this paper, we use a set of blogs as a
training/test corpus and a Support vector machine, or
SVM, is used to develop models which predict the author.
For each blog, nouns, verbs, pronouns, conjunctions,
common words, unique words, internet slang words and
punctuation characters were identified. Both normalized
counts and complexity estimates were extracted for each
lexical element. Thus we have 10 features which are
based on traditional normalized counts and 10 features
which are based on complexity.

We show that the complexity of lexical elements
is a better indictor of style then the normalized count of
such elements. In addition because ratio and complexity
contain different information, both can be used in an
authorship attribution model to boost performance
without over fitting.

2. Authorship Attribution
Stylometry is concerned with analyzing the

linguistic style of text to determine authorship or genre.
If one assumes that an author has a consistent style, then
one can assume that the author of a text can be identified
by analyzing its style.

In order to analyze the style of text, various
features are extracted and analyzed. The first attempts at
feature extraction focused on treating text as sets of
tokens arranged into sentences (Stamatatos, 2000). The
extracted features included sentence count, words per
sentence, and characters per word. Usually these features
were also normalized to the length of the text. These
features are still used for classification today.

One can also analyze syntactic features by using
a Parts-of-Speech or POS tagger (Stamatatos, 2000).
Then the average number of noun phrases, verb phrases,
prepositional phrases etc. can then be extracted.

3506

Measures of vocabulary richness are also very
important features or style markers (Stamatatos, 2000).
One can count the number of words which are very
common or the number of words which occur only once
or twice. It has been shown that the style of a text can be
more easily defined using the presence of common
features rather than uncommon features (Uzuner, 2005).

Most work done in authorship attribution and
indeed text classification, treat the text as a �bag-of-
words�, that is order does not matter. Aside from
research into n-gram models, the placing of words within
the text and the location of some words relative to others
is ignored. Obviously this results in a loss of information
as we are throwing away structure. Traditionally, this has
been considered of no importance.

3. Kolmogorov Complexity

3.1 Introduction to Kolmogorov Complexity
Kolmogorov complexity, also known as

algorithmic entropy, stochastic complexity, descriptive
complexity, Kolmogorov-Chaitin complexity and
program-size complexity, is used to describe the
complexity or degree of randomness of a binary string. It
was independently developed by Andrey N. Kolmogorov,
Ray Solomonoff and Gregory Chaitin in the late 1960�s
(Li, 1997).

In computer science, all objects can be viewed as
binary strings. Thus we will refer to objects and strings
interchangeably in this discussion. The Kolmogorov
complexity of a binary string is the length of the shortest
program which can output the string on a universal Turing
machine and then stop (Li, 1997).

Turing showed in his famous work on the halting
problem that it is impossible to write a computer program
which is able to predict if some other program will halt
(Li, 1997). It follows then that even if we find a short
program which outputs a particular string there are always
other shorter programs and we can never know if one of
those programs will halt and if so whether or not they will
output the string. Thus it is impossible to compute the
Kolmogorov complexity of a binary string. However
there have been methods developed to approximate it.

The Kolmogorov complexity of a string x,
denoted as K(x), can be approximated using any lossless
compression algorithm (Li, 1997). A compression
algorithm is one which transforms a string A, to another
shorter string, B. The associated decompression
algorithm transforms B back into A or a string very close
to A. A lossless compression algorithm is one in which
the decompression algorithm exactly computes A from B
and a lossy compression algorithm is one in which A can
be approximated given B. When Kolmogorov
Complexity, or K(x), is approximated, this approximation
corresponds to an upper-bound of K(x) (Li, 1997). Let C
be any compression algorithm and let C(x) be the results
of compressing x using C. The approximate Kolmogorov

complexity of x, using C as a compression algorithm,
denoted Kc(x), can be defined as follows:

q

xLength
xCLengthxKC +=
)(
)))(()(

where q is the length in bits of the program

which implements C. In practice, q is usually ignored as
it is not useful in comparing complexity approximations
and it varies according to which programming language
implements C. If C was able to compress x a great deal
then Kc(x) is low and thus x has low complexity.
Likewise if C could not compress x very much then Kc(x)
is high and x has high complexity.

3.2 Using Kolmogorov Complexity Estimates to
Classify Objects

Suppose an object can be viewed as an ordered
collection of n items and each item belongs to a class {ci |
i = 1, 2, �k}. We can then map the object to a string
representation which represents the distribution of item
classes within the object. Kolmogorov complexity can be
used to classify the object by compression this mapping
then comparing the degree of compression with the
expected compression of different categories of objects.
This gives a quantitative measure of the complexity of the
distribution if item classes within the object.

It seems intuitive that this can be used for text
classification as we can tokenize a text sample and then
assign classes to tokens. The Kolmogorov complexity
estimate of that distribution can then be used as a feature
in machine learning.

One must decide which classes will be used for
the Kolmogorov complexity estimates. There is a great
deal of flexibility in this but it seems clear that one should
consider the meaningfulness of the class and whether or
not the distribution of that class is likely to vary among
object categories.

Any lossless compression algorithm will
estimate Kolmogorov complexity. However, it seems
intuitive that when the strings are short, simple
compression algorithms will give the best estimate of the
complexity. This is because if the string is short, a
particular algorithm may compress it a great deal simply
by chance. Larger data sets will likely benefit more from
efficient compression algorithms as there is a much lower
chance that the degree of compression may be an
anomaly. Generally, it would not be useful to compute
the Kolmogorov complexity of very short strings such as
those with length less than 15.

3.3 Filtering Spam using Kolmogorov
Complexity Measures

This method of object classification was
originally developed for use in spam filters (Seaward,
2007). A common ploy of someone who sends spam or a
spammer is to append a segment of text or a list of

3507

keywords at the end of the spam to try to fool the filter
into allowing it through. For example, a spammer might
send the following message:

Buy your Rolexes here!!!!!!!!!

Mary put her purse by the door because she knew she would be
leaving again.
Suddenly the phone rang and she wondered if Carlos was
calling.

A human can look at such an email and
immediately discern the disparity in style and semantics
and declare it spam. However, a filter which views an
email as a �bags-of-words� can be easily fooled into
thinking this is a legitimate email.

In order to use Kolmogorov complexity to
classify email, we first train the filter to recognize which
tokens or words are associated with spam and which are
associated with non-spam or ham. Then each email to be
classified is tokenized into an ordered set of tokens each
of which belongs to the class spam or ham. If we
represent ham as �0� and spam as �1� then we may map
the email to a string of zero�s and one�s. The complexity
measure is computed by compressing the string using run-
length compression,

)*2,1min(

length
runsComplexity =

Each set of consecutive 1�s is a run as is each

consecutive set of 0�s. The runs are counted to determine
how much the string could be compressed if one was to
encode it as runs of 0�s and 1�s. For example 11101000
could be encoded as a run of three 1�s, followed by a run
of one 0, followed by a run of one 1, followed by a run of
three 0�s.

The complexity of the string is compared to a
threshold t and if it is greater than t then the email is
classified as spam otherwise it is classified as ham. This
method was used to classify email with accuracy of 81-
96% (Seaward, 2007).

3.5 Attributing Authorship using Kolmogorov
Complexity Measures

Authorship attribution is an interesting problem
for Kolmogorov Complexity measures. Tokens or words
in a text sample can be divided into many different
meaningful classes such as lexical type (noun, verb,
preposition etc.); length (short, medium or long); common
or uncommon; slang word or proper word etc. It is
obvious that the distribution of such measures within the
text is a meaningful measure of the style of such a text.

Indeed, Zipf�s law states that in any corpus, the
frequency of any word is inversely proportional to its rank
in the frequency table (Manning, 1999). Linguists agree

that most language consists of a great many common and
possibly ambiguous words with a small number of
relatively uncommon and unambiguous words thrown in
(Manning, 1999). This is to reduce the burden on the
speaker and listener to know and understand many
different words and ensure the listener understands the
message clearly. However, it is intuitive that this mix of
words would be a good way to fingerprint an author as it
seems logical that the distribution of such
common/uncommon words will vary by author.

The main question that arises is whether the
complexity of a feature�s distribution is more meaningful
then the count of such a feature. For example is it more
meaningful to say the complexity of common words was
0.32 or to say that out of 1000 words, 700 were common.
Either measure loses information. Complexity measures
lose magnitude. For example, consider the following two
strings and suppose �1� represents a common word and
�0� represents all other words. The second string has
twice as many common words but they have the same
complexity.

String Complexity Ratio
00001000010000 0.714 0.143
01111011110000 0.714 0.571

Likewise, if we use ratios, we lose information
about how the common words were distributed. For
example, the following two strings have the same ratio of
0.5 but very different distributions.

String Complexity Ratio
11111110000000 0.143 0.500
10101010101010 1.000 0.500

As we will see in the results section, both

measures can be used without overfitting as the both
contain information which is useful in fingerprinting an
author. Surprisingly however, the complexity of a
feature�s distribution performs better than the ratio of that
feature when performing authorship attribution. The best
results are obtained when both ratio and complexity
measures are used.

4. The Blog Corpus

All blogs were taken from Moshe Koppel�s blog corpus
which is a collection of 681,288 blogs from 19,320

authors or bloggers (Schler, 2006). Blog is a combination
of the words �web� and �log� and is thus a weblog or
internet diary. Generally blogs are posted frequently

through a website which supports such postings. Koppel
obtained all the files in the blog corpus from

www.blogger.com. The files are annotated with the
bloggers purported age, gender, industry and astrological

sign.

3508

Koppel et al. obtained good results using almost
the entire corpus for author attribution (Koppel, 2006).
Using only those posts with over 200 words, he obtained
18,000 blogs for testing/training. He extracted weighted
measures of words that would be representative of topic,
function words and unique non-numeric non-
alphanumeric words (such as smileys). He used
information retrieval techniques instead of a machine
learning model and in 66.0% � 79.5% of cases his system
could make no conclusions and returned �I don�t know�,
otherwise his system was over 80% accurate.

Schler et al. also used this corpus to build a
model which predicts gender and age with over 80%
accuracy (Koppel, 2006).

Since the corpus contained far too many blogs
and bloggers for a machine learning author attribution
model, I selected a subset of bloggers to work with. By
analyzing length of posts, I obtained a set of 19 authors
each of which had over 37 blogs of length over 1000
words. Generally this is the minimum length required for
accurate authorship attribution (Stamatatos, 2000). I
divided these authors into 2 sets. Data set A is a balanced
data set in which most authors have the same number of
large (length > 1000) blogs. The mean is 43.40 blogs and
the standard deviation is 3.31. Data set B is less balanced
and the mean number of blogs is 60.56 and the standard
deviation is 28.87. There were other blogs by each of
these 19 authors but only posts of length greater than
1000 were used. Note that I refer to bloggers and authors
interchangeably in this report.

Table 4.1 Details of Authors and their blogs in Data

Set A.
Author Gender Age Posts of Length > 1000
a1 male 24 46
a2 male 24 40
a3 male 47 44
a4 male 41 42
a5 male 17 36
a6 female 26 47
a7 male 36 45
a8 male 25 46
a9 female 47 44
a10 male 25 44

Table 4.2 Details of Authors and their blogs in Data

Set B.
Author Gender Age Posts of Length > 1000
b1 male 25 89
b2 male 27 62
b3 male 33 112
b4 female 25 38
b5 male 15 76
b6 male 44 54
b7 male 37 37
b8 female 43 39

b9 female 14 38

5. Weka
Weka is a collection of machine learning

algorithms and data processing tools (Witten, 2005). It is
available for free download and it is very easy to use. It
was developed at the University of Waikato in New
Zealand. There are a great deal of machine learning tools
included in the Weka package such as trees, linear
regression, neural networks, naïve Bayes and support
vector machines. A support vector machine was used in
our experiments.

6. Support Vector Machines

A support vector machine or SVM is a
supervised learning method used to classify data (Witten,
2005). Each instance in the training set is represented as a
set of n features which correlates with an n-dimensional
data point. The entire set of training examples if viewed
as a set of data points in n-dimensional space and the
SVM attempts to find the hyperplanes which best divide
the space between each pair of classes such that the
largest possible number of data points are on the same
side and the distance between each class and the
hyperplane is maximized (Witten, 2005). The optimal
hyperplane is one which minimizes the risk of
misclassifying a data point. The data points which are
closest to the maximum margin hyperplane are known as
support vectors (Witten, 2005).

Thus for our problem there are 20 dimensions
and 9 or 10 classes or authors thus the SVM will find a
maximal margin hyperplane which separates each
possible pair of classes of which there are 34 or 43.
Suppose we label the features f1, f2, �f20, then the SVM
finds a vector of the form x = w0 + w1f2 + w2f2 + � +
w20f20 to divide each possible pair of classes. This will be
done for each pair of classes and each fold in 10-cross
validation.

For this project the SMO or sequential minimal
optimization implementation of an SVM in Weka was
used. By default the SMO uses polynomial of Gaussian
kernels, transforms nominal vales into binary ones and
normalizes attributes (Witten, 2005). Other machine
learning tools in Weka were also tested but SVM proved
to be very competitive and seemed a natural fit for the
problem.

7. Methodology
7.1 Overview

In order to build an authorship attribution
machine learning model there are several steps which
must be followed. In the table below, we outline each
step and detail how the step was completed

3509

Table 7.1 Steps in building an SVM model for

Authorship Attribution
Step Description Details
1 Obtain corpus Moshe Koppel�s blog

corpus which is available
for free download was
used.

2 Pre-process
corpus

I reduced corpus to 19
authors and removed all
blogs less than 1000
words.

3 Extract features This was done using
Python scripts. The main
scripts are given in
appendix B and C.

4 Place features
in format for
machine
learning toolkit

An ARFF file was created
for each data set.

5 Normalize
features

Done automatically by
Weka.

6 Create models Done by selectively
removing features from
set of 20 in Weka.

7 Prune features Weka�s attribute
evaluator function was
used to identify the
possible candidates for
pruning. I tested each
model for each data set
with the two bottom
ranked features removed.
Those features were
pruned if this improved
performance.

8 Evaluate
Results

Precision, recall, F-
measure and confusion
matrix are given for 10-
fold cross validation by
Weka. Full results are in
appendix A.

7.2 Feature Extraction

We started with the 20 features listed below. In
order to identify slang words, the internet dictionary from
www.noslang.com was used (www.noslang.com).
Whether or not a word was unique or common was based
on token frequency analysis for the entire blog corpus.

Parts of Speech tagging was done using a simple
python tagger developed by Jason Wiener (2006) and
based on the work of Eric Brill (Brill, 1996). It is a rule-
based system which uses transformations and is error-
driven. The algorithm has been implemented in many
platforms and is known as the Brill Tagger.

For the features below, all counts were
normalized to the number of words/tags in the text or in
the case of punctuation the number of characters in the
text. The method of constructing the string mapping for
complexity estimates is given below. After the string is
constructed run-length compression was then applied to
get an estimate of the Kolmogorov complexity of the
mapping.

Table 7.2.1 Features and their Descriptions.
Attribute Description
commoncount Count all words which

occur more than 1000
times in the entire blog
corpus.

commoncomplexity If a word occurs more
than 1000 times in the
entire blog corpus then
count as �1� otherwise
count as �0�.

uniquecount Count all words which
occur less than 3 times in
the entire blog corpus.

uniquecomplexity If a word occurs less than
3 times in the entire blog
corpus then count as �1�
otherwise count as �0�.

slangcount Count all words which
appear in dictionary from
www.noslang.com and
divide by the total number
of tokens.

slangcomplexity If word is in no-slang
dictionary than count as
�1� otherwise count as �0�.

nouncount Count all tokens which
are tagged as noun
phrases and divide by the
total number of tags.

nouncomplexity If a token is a noun phrase
then count as �1�,
otherwise count as �0�.

verbcount Count all tokens which
are tagged as verb phrases
and divide by the total
number of tags.

verbcomplexity If a token is a verb phrase
then count as �1�,
otherwise count as �0�.

adverbcount Count all tokens which
are tagged as adverbs and
divide by the total number
of tags.

adverbcomplexity

If a token is an adverb
then count as �1�,
otherwise count as �0�.

adjectivecount Count all tokens which

3510

are tagged as adjectives
and divide by the total
number of tags.

adjectivecomplexity If a token is an adjective
then count as �1�,
otherwise count as �0�.

conjunctioncount Count all tokens which
are tagged as conjunctions
and divide by the total
number of tags.

conjunctioncomplexity If a token is a conjunction
then count as �1�,
otherwise count as �0�.

punctuationcount Count all characters
which are punctuation and
divide by the total number
of characters.

puncuationcomplexity If a token is a adjective
then count as �1�,
otherwise count as �0�.

averagewordlength Sum all word lengths and
divide by the total number
of words.

wordlengthcomplexity If a word is less than or
equal to 4 characters then
count it as �0�. If it is
greater than or equal to 6
characters then count it as
�1�. Otherwise ignore the
word.

7.3 Pruning Features

Using Weka�s SVM attribute evaluator, the
following rankings were obtained. In using an SVM,
feature selection is very important. Since there are 20
features, there are 220-1 or 1048575 possible combinations
of features. Thus it is impossible to try all combinations
of features to determine which combination results in the
best performance. This tool was very useful for providing
an idea as to which features may be likely candidates for
pruning. The bottom two ranked features were pruned
both individually and separately to determine if this
increased accuracy.

Table 7.3.1 Features Pruned for each Model and

Data Set.
Data
Set

Model Features Pruned

A Complexity-Ratio slangcount
A Complexity commoncomplexity
A Ratio -
B Complexity-Ratio -
B Complexity -
B Ratio -

8. Results
When evaluating a machine learning system

there are three commonly used measures of performance.
They are precision, recall and F-measure. Recall is the
proportion of spam messages which were correctly
identified as spam. Precision is the proportion of emails
which are identified as spam and which are actually spam.
The F-measure is a combined measure which equally
weights recall and precision

FN = False negatives
FP = False positives
S = Total number of samples of the class or author

,Re
S
FNScall −=

,Pr
FPFNS

FNSecision
+−

−=

callecision
callecisionmeasureF

RePr
)Re(Pr2

+
∗=− ,

Here are the results for all six experiments. All
these results are based on 10-fold cross validation.
Detailed data on each class and confusion matrices are in
appendix A.

Table 8.1 Precision, Recall and F-measures for each

Model and Data Set
Model Data

Set
Precision Recall F-

measure
Ratio
Model A 0.651 0.651 0.651
Complexity
Model A 0.665 0.665 0.665
Complexity-
Ratio Model A 0.703 0.704 0.704

Ratio
Model B 0.741 0.741 0.741
Complexity
Model B 0.787 0.787 0.787
Complexity-
Ratio Model B 0.859 0.859 0.859

3511

Figure 8.1 F-measures for each Model and Data
Set.

The results are better for data set B then data set

A for two reasons. Firstly B is bigger than A. This
generally always increases accuracy. Also if you view the
confusion matrices for data set A (table A2, A4 and A6 in
appendix A), there was a great deal of confusion between
authors a1 and a2. In fact a2 was never classified
correctly for any of the instances for any of the models
and in fact was always classified as a1. What is also
interesting is that both a1 and a2 are 24 year old men.
There are two possibilities. Schler et al. show that in
blogging, gender and age have an affect on the use of
lexical features (Koppel, 2006). It is also possible that
they were both written by the same person. On the
internet no one is ever who they say they are. I chose not
to remove a2 from the training set as we did not want to
run the risk of cherry-picking data.

9. Conclusion

It has been shown that the addition of
Kolmogorov complexity measures of lexical features
increases the accuracy of a feature-based author
attribution SVM model by 5.2%-11.8%. In fact the
Kolmogorov complexity estimate of a feature is a better
measure of style than the normalized count of such a
feature. This is an important result because this means we
can boost accuracy with the addition of very little extra
computation. If a system is already extracting features
and counting them then it is trivial to also compute the
complexity measure for that feature as well. Our results
also show that some information about style is lost when
we view text as a �bag-of-words� and it is possible to add
some of this information back into an natural language
processing model through the use of feature complexity
estimates.

10. Future Work
There are several things that can be done to

expand this method. Firstly, one could experiment with
the Kolmogorov complexity estimates of different

features then the ones used in this project. One could also
experiment with the complexity estimates of non-binary
classes. For example what about it we counted nouns as 0
and verbs as 1 and all others as three and then computed
complexity. It would also be interesting to use other
compression algorithms than run-length compression.

11. References

Brill E. (1995) �Transformation-Based Error-Driven

Learning and Natural Language Processing: A Case
Study in Part-of-Speech Tagging" Computational
Linguistics vol. 21 no. 4 pp 543-565, 1995.

Internet Slang Dictionary www.noslang.com

Joachims T. (1998). �Text categorization with Support

Vector Machines: Learning with many relevant
features� In Machine Learning: ECML-98, Tenth
European Conference on Machine Learning, pp. 137�
142, 1998.

Keselj V., Peng F., Cercone N., and Thomas C. (2003)

�N-gram-based Author Profiles for Authorship
Attribution� In Proceedings of the Conference Pacific
Association for Computational Linguistics,
PACLING'03, Halifax, Nova Scotia, Canada, pp. 255--
264, August 2003.

Koppel M., Schler J., Argamon S. and Messeri E. (2006).

�Authorship Attribution with Thousands of Candidate
Authors� (poster) in Proc. Of 29th Annual
International ACM SIGIR Conference on Research &
Development on Information Retrieval, August 2006.

Li M. and Vitanyi P. (1997) �An Introduction to

Kolmogorov Complexity and its Applications� Second
Edition, Springer Verlag, Berlin, pages 1-188, 1997.

Manning C., Schütze H. (1999) �Foundations of

Statistical Natural Language Processing� pp 23-35,
MIT Press, 1999.

Schler J., Koppel M., Argamon S. and Pennebaker J.

(2006) �Effects of Age and Gender on Blogging� in
Proceedings of 2006 AAAI Spring Symposium on
Computational Approaches for Analyzing Weblogs.

Seaward L. and Saxton L.V. (2007), "Filtering spam

using Kolmogorov complexity measures", to appear in
The Proceedings of the 2007 IEEE International
Symposium on Data Mining and Information Retrieval
(DMIR-07), (Niagara Falls, May 21-23, 2007).

Stamatatos E., Fakotakis N., and Kokkinakis G. (2001).

�Computer-Based Authorship Attribution without

3512

Lexical Measures� Computers and the Humanities,
35(2), pp. 193-214, Kluwer, 2001.

Stamatatos E., Fakotakis N., and Kokkinakis G. (2000).

�Automatic Text Categorization in Terms of Genre and
Author� Computational Linguistics, 26:4, pp. 461-485,
2000.

Uzuner O. and Katz B. (2005) �A comparative study of

language models for book and author recognition� In
Proceedings of the 2nd International Joint Conference
on Natural Language Processing (IJCNLP-05), 2005.

 Weka Project http://www.cs.waikato.ac.nz/ml/weka/

Wiener J. (2006) NLP Parts of Speech Tagger

http://jcay.com/python/scripts-and-
programs/development-tools/nlp-part-of-speech-
tagger.html

Witten I.H., and Frank E. (2005) "Data Mining: Practical

machine learning tools and techniques", pp. 341-410
2nd Edition, Morgan Kaufmann, San Francisco, 2005.

3513

