A lightweight and efficient tool for cleaning Web pages

Stefan Evert

Institute of Cognitive Science, University of Osnabriick
49069 Osnabriick, Germany
stefan.evert@uos.de

Abstract
Originally conceived as a “naive” baseline experiment using traditional n-gram language models as classifiers, the NCLEANER system has
turned out to be a fast and lightweight tool for cleaning Web pages with state-of-the-art accuracy (based on results from the CLEANEVAL
competition held in 2007). Despite its simplicity, the algorithm achieves a significant improvement over the baseline (i.e. plain, uncleaned
text dumps), trading off recall for substantially higher precision. NCLEANER is available as an open-source software package. It is pre-
configured for English Web pages, but can adapted to other languages with minimal amounts of manually cleaned training data. Since
NCLEANER does not make use of HTML structure, it can also be applied to existing Web corpora that are only available in plain text

format, with a minor loss in classfication accuracy.

1. Introduction

The World Wide Web is an amazing, almost inexhaustible
and very convenient source of authentic natural language
data. Automatically compiled Web corpora have become
increasingly popular in recent years and have been used for
many different purposes (Kilgarriff and Grefenstette, 2003;
Baroni and Bernardini, 2006). In particular, Web corpora
offer the NLP community an opportunity to train statis-
tical models on, and mine information from, much larger
amounts of text than was previously possible. It is easy and
inexpensive to collect billions of words of English, Ger-
man, French, and many other languages.

NLP researchers sometimes use “large and messy” training
corpora in the hope that errors will somehow cancel out in
the statistical models (Banko and Brill, 2001). Web pages
are even messier than other text sources, though, and inter-
esting linguistic regularities may easily be lost among the
countless duplicates, index and directory pages, Web spam,
open or disguised advertising, and boilerplate. Therefore,
thorough preprocessing and cleaning of Web corpora is cru-
cial in order to obtain reliable frequency data.

Software tools are readily available for many subtasks, es-
pecially those that are also relevant to Web search en-
gines: identification of language and encoding, duplicate
removal, detection of Web spam and automatically gen-
erated pages, HTML-to-text conversion, and possibly also
automatic stripping of advertisements.! When these steps
have been performed, the resulting pages may still contain
substantial amounts of linguistically undesirable material,
in particular any kind of canned or automatically gener-
ated text blocks. Collectively referred to as boilerplate,
such canned text includes navigation bars, page headers,
link lists, disclaimers and copyright statements, as well as
the ubiquitous advertisements. Similar to page duplicates,
boilerplate may grossly inflate frequency counts for cer-
tain terms and expressions (such as click here, Contents or
Vi@gr@). Therefore, reliable boilerplate removal is indis-
pensable for the compilation of useful Web corpora.

'In the author’s experience, however, Google search results
often seem to be dominated by advertising and pages containing
counterfeit category listings or search results.

Commercial search engines (as well as other popular and
well-funded application domains such as information re-
trieval) are usually not concerned about boilerplate, which
will not figure prominently among users’ search results, es-
pecially when ranking techniques are applied. Even in the
Web as Corpus community, this task has often been trivi-
alised or ignored. Before the recent CLEANEVAL com-
petition,” boilerplate removal was typically performed with
simple ad-hoc scripts, if at all.

Team Text Seg
Bauer et al. (Osnabriick) 73.5 535
Marek, Pecina & Sprousta (Prague) 84.1 653
Hofmann & Weerkamp (Amsterdam) 83.0 655
Chaudhury (India) 80.9 595
Conradie (South Africa) 60.2 455
Gao & Abou-Assaleh (GenieKnows) 834 639
Girardi (IRST) 82.5 65.6
Saralegi & Leturia (Elhuyar Foundation) 83.4 65.3
Evert (Osnabriick) 82.9 60.3

Table 1: CLEANEVAL competition results (Text = text
cleaning, Seg = paragraph segmentation and classification).

The page cleaning tool presented in this paper started out as
a “naive” baseline experiment to find out whether character-
level n-gram models would be able to distinguish between
clean body text and boilerplate. In particular, no use was
made of HTML tags and structure, in stark contrast to pre-
vious approaches that rely heavily on tag density and other
heuristic measures.> The n-gram models worked surpris-
ingly well, achieving a significant improvement over unfil-
tered text dumps. In the CLEANEVAL competition held in
2007, its text cleaning accuracy came close to those of the
best systems (English track, text only, cf. Table 1). Para-
graph segmentation and classification was not an objective
of the experiment, and as a result the algorithm performed

2See http://cleaneval.sigwac.org.uk/

3A typical example is the PotaModule, a Perl script available
fromhttp://sslmitdev-online.sslmit.unibo.it/
wac/post_processing.php.
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considerably worse in this category.*

Since the n-gram based approach is also lightweight, fast
and portable, it has been repackaged as an open-source
standalone tool named NCLEANER. It is distributed in
the form of a Perl package and can be downloaded from
http://webascorpus.sf.net/. While the first re-
lease only includes a standard parameter file for English,
the statistical algorithm should in principle work equally
well for all alphabetic languages, and requires only minimal
amounts of training data for each new language (between
30 and 50 manually cleaned Web pages). A particular ad-
vantage of NCLEANER is that it can also operate on plain
text files, e.g. existing Web corpora for which the original
HTML pages are no longer available. It might also be use-
ful for stripping advertisements and other boilerplate from
mailing list and newsgroup postings.

2. System architecture

The NCLEANER system is a pipeline of four modules, as il-
lustrated in Figure 1. When the system is applied to existing
text dumps, only the last two components are utilised.

The first stage of the pipeline performs some normalisa-
tion on the original HTML code. Regular expressions are
used to delete images, comments and inline JavaScript. In
addition, special markers are inserted for headings and list
items, and <br /> tags are converted to regular paragraph
breaks (in order to improve paragraph segmentation and
classification).

In the second stage, the pre-processed HTML page is con-
verted to plain text using the text-mode browser Lynx.
NCLEANER relies on the built-in character encoding recog-
nition of the browser, and obtains a normalised text file in
UTF-8 encoding.

In a third post-processing step, invalid characters are re-
moved from the text, and some easily recognisable types
of boilerplate (e.g. navigation bars or footer blocks where
multiple fields are separated by vertical bars “|”) are
deleted with regular expressions. Itemised and enumerated
lists in the Lynx output are detected, as well as paragraph
breaks indicated by empty lines. In this way, the text is bro-
ken down into segments, which are classified as <p> (gen-
eral paragraph), <h> (heading) or <1> (list item), follow-
ing the CLEANEVAL annotation guidelines. The identifi-
cation of different segment types relies in part on the mark-
ers inserted by the first module.

The fourth and core component of the NCLEANER algo-
rithm consists of two separate character-level n-gram lan-
guage models for “clean” and “dirty” text. These models
are applied to each identified text segment in turn. If the
dirty model calculates a higher probability than the clean
model, the text segment is considered to be boilerplate and
deleted. Otherwise it is included in the final output.

The research prototype for the CLEANEVAL competition
has been implemented in pure Perl (including the n-gram
models) and is therefore completely platform-independent.

“Note that NCLEANER participated into the CLEANEVAL
competition under its working title StupidOS. The name change
was recommended, rather wisely, by an anonymous reviewer.

‘http://lynx.browser.org/

The standalone tool also offers a more efficient implemen-
tation mixing C and Perl code, which is automatically acti-
vated on supported platforms.

3. Training the language models

In order to distinguish between boilerplate and clean text,
the NCLEANER system uses simple character-level n-gram
language models (Manning and Schiitze, 1999), based on
conditional probabilities Pr(c,, | ¢ ... ¢,—1), where ¢; € X
are characters in the input alphabet. Since it was originally
developed for English text, ¥ is restricted to the ASCII
range, and non-ASCII characters have to be folded appro-
priately. Full Unicode support would lead to extreme data
sparseness problems. In the current implementation, non-
ASCII characters are replaced by tilde symbols (™), but
more sophisticated folding or support for selected Unicode
character ranges can easily be implemented in the post-
processing stage.

To compensate for the small, uniform training corpus and
ensure better generalisation, geometric interpolation is used
to estimate n-gram probabilities for unseen text:

1—¢q
1—qm

Prsmoothed(cn | Cl... Cn71> =
. <Pr(cn ler...en—1)+q-Pr(cy|ca...cno1)
b)) @)

with parameter parameter ¢ € (0,1) . Note that ¢ ~ 0
corresponds to an unsmoothed n-gram model without inter-
polation, whereas ¢ ~ 1 gives equal weight to all history
sizes. In addition, add-one smoothing is applied to unigram
probabilities Pr(c,,) in order to account for unseen and in-
frequent characters in the training data.

The training data consist of 158 English Web pages

LLINNT3

from several topical domains (including “Norway”, “com-
puter hardware”, “photography” and “Japanese manga and
anime”), which were cleaned manually starting from Lynx
text dumps. Each page was cleaned independently by
two annotators, and conflicts were resolved by a third an-
notator. In total, the training data amount to more than
300,000 words and almost 2 million characters (after man-
ual cleanup). A detailed description of this gold standard is
given by Bauer et al. (2007).

Unfortunately, the gold standard only provides raw text
dumps and manually cleaned files, but does not explic-
itly mark boilerplate in the text dumps. Therefore, stan-
dard maximum-likelihood estimation of conditional prob-
abilities was only possible for the “clean” n-gram model.
For the “dirty” model, a differential training scheme had
to be used: n-gram counts for the clean pages were sub-
tracted from the corresponding n-gram counts for the raw
text dumps, the differences between the two values approx-
imating the n-gram counts that would be obtained from an
explicit boilerplate training corpus.

The best n-gram size n and the optimal value for the inter-
polation parameter ¢ were determined by minimisation of
cross-entropy on the raw text dumps, calculated by 10-fold
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Figure 1: Architecture of the NCLEANER system

cross-validation.® Figure 2 plots cross-entropy against the
interpolation parameter ¢ for various values of n. These
graphs suggest n = 6 and ¢ = 0.6 (a fairly strong interpo-
lation where unigrams still have a relative weight of 0.03)
as a good and robust choice, with a cross-entropy of 2.53
bits. Note that higher-order models (e.g. n = 8) require
extremely strong interpolation, indicating a low degree of
robustness.

Evaluation of the full system revealed that lower-order
models achieve slightly better accuracy despite higher
cross-entropy values, perhaps because of their better gen-
eralisation capabilities. The current implementation uses
models with n = 3 and ¢ = 0.5, but experiments indicate
that overall performance is robust across a wide range of
parameter values.

©

o noun
® ;oW =

cross—entropy (bits)
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|
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Figure 2: Parameter tuning for the n-gram language models
on joint “clean” and “dirty” training data.

A drawback of the n-gram approach is that it is highly
language-specific, and separate training data are required
for each new language the system is applied to. In order to
test whether it might be feasible to build a standard param-
eter file that works well for multiple languages, non-lexical
versions of the n-gram models have also been implemented,
which map all letters to a and all digits to 0. These models
cannot learn to recognise language-specific keywords and

SNote that a straightforward minimisation of cross-entropy on
the training data without cross-validation would lead to serious
overfitting. The raw text dumps were used because they comprise
both the clean and the “virtual” boilerplate training corpus.

have to rely on features such as word length and the pres-
ence of special characters (such as punctuation) for their
classification.

4. Internal evaluation

An internal evaluation of the NCLEANER algorithm was
carried out by cross-validation on the gold standard of
Bauer et al. (2007). In the CLEANEVAL competition,
minimum edit distance was used as an evaluation criterion.
However, there are two important drawbacks to this ap-
proach: (i) the resulting scores are not very intuitive and fail
to distinguish between false positives and false negatives
(which may have different importance in practical applica-
tions); (ii) the minimum edit distance algorithm is compu-
tationally expensive, and the Perl implementation provided
by the CLEANEVAL organisers was far too slow to be used
for extensive experiments.

Therefore, the evaluation of NCLEANER was carried out in
terms of word-level precision (i.e. the percentage of cor-
rect words in the automatically cleaned files) and recall
(i.e. the percentage of clean words in the gold standard
that were preserved by the automatic procedure). As an
overall measure, F-score (the harmonic mean of precision
and recall) was used. Precision and recall were determined
from a word-level sequence alignment of the automatically
cleaned pages with the corresponding gold standard ver-
sions, using a fast heuristic algorithm implemented in the
Python diff1lib package.

Table 2 shows precision, recall and F-score for (i) Lynx
text dumps as a baseline, (ii) the NCLEANER pre- and post-
processing heuristics without the language models, (iii) the
full NCLEANER system, and (iv) the non-lexical version of
the language models. Micro-averaged values are percent-
ages of correct words in the entire gold standard (i.e. pool-
ing data from all files); macro-averaged values calculate the
average and standard deviation of evaluation scores across
the individual files. Note that macro-averaged scores are
considerably lower than micro-averaged ones, which is due
to the very low precision and recall achieved on a num-
ber of particularly small files (containing only a handful of
clean words). While micro-averaged values obviously give
a better indication of the practical usefulness of the system,
the macro-averaged scores can be used to establish whether
observed differences are statistically significant.
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micro-averaged

macro-averaged

F-score precision recall F-score precision recall
Baseline 91.23 84.16 99.58 85.32+15.11 79.00+20.14 96.74 +02.13
Heuristics only 89.39 85.12 94.11 84.06 £18.03 79.16 +20.61 94.11+15.02
NCLEANER 91.60 9195 9125 87.63£15.50 88.47+14.21 89.74+£16.83
Non-lexical model 89.99 90.17 89.82 85.60+£16.84 85.35+17.53 89.37+17.37

Table 2: Internal evaluation results of the NCLEANER algorithm on the gold standard of Bauer et al. (2007), showing both
micro-averaged and macro-averaged F-score, precision and recall (as percentages calculated at word level).

It is obvious from Table 2 that NCLEANER achieves an im-
provement over the baseline, and that the n-gram language
models are an essential component of the algorithm: using
only the heuristic rules, performance drops even below the
baseline. The macro-averaged data show that the improve-
ment is statistically significant (paired t-test for F-scores of
NCLEANER vs. baseline across texts: t = 1.976, df = 157,
p = .0499).

More importantly, NCLEANER trades off recall for preci-
sion, achieving a good balance with both precision and re-
call above 91%. Note that the increase in micro-averaged
precision from 84.16% to 91.95% corresponds to a 50%
reduction of the error rate. Since it is easy to collect large
amounts of text from the Web, high recall is usually not im-
portant for Web corpora, so the trade-off is well justified.
The histogram in Figure 3 shows that precision is almost
always increased over the baseline for the individual files
in the gold standard, so users of NCLEANER can be confi-
dent that automatically cleaned Web pages will only rarely
be “worse” than their uncleaned counterparts. For a con-
siderable number of files, precision was increased by more
than 10 percent points.

Of course, the non-lexical model does not perform as
well, but still achieves significantly better precision than
the baseline (paired t-test for precision across texts: ¢t =
9.0557, df = 157, p = 5.055 - 10~16).

5. External evaluation

The standard parameter files included in the NCLEANER
distribution were trained on the full gold standard of Bauer
et al. (2007). Further evaluation of these models was car-
ried out on an external data set: the official test set of
the CLEANEVAL competition, containing 674 manually
cleaned files with a total of 1.6 million words of clean text.
The micro-averaged results reported in Table 3 give a good
indication of the accuracy that NCLEANER will achieve in
real-world applications. It is also interesting to compare the
intuitively meaningful precision and recall values shown
there to the official overall score that NCLEANER achieved
on the same test set in the CLEANEVAL competition (Ta-
ble 1).

Quite surprisingly, the trade-off between recall and preci-
sion works even better on the external data set, where the
NCLEANER system achieves a micro-averaged precision of
94.70%, corresponding to a reduction in error rate by al-
most 70%. Note that the baseline results are much lower
than for the internal evaluation, with a recall of little more
than 95%. This can mostly be traced to some issues with

F-score precision recall
Baseline 88.72 83.11 95.15
NCLEANER (HTML) 92.73 94.70  90.83
NCLEANER (text) 90.18 90.30 90.05
Non-lexical (HTML) 92.31 91.65 9297
Non-lexical (text) 89.86 89.88 89.85

Table 3: Micro-averaged evaluation results of the standard
NCLEANER parameter files on the official CLEANEVAL
test set (percentages calculated at word level).

character encoding, formatting and “hidden” text in the
Web pages. Apparently, the text dumps that served as a
basis for the manual cleanup of the CLEANEVAL test set
were generated by a different tool than Lynx.

When applied to existing text dumps rather than HTML
files, NCLEANER achieves considerably lower accuracy
(demonstrating the importance of the heuristics, which
seemed only to make text quality worse in the cross-
validation experiments). It is still a significant improvement
over the baseline with well-balanced precision and recall of
approximately 90%.

The non-lexical model performs somewhat worse than the
standard model on HTML files, especially with respect to
precision. On plain text dumps, there is no significant dif-
ference between the two models. At least for this purpose,
the non-lexical parameter file contained in the NCLEANER
distribution is probably also useful for other European lan-
guages than English.

F-score precision recall
Baseline 0.00 0.00  0.00
NCLEANER (HTML) 60.85 69.30 54.24
NCLEANER (text) 34.04 2898 41.25
Non-lexical (HTML) 55.76 5276 59.13
Non-lexical (text) 33.21 2743  42.07

Table 4: Micro-averaged labelled segmentation accu-
racy of the standard NCLEANER parameter files (official
CLEANEVAL test set, percentages of all segment mark-
ers).

Table 4 shows evaluation results for paragraph segmenta-
tion and labelling (as heading, list item or standard text
paragraph). The F-score of the standard NCLEANER model
applied to HTML pages is remarkably similar to its official
result in the CLEANEVAL competition (Table 1). While
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Figure 3: Distribution of precision differences between NCLEANER and the baseline for individual files in the gold standard

of Bauer et al. (2007).

NCLEANER does not achieve satisfactory accuracy in this
task yet, the main focus of future development will remain
on text cleaning. Without information from the HTML
markup (i.e. on plain text file), labelling performance is ran-
dom (almost all segments are identified as standard para-

graphs).
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Figure 4: Learning curve of NCLEANER, using incremental
subsets of the gold standard (Bauer et al., 2007) for training
and the CLEANEVAL test set for evaluation (all values are
micro-averaged).

A crucial issue for any supervised learning approach is the
amount of training needed to train a high-quality model.
Figure 4 shows the learning curve of NCLEANER trained on
incremental subsets of the gold standard. The F-score curve
quickly levels off, and precision even degrades slightly due
to overtraining effects. While there is some random varia-
tion for very small training sets, 50,000 to 100,000 words
of training data appear to be completely sufficient, cor-
responding to less than 50 manually cleaned Web pages.
Even with a very small training set consisting of 10 or
fewer randomly selected Web pages, precision is consis-
tently above 94% and recall around 90%. This suggests
that NCLEANER can be adapted to other languages or
tasks (such as cleaning newsgroup postings) with minimal
amounts of manually annotated data.

6. Availability and practical issues

One advantage of the naive n-gram modelling approach
taken by NCLEANER is its low computational complexity.
The size of the standard parameter file is only 2.3 MB in
a redundant, human-readable format; in compressed form,
it shrinks to 600 KB. Even the research prototype imple-
mented in fully portable Perl code processes approximately
20 million words per hour on a standard server-class ma-
chine and occupies less than 20 MB of working memory
while running. The mixed Perl/C implementation processes
more than 120 million words per hour, making it suitable
even for large Web corpora in the gigaword range.

The NCLEANER software is available as an open-source
Perl package (Text-NCleaner), which can be down-
loaded from http://webascorpus.sf.net/. The
Python script used for evaluation (cleaneval.py) is
available from the same Web page.
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