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Abstract 
This paper summarizes the annotation of fine-grained entailment relationships in the context of student answers to science assessment 
questions.  We annotated a corpus of 15,357 answer pairs with 145,911 fine-grained entailment relationships.  We provide the rationale 
for such fine-grained analysis and discuss its perceived benefits to an Intelligent Tutoring System.  The corpus also has potential applications 
in other areas, such as question answering and multi-document summarization.  Annotators achieved 86.2% inter-annotator agreement 
(Kappa=0.728, corresponding to substantial agreement) annotating the fine-grained facets of reference answers with regard to understanding 
expressed in student answers and labeling from one of five possible detailed relationship categories.  The corpus described in this paper, 
which is the only one providing such detailed entailment annotations, is available as a public resource for the research community.  The 
corpus is expected to enable application development, not only for intelligent tutoring systems, but also for general textual entailment 
applications, that is currently not practical.  

 

1. Introduction 
Determining whether the propositions in one text frag-
ment are entailed by those in another fragment is im-
portant to numerous NLP applications. Consider an intel-
ligent tutoring system (ITS), where it is critical for the 
tutor to assess which specific facets of the desired or 
reference answer are entailed by the student’s answer. 
Truly effective interaction and pedagogy is only possible 
if the automated tutor can assess this entailment at a rela-
tively fine level of detail (c.f. Jordan et al., 2004).  

Still, most ITSs today provide only a shallow as-
sessment of the learner’s comprehension (e.g., a correct 
versus incorrect decision).  Many ITS researchers are 
striving to provide more refined learner feedback 
(Graesser et al., 2001; Jordan et al., 2004; Peters et al., 
2004; Roll et al., 2005; Rosé et al., 2003; VanLehn et al., 
2005); however, they are developing very do-
main-dependent approaches, requiring a significant in-
vestment in hand-crafted logic representations, parsers, 
knowledge-based ontologies, and or dialog control 
mechanisms.  Similarly, research in the area of scoring 
constructed responses to short answer questions (e.g., 
Callear et al., 2001; Leacock, 2004; Mitchell et al., 2003; 
Pulman and Sukkarieh, 2005) also relies heavily on 
hand-crafted pattern rules, rather than being designed 
with the goal of accommodating dynamically generated, 
previously unseen questions and does not provide feed-
back regarding the specific aspects of answers that are 
correct or incorrect. 

The PASCAL Recognizing Textual Entailment (RTE) 
challenge (Dagan et al., 2005) is addressing the task of 
domain independent inference, but the task only requires 
systems to make yes-no judgments as to whether a hu-
man reading one text snippet would typically consider a 
second text to most likely be true in its entirety.  This 
paper discusses some of the extensions necessary to the 
RTE scheme in order to satisfy the requirements of an 
ITS, provides a report on our efforts to produce such an 
annotated corpus, and presents results of an initial auto-
mated classifier. 

2. The Necessity of Finer-grained Analysis 
In order to optimize learning gains in the tutoring envi-
ronment, there are myriad issues the tutor must under-
stand regarding the semantics of the student’s response.  
Here, we focus strictly on drawing inferences regarding 
the student’s understanding of the low-level concepts 
and relationships or facets of the reference answer.  We 
use the word facet throughout this paper to generically 
refer to some part of a text’s meaning, most commonly 
the meaning associated with a syntactic dependency. 

Imagine that you are an elementary school science 
tutor and that rather than having access to the student’s 
full response to your questions, you are simply given the 
information that their answer was correct or incorrect, a 
yes or no entailment decision.  Assuming the student’s 
answer was not correct, what question do you ask next?  
What follow up question or action is most likely to lead 
to better understanding on the part of the child?  Clearly, 
this is a far from ideal scenario, but it is roughly the 
situation within which many Intelligent Tutoring Sys-
tems exist today. 

Rather than have a single yes or no entailment deci-
sion for the reference answer as a whole, (i.e., does the 
student understand the reference answer in its entirety or 
is there some unspecified part of it that we are unsure 
whether the student understands), we break the reference 
answer down into what we consider to be its lowest level 
compositional facets.  This roughly translates to the set 
of triples composed of labeled (typed) dependencies in a 
dependency parse.1  The following illustrates how a sim-
                                                           
1 In a dependency parse, the syntactic structure of a sentence is 
represented as a set of lexical items connected by binary directed 
modifier relations called dependencies.  The goal of most English 
dependency parsers is to produce a single projective tree structure 
for each sentence, where each node represents a word in the sentence, 
each link represents a functional category relation, often labeled, 
between a governor (head) and a subordinate (modifier), and each 
node has a single governor (c.f., Nivre and Kubler, 2006).  Each 
dependency can be labeled with a type, (e.g., subject, object, nmod 
– noun modifier, vmod – verb modifier, sbar – subordinate or relative 
clause). 
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ple reference answer (1) is decomposed into the answer 
facets (1a-d) derived from its dependency parse (see 
Figure 1), with (1a’-d’) providing a gloss of each facet’s 
meaning.  As can be seen in 1b and 1c, the dependencies 
are augmented with thematic roles (e.g., Agent, Theme, 
Cause, etc.; c.f., Kipper et al., 2000). The facets also in-
clude those semantic role relations that are not derivable 
from a typical dependency parse tree.  For example, in 
the sentence “As it freezes the water will expand and 
crack the glass”, water is not a modifier of crack in a 
typical dependency tree, but it does play the role of 
Agent in a semantic parse. 

(1) A long string produces a low pitch 
(1a) NMod(string, long) 
(1a’) There is a long string. 
(1b) Agent(produces, string) 
(1b’) The string is producing something. 
(1c) Product(produces, pitch) 
(1c’) A pitch is being produced. 
(1d) NMod(pitch, low) 
(1d’) The pitch is low. 

 

Figure 1. Dependency parse tree for example (1) 

Breaking the reference answer down into fine-grained 
facets permits a more focused assessment of the stu-
dent’s response, but a simple yes or no entailment at the 
facet level still lacks semantic expressiveness with re-
gard to the relation between the student’s answer and the 
reference answer facet in question.  For example, did the 
student contradict the facet or completely fail to address 
it?  Did they express a related concept that indicates a 
misconception?  Did they leave the facet unaddressed?  
Can you assume that they understand the facet even 
though they did not express it, (e.g., it was part of the 
information given in the question)?  It is clear that, in 
addition to breaking the reference answer into 
fine-grained facets, it is also necessary to break the an-
notation labels into finer levels in order to specify more 
clearly the relationship between the student’s answer and 
the reference answer aspect.  There are many other rep-
resentational issues that the system must be able to han-
dle in order to achieve near optimal tutoring, but these 
two – breaking the reference answer into fine-grained 
facets and utilizing more expressive annotation labels – 
are the emphasis of this work. 

3. Answer Annotation 

3.1 Corpus 
Because most text comprehension problems take root in 
elementary school during the early years of learning to 
read and comprehend text, this work focuses on those 
critical grades. Not yet having interactions with an 
automated tutoring system, we acquired data gathered 
from 3rd-6th grade students utilizing the Full Option 
Science System (FOSS), a proven research-based system 
that has been in use across the United States for over a 

decade (Lawrence Hall of Science, 2005).  Assessment is 
a major FOSS research focus, a key component of which 
is the Assessing Science Knowledge (ASK) project, “de-
signed to define, field test, and validate effective assess-
ment tools and techniques to be used by grade 3–6 
classroom teachers to assess, guide, and confirm student 
learning in science” (Lawrence Hall of Science, 2006).  

FOSS includes sixteen diverse science teaching and 
learning modules (see Table 1) and for each module, the 
FOSS research team designed a set of summative as-
sessment questions with reference answers.  These as-
sessments included multiple-choice questions, fill in the 
blank questions, and questions requesting drawings, as 
well as constructed response questions.  We reviewed 
ASK’s constructed response questions and selected all of 
those that were in line with our research goals, which 
consisted of 287 questions.  A representative sample of 
the questions selected with their reference answers and 
an example student answer are shown in Table 2. 

These questions had expected responses ranging in 
length from moderately short verb phrases to several 
sentences.  We eliminated fill in the blank questions and 
questions that we thought were likely to result in short 
noun phrase answers regardless of the length of the re-
ference answer, assuming these could generally be suc-
cessfully assessed by most of today’s systems and would 
not benefit from a more fine-grained analysis.  Examples 
of such questions from the Physics of Sound module 
along with their reference answers and example student 
responses follow. 

Question: Besides air, what (if anything) can sound travel 
through?  
Reference Answer: Sound can also travel through liquids 
and solids. (Also other gases.)  
Student Answer: A screen door.   
Question: Name a property of the sound of a fire engine’s 
siren.  
Reference Answer: The sound is very loud. OR The sound 
changes in pitch.  
Student Answer: Annoying.   

We also eliminated most questions that could not be 
assessed objectively or that were very open ended.  Ex-
amples of such constructed response items are:  

Question: Design an investigation to find out a plant’s 
range of tolerance for number of hours of sunlight per day.  
You can use drawings to help explain your design. 
Question: Design a way to use carbon printing to find out 
if two Labrador retrievers have the same paw patterns. Be 
sure your plan will not be harmful to the dogs. 

Still, there were several moderately open ended ques-
tions within the 287 selected.  Generally, open ended 
questions were included if it seemed highly likely that 
students would address the same points that were in-
cluded in the reference answer.  An example of a ques-
tion in this category follows. 

Question: What should you do if it appears that an animal 
is being harmed during an investigation? 
Reference Answer: Answers will vary.  Examples: Be more 
careful with the animal.  Stop the investigation.  Change 
the investigation so it is safer for the animal. 
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Grade Life Science Physical Science and  
Technology 

Earth and Space 
Science 

Scientific Reasoning and 
Technology 

3-4 HB: Human Body 
ST: Structure of Life  

ME: Magnetism & Electricity 
PS: Physics of Sound  

WA: Water 
EM: Earth Materials  

II: Ideas & Inventions 
MS: Measurement  

5-6 FN: Food & Nutrition 
EV: Environments 

LP: Levers & Pulleys 
MX: Mixtures & Solutions 

SE: Solar Energy 
LF: Landforms 

MD: Models & Designs 
VB: Variables 

Table 1. FOSS / ASK Learning and Assessment Modules by Area and Grade 

HB Q: Dancers need to be able to point their feet. The tibialis is the major muscle on the front of the leg and the 
gastrocnemius is the major muscle on the back of the leg. Describe how the muscles in the front and back 
of the leg work together to make the dancer’s foot point. 

R: The muscle in the back of the leg (the gastrocnemius) contracts and the muscle in the front of the leg (the 
tibialis) relaxes to make the foot point. 

A: The back muscle and the front muscle stretch to help each other pull up the foot. 
ST Q: Why is it important to have more than one shelter in a crayfish habitat with several crayfish? 

R: Crayfish are territorial and will protect their territory. The shelters give them places to hide from other 
crayfish. [Crayfish prefer the dark and the shelters provide darkness.] 

A: So all the crayfish have room to hide and so they do not fight over them. 
ME Q: Lee has an object he wants to test to see if it is an insulator or a conductor. He is going to use the circuit 

you see in the picture. Explain how he can use the circuit to test the object. 
R: He should put one of the loose wires on one part of the object and the other loose wire on another part of 

the object (and see if it completes the circuit). 
A: You can touch one wire on one end and the other on the other side to see if it will run or not. 

PS Q: Kate said: “An object has to move to produce sound.”  Do you agree with her?   Why or why not? 
R: Agree. Vibrations are movements and vibrations produce sound. 
A: I agree with Kate because if you talk in a tube it produce sound in a long tone.  And it vibrations and 

make sound. 
WA Q: Anna spilled half of her cup of water on the kitchen floor. The other half was still in the cup. When she 

came back hours later, all of the water on the floor had evaporated but most of the water in the cup was 
still there. (Anna knew that no one had wiped up the water on the floor.)  Explain to Anna why the water 
on the floor had all evaporated but most of the water in the cup had not. 

R: The water on the floor had a much larger surface area than the water in the cup. 
A: Well Anna, in science, I learned that when water is in a more open are, then water evaporates faster. So, 

since tile and floor don't have any boundaries or wall covering the outside, the water on the floor evapo-
rated faster, but since the water in the cup has boundaries, the water in the cup didn't evaporate as fast. 

EM Q: You can tell if a rock contains calcite by putting it into a cold acid (like vinegar).  
Describe what you would observe if you did the acid test on a rock that contains this substance. 

R: Many tiny bubbles will rise from the calcite when it comes into contact with cold acid. 
A: You would observe if it was fizzing because calcite has a strong reaction to vinegar. 

Table 2. Sample Qs from FOSS-ASK with their reference answer (R) and an example student answer (A). 

We generated a corpus from a random sample of the 
students’ handwritten responses to these questions. ASK 
was pilot tested in several schools across the United 
States, with each ASK module typically being tested in 
two to five schools.  Therefore, the students whose an-
swers were transcribed represent a reasonably broad 
spectrum of the population.  The only special transcrip-
tion instructions were to fix spelling errors (since these 
would be irrelevant in a spoken dialog environment, the 
target of this work), but not grammatical errors (which 
would still be relevant), and to skip blank answers and 
non-answers similar in nature to I don’t know (since these 
are not particularly interesting from the research per-
spective).   

Three test sets were created by 1) withholding all the 
data from three modules (Environment, Human Body 
and Water) – resulting in a dataset that can be used to test 
domain-independent performance, 2) withholding all 
answers to a subset of questions from each of the other 
modules (22 questions) – resulting in a dataset that can 
be used to test question-independent performance, and 3) 
withholding four answers to each of the remaining ques-
tions – resulting in a dataset that can be used to test al-

gorithms intended to handle specific predetermined 
questions.  There are 56 questions, 5,557 student answers, 
and 47,800 fine-grained facet annotations in the do-
main-independent test set, comprising approximately 
20% of all of the questions utilized and 33% of the total 
number of facet annotations.  There are 22 questions, 997 
student answers, and 9,692 facet annotations in the ques-
tion-independent test set, comprising approximately 8% 
of all of the questions and 7% of the facet annotations.  
The third test set spans the remaining 73% of the ques-
tions and includes 852 learner responses and 8,700 facet 
annotations or 6% of all the annotations.  This resulted in 
around 45% of the facet annotations being set aside for 
testing the learning algorithms, with the remaining 55% 
(79,719 of 145,911) designated for training and devel-
opment tuning (7,951 of 15,357 answers).   

We selected the three domain-independent test set 
modules because they appeared to be representative of 
the entire corpus in terms of difficulty and appropriate-
ness for the types of questions that met our research in-
terests.  They were also roughly average sized modules 
in terms of their number of questions.  The items in-
cluded in the question-independent test set were chosen 
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randomly, but with two restricting criteria.  First, the 
items were chosen to include at least one question from 
each module in the training set and to, otherwise, main-
tain approximately the same question proportions as the 
training set (the five smallest modules had only one 
question, the largest had three, and the remaining seven 
modules had two questions).  Second, we did not include 
questions whose reference answers had significant over-
lap with questions that would remain in the training data.   

In order to maximize the diversity of language and 
knowledge represented by the training and test datasets, 
random selection of students was performed at the ques-
tion level rather than using the same students’ answers 
for all of the questions in a given module.  However, in 
total there were only about 200 children that participated 
in any individual science module assessment, so there is 
still moderate overlap in the students from one question 
to another within a given module.  On the other hand, 
each assessment module was given to a different group 
of children, so there is no overlap in students between 
modules. 

3.2 Annotation 
The annotation of student answers consists of two prin-
cipal steps.  First, each reference answer in the corpus, as 
specified by the ASK research team, was decomposed by 
hand into its constituent facets.  Then each student an-
swer was annotated relative to the facets in the corre-
sponding reference answer to describe whether and how 
the student addressed those facets.  Every student answer 
was annotated independently by two individuals and a 
third annotator reviewed the others’ labels and made the 
final decision on each facet’s label. 

3.2.1 Reference Answer Decomposition 
The ASK assessments included a reference answer for 
each of their constructed response questions.  These re-
ference answers were broken down into low-level facets, 
roughly extracted from the relations in a syntactic de-
pendency parse (c.f., Nivre and Scholz, 2004) and a shal-
low semantic parse (Gildea and Jurafsky, 2002).  This 
decomposition was performed by hand by an 
undergraduate Linguist and then reviewed for consis-
tency.  Since the decomposition is based closely on well 
established frameworks, dependency parsing and shallow 
semantic parsing, it was not included in the scope of the 
experimental research – no formal guidelines were writ-
ten and the facets were not double annotated to calculate 
inter-annotator agreement.  Generating gold standard 
referenced answer facets, rather than automatically ex-
tracting them, ensured higher quality entailment annota-
tion downstream. 

The Physics of Sound reference answers were dis-
tilled into their most critical elements.  However, mini-
mal changes were made to the remaining answers, since 
it is desirable for the system to be capable of handling 
future reference answers written by educators who do not 
have detailed knowledge of the assessment system, and 
in the long-term, to handle questions and reference an-
swers generated automatically by the ITS.  The most 
common transformations were to replace nearly all pro-
nouns with their coreferring nouns and to occasionally 
drop small parts of sentences that were not relevant to 

the key concepts.  The following is a typical example 
that illustrates each of these modifications in italics. 

Original Reference Answer: James should compare the 
pattern of the pigments on the chromatograms. (If they 
are similar the pens were probably made by the same 
company.) 
Modified Reference Answer: Compare the pattern of 
the pigments on the chromatograms. If the chromato-
grams are similar the pens were probably made by the 
same company. 

The decomposition of the final reference answers 
began by determining the dependency parse, following 
the style of MaltParser (Nivre et al., 2006).  This de-
pendency parse was then modified in several ways.  
Figure 2 shows the standard MaltParser dependency 
parse and the revised parse for a reference answer frag-
ment that includes several of the issues discussed in the 
following paragraphs.  Example 2 illustrates the decom-
position of this same answer fragment into its constituent 
facets along with their glosses.   

(2) The brass ring would not stick to the nail because 
the ring is not iron. 

(2a)  NMod(ring, brass)  
(2a’) The ring is brass. 
(2b)  Theme_not(stick, ring) 
(2b’) The ring does not stick. 
(2c)  Destination_to_not(stick, nail) 
(2c’) Something does not stick to the nail. 
(2d)  Be_not(ring, iron) 
(2d’) The ring is not iron. 
(2e)  Cause_because(2b-c, 2d) 
(2e’) 2b and 2c are caused by 2d. 

 

Figure 2. Typical dependency parse revisions to 
extract reference answer facets 

First, wherever a shallow semantic parse would iden-
tify a predicate argument structure, we used thematic role 
labels (c.f., Kipper, Dang and Palmer, 2000) between the 
predicate and the argument’s headword, rather than the 
MaltParser dependency tags.  This also involved, adding 
new structural dependencies that a typical dependency 
parser would not generate. For example, in the sentence 
“As it freezes the water will expand and crack the glass”, 
water is not a modifier of crack in the typical depend-
ency tree, but it does play the role of Agent in a semantic 
parse.  In a small number of instances, these labels were 
also attached to noun modifiers, most notably the Lo-
cation label.  For example, given the reference answer 
fragment The water on the floor had a much larger surface 
area, one of the facets extracted was Location_on(water, 
floor). 
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The manual parses raised lexical items to governor 
status when they contextually carried more significant 
semantics.  For example, in the noun phrase the bunch of 
leaves, typically bunch is considered the syntactic gov-
ernor.  Whereas, we treat leaves as the governor, because 
it carries more semantics.  The parses were also modified 
to incorporate prepositions, copulas, terms of negation, 
and similar terms into the dependency type labels (c.f., 
Lin and Pantel, 2001).  This can be seen in the second 
(revised) reference answer parse in Figure 2, where to, 
because, be, and not were incorporated into the relations 
of the consolidated dependencies, (e.g., normally ring is 
not iron is parsed as three dependencies, Sub(is, ring), 
VMod(is, not), and Prd(is, iron), but here they are com-
bined into the single dependency Be_not(ring, iron)).  
When auxiliaries did not contribute much to the seman-
tics of the reference answer, they were not included in 
the facets extracted.   

We refer to facets that express relations between 
higher-level propositions as inter-propositional facets.  
An example of such a facet is (2e) above, connecting the 
proposition the brass ring did not stick to the nail to the 
proposition the ring is not iron.  In addition to specifying 
the headwords of inter-propositional facets (stick and is, 
in 2e), we also indicate up to two key facets from each of 
the propositions that the relation is connecting (b, c, and 
d in example 2).  Reference answer facets that are as-
sumed to be understood by the learner a priori, (e.g., 
because they are part of the question), are also marked to 
indicate this.   

There were a total of 2877 reference answer facets, 
resulting in a mean of 10 facets per question (median of 
8 facets).  Table 3 shows a high-level break down of the 
reference answer facets.  Facets that were assumed to be 
understood a priori by students accounted for 33% of all 
facets and inter-propositional facets accounted for 11%.  
The experiments in automated annotation of student an-
swers (section 4) focus on the facets that are not assumed 
to be understood a priori (67% of all facets); of these, 
12% are inter-propositional.   

Category Freq. Freq./Q % of 
Total 

% (not) 
assumed 

All facets 2877 10.0 100  
Assumed 949 3.3 33  
Not assumed 1928 6.7 67  
Inter-propositional 326 1.1 11  
Simple 2551 8.9 89  
Inter-propositional 
assumed 

100 0.3 3 11 

Simple assumed 849 3.0 30 89 
Inter-propositional 
not assumed 

226 0.8 8 12 

Simple not assumed 1702 5.9 59 88 
Table 3. Frequency of reference facets by category 

A total of 35 different facet relation types were 
utilized (see Table 4).  The majority, 21, are VerbNet 
thematic roles.  Direction, Manner, and Purpose are 
PropBank adjunctive argument labels (Palmer et al., 
2005).  Quantifier, Means, Cause-to-Know, copulas and 
similar verbs (e.g., be, become, do, and have) were also 
used as facet relation types.  Finally, anything that did 
not fit into the above categories retained its dependency 

parse type: VMod (Verb Modifier), NMod (Noun Modi-
fier), AMod (Adjective or Adverb Modifier), and Root 
(Root was used when a single word in the answer, typi-
cally yes, no, agree, disagree, A-D, or a number, stood 
alone without a significant relation to the remainder of 
the reference answer; this occurred only 23 times, ac-
counting for fewer than 1% of the reference answer fa-
cets).  The seven highest frequency relations are NMod, 
Theme, Cause, Be, Patient, AMod, and Location, which 
together account for 70% of the reference answer facet 
relations. 

VerbNet 
Role 

Not 
Asmd 

Asmd Ttl Other Roles Not 
Asmd 

Asmd Ttl 

Actor 0 1 1 PropBk Adjs    
Agent 22 35 57 Direction 15 4 19 
Attribute 12 0 12 Manner 37 6 43 
Beneficiary 3 0 3 Purpose 2 2 4 
Cause 164 80 244     
Destination 57 17 74 Misc. Types    
Experiencer 8 7 15 Cause-know 15 12 27 
Extent 23 10 33 Means 51 27 78 
Instrument 13 7 20 Quantifier 61 26 87 
Location 84 43 127     
Material 26 9 35 Special Vbs    
Patient 93 44 137 Be 140 50 190 
Predicate 31 5 36 Become 7 2 9 
Product 47 15 62 Do 1 0 1 
Recipient 14 6 20 Have 23 25 48 
Source 11 5 16     
Stimulus 9 2 11 Dependency    
Theme 279 127 406 AMod 112 24 136 
Time 65 20 85 NMod 447 322 769 
Topic 11 6 17 Root 23 0 23 
Value 3 1 4 VMod 19 9 28 

Table 4. Reference answer facet types and frequencies 

3.2.2 Annotation Guidelines 
The answer assessment annotation described in this 
chapter is intended to be a step toward specifying the 
detailed semantic understanding of a student’s answer 
that is required for an ITS to interact as effectively as 
possible with a learner.  With that goal in mind, annota-
tors were asked to consider and annotate according to 
what they would want to know about the student’s an-
swer if they were the tutor.  However, we only annotate a 
student’s answer relative to the constituent facets of the 
reference answer.  If the student also discusses concepts 
not addressed in the reference answer, those points are 
not annotated regardless of their quality or accuracy. 

After analyzing much of the Physics of Sound data, 
we settled on the eight annotation labels noted in Table 5 
(Nielsen and Ward, 2007).  Descriptions of where each 
annotation label applies and some of the most common 
annotation issues were detailed with several examples in 
the guidelines and are summarized below. 

Example 3 shows a question and a fragment of its re-
ference answer broken down into its constituent facets 
with an indication of whether the facet is assumed to be 
understood a priori.  A corresponding student answer is 
shown in (4) along with its final annotation in 3a’-c’.  It 
is assumed that the student understands that the pitch is 
higher a priori (reference answer facet 3b), since this is 
given in the question (… Write a note to David to tell him 

3445



why the pitch gets higher rather than lower) and similarly 
it is assumed that the student will be explaining what has 
the causal effect of producing this higher pitch (facet 3c).  
Therefore, unless the student explicitly addresses these 
facets they are labeled Assumed. 
 

Assumed: Reference answer facets that are assumed 
to be understood a priori, most often based on the 
question 
Expressed: Any reference answer facet directly ex-
pressed or inferred by simple reasoning 
Inferred: Reference answer facets inferred by prag-
matics or nontrivial logical reasoning 
Contra-Expr: Reference answer facets directly con-
tradicted by negation, antonymous expressions and 
their paraphrases 
Contra-Infr: Reference answer facets contradicted by 
pragmatics or complex reasoning 
Self-Contra: Reference answer facets that are both 
contradicted and implied (self contradictions) 
Diff-Arg: The core relation is expressed, but it has a 
different modifier or argument 
Unaddressed: Reference answer facets that are not 
addressed at all by the student’s answer 

Table 5. Facet Annotation Labels 

 (3) Question: After playing the FOSS-ulele, David 
wrote his results in his lab notebook: 
I’m confused. When I pull down and tighten the string 
on the FOSS-ulele, then pluck the string, the pitch 
sounds HIGHER than it did before. But aren’t I 
making the string longer when I pull the string? I 
thought a longer length produced a LOWER pitch. 
What’s going on here?  
What is causing the pitch to be higher? Write a 
note to David to tell him why the pitch gets 
higher rather than lower. 
Reference Answer: The string is tighter, so the 
pitch is higher. 

(3a) Be(string, tighter), --- 
(3b) Be(pitch, higher), Assumed 
(3c) Cause(3b, 3a), Assumed 

(4) David this is why because you don't listen to 
your teacher. If the string is long, the pitch will 
be high. 

(3a’) Be(string, tighter), Diff-Arg 
(3b’) Be(pitch, higher), Expressed 
(3c’) Cause(3b’, 3a’), Expressed 

Since the student does not contradict the fact that the 
string is tighter (the string can be both longer and tighter), 
we do not label this facet as Contradicted.  If the stu-
dent’s response did not mention anything about either the 
string or tightness, we would annotate reference answer 
facet 3a’ as Unaddressed.  However, the student did dis-
cuss a property of the string, the string is long.  This par-
allels the reference answer facet Be(string, tighter) with 
the exception of a different argument to the Be relation, 
resulting in the annotation Diff-Arg.  This indicates to the 
tutor that the student expressed a related concept, but one 
which neither implies that they understand the facet nor 
that they explicitly hold a contradictory belief.  Often, 
this indicates the student has a misconception.  For ex-
ample, when asked about an effect on pitch, many stu-

dents say things like the pitch gets louder, rather than 
higher or lower, which implies a misconception involv-
ing their understanding of pitch and volume.  In this case, 
the Diff-Arg label can help focus the tutor on correcting 
this misconception.  Facet 3c’, expressing the causal 
relation between 3a’ and 3b’, is labeled Expressed, since 
the student did express a causal relation between the con-
cepts aligned with 3a’ and 3b’.  The tutor then knows 
that the student was on track in regard to attempting to 
express the desired causal relation and the tutor need 
only deal with the fact that the cause given was incorrect.   

The Self-Contra annotation is used in cases like the 
response in example 5, where the student simultaneously 
expresses the contradictory notions that the string is 
tighter and that there is less tension. 

(5) The string is tighter, so there is less tension so 
the pitch gets higher. 

(3a”) Be(string, tighter), Self-Contra 
(3b”) Be(pitch, higher), Expressed 
(3c”) Cause(3b”, 3a”), Expressed 

Example 6 illustrates a case where a student’s answer 
is labeled Inferred.  In this case, the decision requires 
pragmatic inferences, applying the Gricean maxims of 
Relation, be relevant – why would the student mention 
vibrations if they did not know they were a form of 
movement – and Quantity, do not make your contribu-
tion more informative than is required (Grice, 1975). 

(6) Question: Kate said: “An object has to move to 
produce sound.” Do you agree with her? Why or 
why not? 
Reference Answer: “Agree. Vibrations are 
movements and vibrations produce sound.” 
Student Answer: Yes because it has to vibrate to 
make sounds. 

(6a) Root(root, agree), Expressed 
(6b) Be(vibration, movement), Inferred 
(6c) Agent(produce, vibrations), Expressed 
(6d) Product(produce, sound), Expressed 

There is no compelling reason from the perspective 
of the automated tutoring system to differentiate between 
Expressed, Inferred and Assumed facets, since in each 
case the tutor can assume that the student understands 
the concepts involved.  However, from the systems de-
velopment perspective there are three primary reasons 
for differentiating between these facets and similarly 
between facets that are contradicted by inference versus 
by more explicit expressions.  The first reason is that 
most systems today cannot hope to detect very many 
pragmatic inferences, which are the main source of the 
Inferred and Assumed labels, and including these in the 
training data can sometimes confuse learning algorithms 
resulting in worse performance.  Having separate labels 
allows one to remove the more difficult inferences from 
the training data, thus eliminating this issue.  The second 
rationale is that systems hoping to handle both types of 
inference might more easily learn to discriminate be-
tween these opposing classifications if the classes are 
distinguished (for algorithms where this is not the case, 
the classes can easily be combined automatically).  
Similarly, this allows the possibility of training separate 
classifiers to handle the different forms of inference.  
The third reason for separate labels is that it can facilitate 
system evaluation, including the comparison of various 
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techniques and the effect of individual features – one can 
assess separately whether a technique or feature had a 
positive or negative impact on the Inferred facets or on 
the Expressed facets. 

Annotators were all college students, ranging from 
first year undergraduates to graduate students and came 
from a variety of departments including Education, Lin-
guistics, Computer Science, and Cognitive Science.  In 
total, seven annotators were involved over the course of 
the project.  Generally, the same annotator performed the 
entire first, second, or adjudication tagging for all of the 
questions in a given science module to reduce the learn-
ing curve. 

3.3 Inter-Annotator Agreement Results 
We report results under three groupings: (1) All-Labels, 
where all labels are left separate, (2) Tutor-Labels, con-
sisting of the five labels that will be used by the auto-
mated tutor, where Expressed, Inferred and Assumed are 
combined into a single Understood class (i.e., the anno-
tator believes the student understands the facet) and 
Contra-Expr and Contra-Infr are replaced with Contra-
dicted (i.e., the annotator believes the student holds a 
view contradictory to the reference answer facet), and (3) 
Yes-No, which is a binary decision, Understood versus all 
other labels. The Tutor-Labels grouping will likely be 
used by the ITS, since it is relatively unimportant to dif-
ferentiate between the types of inference required in de-
termining that the student understands a reference an-
swer facet. 

We calculate inter-annotator agreement and Cohen’s 
Kappa statistic (Cohen, 1960) based on all 16 of the sci-
ence modules, totaling 142,451 total facet annotations2. 
Agreement on the Tutor-Labels is 86.2%, with a Kappa 
statistic of 0.728, corresponding with substantial agree-
ment.  Agreement is 78.4% on All-Labels and 88.0% on 
the binary Yes-No decision.  These too have Kappa stat-
istics in the range of substantial agreement (see Table 7 
for details). 

Label Grouping ITA % Kappa 
All-Labels 78.4% 0.704 
Tutor-Labels 86.2% 0.728 
Yes-No 88.0% 0.752 

Table 6. Inter-annotator agreement by label groupings 

The distribution of facet annotations is shown in 
Table 7. The most frequent fine-grained label is Unad-
dressed, at 36.0%, and the majority, 61.1%, of the Tu-
tor-Labels indicate the student understood the reference 
answer facet. An analysis of the inter-annotator confu-
sion matrix indicates that the most probable disagree-
ment is between Inferred and Unaddressed, representing 
39% of all the disagreements.  The next most likely dis-
agreements are between Expressed and the other Under-
stood labels (Inferred and Assumed), comprising 35% of 
the disagreements.  Confusion between Expressed and 
Unaddressed is also considerable, representing 10% of 
the annotator disagreements. 

                                                           
2 Part of the data used during annotator training was not double 
annotated and thus is not included in Table 6.   

Label Count % Count % 
Expressed 31,555 21.6 
Inferred 20,474 14.0 
Assumed 37,076 25.4 

 
89,105 

 
61.1 

Contra-Expr 1,426 1.0 
Contra-Infr 1056 0.7 2,482 1.7 

Self-Contra 86 0.1 86 0.1 
Diff-Arg 1,780 1.2 1,780 1.2 
Unaddressed 52,458 36.0 52,458 36.0 

Table 7. Distribution of classifications (145,911 facets) 

4. Results of Automated Classification 
We implemented a machine learning based classifier 
following Dagan et al. (2005) and Nielsen et al. (2006).  
(See (Nielsen et al., 2008) for details regarding the sys-
tem.)  A high level description of the system classifica-
tion procedure follows.  We start with the hand generated 
reference answer facets.  We generate automatic parses 
for the reference answers and the student answers and 
automatically modify these parses per our desired repre-
sentation. Then for each reference answer facet, we ex-
tract features indicative of the student’s understanding of 
that facet. Finally, we train a machine learning classifier 
on the training data and use it to classify unseen test 
examples, assigning a separate Tutor-Label for each re-
ference answer facet to indicate the student’s under-
standing of that reference answer facet.   

Training and testing excluded facets that were As-
sumed to be understood a priori.  At the time of training 
and evaluation, we had 54,967 facet annotations in the 
training set, 30,514 examples in the Unseen Modules test 
set, 6,699 examples in the Unseen Questions test set and 
3,159 examples in the Unseen Answers test set.  Table 6 
shows the classifier’s accuracy (percent correctly tagged) 
in 10-fold cross validation on the training set as well as 
on each of our test sets.  The row labeled Unseen An-
swers presents the accuracy when classifying different 
answers to the same questions that generated the training 
set answers.  Unseen Questions provides the accuracy of 
classifying answers to questions not used in the training 
set and Unseen Modules shows the accuracy on the do-
main-independent test data collected from very different 
science modules than were used for training.  The first 
two columns show the simple baseline accuracies of 1) a 
classifier that always outputs the most frequent class in 
the training set – Unaddressed, and 2) a lexical decision 
that outputs Understood if both the governing term and 
the modifier are present in the learner’s answer and out-
puts Unaddressed otherwise.  The ML System column 
represents the accuracy of the full classifier in predicting 
the five labels that will drive the system dialogue: 
Understood (Expressed and Inferred), Contradicted 
(Contra-Expr and Contra-Infr), Self-Contra, Diff-Arg, 
and Unaddressed. 

 
 Majority 

Class 
Lexical 
Baseline 

ML 
System 

Training 10x-CV 54.6 59.7 77.1 
Unseen Answers 51.1 56.1 75.5 
Unseen Questions 58.4 63.4 66.5 
Unseen Modules 53.4 62.9 68.8 

Table 8. Classifier Accuracy on Tutor-Labels 
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5. Summary 
The goal of our fine-grained classification is to enable 
more effective tutoring dialog management.  The addi-
tional labels facilitate understanding the type of mis-
match between the reference answer and the student’s 
answer.  Breaking the reference answer down into 
low-level facets enables the tutor to provide feedback 
relevant specifically to the appropriate facet of the refer-
ence answer.  In the question answering domain, this 
facet-based classification would allow systems to accu-
mulate entailing evidence from a variety of corroborating 
sources and incorporate answer details that might not be 
found in any single sentence.  Similarly, in 
multi-document summarization, entailment at the facet 
level could help systems recognize or verify important 
aspects of a topic. This fine-grained classification can 
also facilitate more directed user feedback outside of the 
tutoring domain.  For example, both the additional clas-
sifications and the break down of facets can be used to 
justify system decisions. 

The corpus described in this paper, which is publicly 
available for research purposes3, was annotated with 
substantial inter-annotator agreement at 86.2%, 
(Kappa=0.728) and represents a substantial contribution 
to the entailment community, including 145,911 facet 
entailment annotations.  By contrast, three years of RTE 
challenge data comprise fewer than 4,600 entailment 
annotations.  More importantly, this is the only corpus 
that provides entailment information at the fine-grained 
level described in this paper. 

This is a new task and new dataset and the results are 
very promising.  Classification according to the Tu-
tor-Labels is 24.4%, 8.1%, and 15.4% over the most fre-
quent class baseline for Unseen Answers, Questions, and 
Modules respectively.  These results demonstrate that the 
task is feasible and we believe will become an effective 
component in entailment applications.  We are currently 
working toward integrating the classifier into an intelli-
gent tutoring system.  
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