
Using similarity measures to extend the LinGO lexicon

Lynne Cahill

Natural Language Technology Group
University of Brighton
Brighton BN2 4GJ, UK

L.Cahill@brighton.ac.uk

Abstract
Deep processing of natural language requires large scale lexical resources that have sufficient coverage at a sufficientlevel of detail
and accuracy (i.e. both recall and precision). Hand-crafted lexicons are extremely labour-intensive to create and maintain, and require
continuous updating and extension to retain their level of usability. In this paper we present a technique for extendinglexicons using
similarity measures that can be extracted from corpora. Thetechnique involves creating lexical entries for unknown words based on
entries for words that are known and that are deemed to be distributionally similar. We demonstrate the usefulness of theapproach by
providing an extended lexicon for the LinGO system using similarity measures extracted from the BNC. We also discuss theadvantages
and disadvantages of using such lexical extensions in different ways – principally either as part of the main lexicon or as a separate
resource used only for “last resort” use.

1. Introduction
NLP applications that require deep semantic analysis or
generation from sophisticated semantic representations can
rarely get by without large scale lexical resources. Al-
though statistical methods may produce excellent results
for certain (especially parsing) tasks without the benefit of
such resources, there are other tasks which simply must
have lexical resources of this type. This paper presents
a method for automatically extending existing lexical re-
sources for such applications.
The LinGO system can be used to either parse or gener-
ate. In parsing mode, it takes sentences of English and
produces a representation of the semantics in the form of
Minimal Recursion Semantics (Copestake, 2005). In gen-
eration mode, it takes an MRS and produces an English
sentence. The system comes with a wide coverage gram-
mar (known as the English Resource Grammar, or ERG)
consisting of HPSG grammar rules and a lexicon of around
22,000 words.
In order to extend the lexicon, syntactic as well as semantic
information is required for the words to be included. This
information can be found in a number of different types
of resource, such as electronic dictionaries, WordNet (Fel-
baum, 1998) etc.. The problem with many of these re-
sources is that they do not provide the precise information
needed, or do not provide it in a form that is easily accessi-
ble. WordNet, for example, gives us semantic information,
but lacks the syntactic information needed.
What we do have available to us is software, developed at
the University of Sussex (Weeds and Weir, 2005), which
can be used to extract, from any corpus, information about
the distributional similarity of the words that occur in the
corpus. If we can harness this resource to generate lexical
entries based on existing entries for words with a high de-
gree of similarity, we have the potential to extend lexicons
like the LinGO one almost infinitely.
After reviewing alternative approaches to lexical extension,
we first look at the LinGO system and the distributional
similarity software. We then present the method used to
generate new lexical entries. Next, we present an evaluation

of the usefulness of the technique for parsing within the
LinGO system. Finally, we discuss issues of how, exactly,
such automatically generated resources should be used and
the implications for precision and recall in the NLP tasks
that they are used for.

2. Previous work
There have been a number of different approaches sug-
gested to overcome the problem of lexical gaps. These
fit broadly into two different categories: (1) approaches
that dynamically try to analyse unrecognised lexical items
and (2) approaches that try to extend the lexicon to avoid
gaps while processing. This section looks only at those ap-
proaches that are geared towards the specific type of gram-
mar/lexicon in which we are interested.
(Baldwin et al., 2004) describes an approach to extending
the lexicon in the ERG manually, after ”road-testing” it on
the BNC. This approach is very much in the second cat-
egory above. It involves much more manual effort, and
understanding of the inner workings of LinGO (it makes
use of additional lexical rules, for example, as well as just
adding entries to the lexicon). It provides tools that enable
grammar/lexicon developers to extend the lexicon, but it as
crucially a manual rather than automatic task.
(Zhang and Kordoni, 2006) fits into the first category above,
dynamically creating lexical entries for unknown words
during parsing. What makes their approach distinct from
ours is primarily that they are concerned with assigning lex-
ical types, rather than matching individual lexical entries.
Depending on the structure of your lexicon and the size and
nature of the set of lexical types used, this might not be a
very significant difference, but our approach allows us to
generate entries based on a single entry rather than a whole
set.
Other approaches that don’t quite fit into either category
include, (Barg and Walther, 1998) and (Fouvry, 2003), who
use the notion of underspecified lexical entries to allow for
partial matching of unknown words. These approaches tend
to involve dynamically generating lexical entries which are
then added permanently to the lexicon.

3276

3. LinGO
LinGO (Copestake and Flickinger, 2000) is a combined
parser/generator which comes with a range of resources,
including the English Resource Grammar (ERG)1. This
grammar consists of HPSG grammar rules for English and
a lexicon of around 22,000 words. Although the coverage
is reasonable when it comes to frequent words, a lexicon of
this size will never be adequate for a wide range of differ-
ent domain specific texts, nor for open domain texts. Thus,
anyone wishing to use LinGO will typically need to extend
the lexicon to include the words required2.
The LinGO parser takes sentences of English and produces
representations in Minimal Recursion Semantics (Copes-
take, 2005). These representations can be given to the
LinGO generator to produce sentences of English. If a word
in a sentence is not present in the LinGO lexicon, the sys-
tem will fail to produce a parse. Similarly for generation,
if there is no lexical entry with the required semantic form,
then no sentence will be generated. Thus, the robustness of
the system depends on adequate lexical resources.
The lexical entries are relatively simple, providing a part
of speech classification, the stem, a more detailed syntac-
tic classification and a semantic representation. In addi-
tion, each lexical entry states whether the stem begins with
a vowel or a consonant (necessary for combining rules such
as a/an alternation).
As is well documented, lexical extension can be a very
labour-intensive task, and demands appropriate resources,
such as dictionaries, to be available. We therefore propose
a method of extending the LinGO lexicon that makes use of
existing technology, and which can be applied to informa-
tion extracted from any corpus.
The documentation that comes with the LinGO system (and
specifically the English Resource Grammar) stresses the
importance of lexical extension, explaining that the lexi-
con has been extended manually and “the lexicon now con-
tains all verb subcat entries for the 2000 most frequent verb
stems in the British National Corpus (BNC). This should
enable some interesting experimentation in automated lexi-
cal acquisition, since there are fewer lexical types that need
to be hypothesized for non-verbs.”3. This is interesting
from our point of view as it suggests exactly the kind of
experiment we are undertaking.

4. Distributional similarity
(Weeds and Weir, 2005) provides a flexible framework for
extracting measures of distributional similarity from cor-
pora. The framework allows parametrised analysis of dis-
tributional similarities using a variety of different possible
context-types. The similarity measures we make use of here
are those based on grammatical function, implemented ini-
tially to contruct (or extend) thesaurus-type resources. This

1We are using the release dated 05/06/2005.
2A significant proportion of the LinGO lexicon entries are for

multi-word expressions, rather than inidivdual words. Although
this is an interesting area, it is beyond the scope of the present
project, so our discussions will be confined to lexical entries for
single words.

3See lingo.stanford.edu – README file in the ERG grammar
component.

is most appropriate for our purposes, as we ideally want
words which are at least likely to be semantically as well as
syntactically similar. The output of this process is a file of
triples: the target word, the similar word and the similarity
measure. For example, a sample run applied to the BNC
and restricted to the most frequent 2000 nouns results in a
file with triples as in figure 1.
Note that the first entry for any target word lists it as hav-
ing a similarity value of 1 with itself. It should also be
noted that, although it is usually the case that words that
exhibit very high distributional similarity are also seman-
tically similar, this is not necessarily the case. The actual
values (for non-identical words) are rarely much above 0.4,
so we are typically looking at similarity measures between
0 and 0.4.

5. Generating lexical entries
We can now use the output of this process to generate ad-
ditional lexical entries. First we must decide how we wish
to integrate the additional lexical entries. The most sim-
ple approach involves adding the newly generated entries
to the existing lexicon, so that they are used in the same
way as other entries. At least two other approaches are pos-
sible. The first of these is to have two separate lexicons,
one of which is queried first, with the second used only as
a back-up, if no entry is found in the first. The second is to
generate the entries dynamically, only as they are required.
To date we have only tested using the first approach, but
this is risky, as we would rather give preferential status to
the lexical entries in which we have most confidence (i.e.
the hand crafted entries). We will discuss this issue further
in section 7.
The next decision we need to make is how to choose the
new words and the existing lexical entries to base them on.
Given the nature of the distributional similarity software,
the number of words that are given similarity measures for
each head word can be very large. The first word in the ex-
ample list above, for example, “importance” has a total of
1996 similarity values defined, that is one for almost all of
the 2000 nouns included in this particular set. The similar-
ity measure for the last of these (“globe”) is 0.0022. This
does not, of course, mean that there is the potential for 1996
additional entries for our head word. This is because, firstly,
many of these 1996 words will not have entries in our ex-
isting lexicon either. Secondly, many of the entries are so
similar that the new entries that we generate based on them
are identical. In view of the fact that there will be some
measure (potentially very small) of similarity between vir-
tually any word of the same major word class, we do not
wish to generate entries for every possible word pair. In
our experiments we have tested adding only a single entry,
adding five entries and adding twenty entries. This does not
necessarily mean that we add entries for the top 1, 5 and 20
similarity pairs, but we add the first 1, 5 and 20 distinct
entries that are possible, given the ordered list of pairs.
Another question that we need to address at this point is the
question of word class. The similarity software deals with
a single word class at a time, so we have the choice of us-
ing the output in batches distinguished by their wordclass,
or collating the output from the similarity measures and us-

3277

"importance" "importance" 1.0
"importance" "significance" 0.41190367926325505
"importance" "influence" 0.35182572460391287
"importance" "extent" 0.3379548895057337
"importance" "need" 0.31725514633546115
"importance" "strength" 0.31093171330002195
"importance" "value" 0.30984416598432163
"importance" "status" 0.3000272835800818
"importance" "role" 0.29884422333029836
"importance" "impact" 0.2980094466854172

Figure 1: A sample of output similarity measures

ing it as a single resource. We have opted to do the first of
these, mainly because of the relatively sparse information
that we actually have access to at the end of the similarity
measuring process. It would be very difficult to make prin-
cipled decisions regarding the relative appropriateness of
generating lexical entries for nouns based on the similarity
of verbs with the same stem.
As a simple example, let us consider the word “acclaim”. If
we consider this as just a noun, we get similar words includ-
ing “applause”, “reward”, “remuneration” and “patronage”.
If we consider “acclaim” as a verb, only “reward” of this set
could be a potential basis for a new lexical entry. However,
if we do not separate the process by word class, there would
be the potential for confusion, with a word like “patronage”
possibly getting a lexical entry for it as a verb, based on the
verb entry for “acclaim”.

Running the program
The lexical extension program is written in AWK and
makes extensive use of arrays, reading the content of one
file into an array for use while processing the other file. The
program takes three inputs: the file with the existing lexi-
con (which is read into an array), the file with the similarity
measures (which is the main input to the AWK script) and
a value indicating the word class (currently only either verb
or noun). The output is a separate file which includes the
lexicon extension with just the new entries. This lexicon
file can simply be slotted in to your LinGO implementation
and used as normal.

Reading in the old lexicon
The first thing the program does is to read in the exist-
ing lexicon, constructing an array with all the lexical in-
formation indexed on the stem forms4. The array consists
of five pieces of information: the head, the part of speech
classification, the syntactic classification, the semantics and
whether the stem begins with a vowel or a consonant. The
head is the head of the entry in the initial lexicon. This
is usually nearly the same as the stem, but often with sub-
script markers to distinguish more than one entry with the
same stem. The part of speech is a LinGO classification
and distinguishes between, for example, proper nouns and

4The lexicon in the distribution of the ERG is available as
both a fully formatted lexicon file and as a lexical database,with
comma separated fields representing the information. We usethe
latter to create the array comprising the information inthelexicon.

common nouns, mass and count etc. and for verbs it spec-
ifies the basic subcategorisation classification. The second
piece of syntactic information defines the relationship be-
tween the syntax and semantics, and consists of a label such
as LKEYS.KEYREL.PRED (which indicates that this word
contributes the predicate). Finally, the semantic informa-
tion takes the form of a relation/predicate name. Typically,
this is based on the stem form, so that a noun like “ditch”
has the semantics “ditch n rel”, indicating that its seman-
tics behaves like a noun relation (nrel). The simplicity of
the majority of these semantic relations is one of the key
points that makes the automatic extension of the lexicon
possible.
The array indexes on the head, not on the stem, because
more than one entry may have the same stem, whereas the
subscripts differentiate the heads. As an example, there are
two lexical entries in the existing LinGO lexicon for the
word “follow”. The first of these is:

follow_v1 := v_np*_trans_le &
[STEM < "follow" >,

SYNSEM [LKEYS.KEYREL.PRED
"_follow_v_1_rel",

PHON.ONSET con]].

The array elements from this entry are defined as follows:

lexentry[follow v1,1] = follow
lexentry[follow v1,2] = v np* transle
lexentry[follow v1,3] = LKEYS.KEYREL.PRED

lexentry[follow v1,4] = follow v 1 rel
lexentry[follow v1,5] = con

where the numbers 1-5 indicate which piece of lexical in-
formation we are dealing with. 1 is the stem, 2 is the part of
speech, 3 is the syntactic relation, 4 is the semantic relation
and 5 is the phonological onset of the stem.
In addition to this, we create another array which simply
lists the stems that are included in the lexicon, so that we
can very easily discover whether or not a word appears in
the lexicon already.

Determining the need for new entries

The program runs on the file of distributional similarities,
rather than on the existing lexicon. In this file, a record
consists of three fields: the target word, the word to which
it is similar and the measure of how similar it is. For each

3278

record we first check whether the word appears in the lexi-
con. If it does, we do nothing more. If it does not, we then
check whether the other word does appear in the lexicon.
If it does not, there is nothing more we can do. If it does,
we create a new lexical entry (or entries) for the target word
based on the entry (or entries) for the other word.
There are a number of ways in which this procedure could
be varied. For a start, the initial decision not to continue
if there is an existing lexical entry for a word may not be
correct. In the case of nouns, it is unlikely that this will
be problematic. However, when it comes to verbs, where
several different subcategorisation options may apply to a
single stem, the situation is very different. The fact that a
single lexical entry is generated for a stem does not neces-
sarily mean that occurrences of that stem in sentences will
be correctly parsed (or even parsed at all). On the other
hand, we do not want to generate spurious additional en-
tries where they are not needed. We have, as mentioned
above, conducted three separate experiments including one,
five and twenty new entries.
The second part of this question relates to how many of the
existing entries for a stem we may want to use as templates
for our new entry/ies. For example, we have two existing
lexical entries for the verb “follow”:

follow_v1 := v_np*_trans_le &
[STEM < "follow" >,

SYNSEM [LKEYS.KEYREL.PRED
"_follow_v_1_rel",

PHON.ONSET con]].

follow_v2 := v_expl_it_subj_cp_le &
[STEM < "follow" >,

SYNSEM [LKEYS.KEYREL.PRED
"_follow_v_expl_rel",

PHON.ONSET con]].

The first of these represents the standard transitive use of
the verb as in a sentence like “The cat follows the dog”.
The second represents the it-cleft use as in “It follows that
...”. If we have a transitive verb, such as “chase”, which has
no entry in our lexicon, but which we know to be similar to
“follow”, we need to determine which of these two entries
would be appropriate. The information we have from the
similarity measures does not involve enough detail to al-
low us to make principled decisions according to the exact
kind of syntactic distribution that the words share, so we
are not in a position to decide that the transitive use is the
appropriate one. This leads to a difficult decision between
using both entries, and thereby generating an incorrect one
that would allow the sentence “It chases that ...”, or using
only one, but potentially excluding useful entries. We will
discuss this further in section 7.
There is clearly a difference in the relative importance of
different bits of lexical information for parsing and gen-
eration. It is more likely that a single lexical entry will
help the parsing process than the generation process, as the
generation of a sentence from a MRS requires exact com-
binations of semantic predicates/relations. When parsing,
on the other hand, it is often necessary only to determine
the approximate syntactic information in order to complete

a parse. We anticipate, therefore, that when we undertake
full testing for both parsing and generation, the method will
prove more useful for parsing than generation, and more
work will be require to fully extend the lexicon for genera-
tion tasks. To date we have only experimented with parsing.

Creating the new entry

In the final stage of the process, we construct in our array
an additional entry that includes a new lexical head, con-
structed from the stem form, with the additional marker in-
dicating its word class (i.e. v or n) and the number of
the entry. As discussed above, in the first instance, this
will always be 1, as we are only generating single en-
tries for each unknown word, but it is still necessary to
include the number in case future extensions add further
entries. So, for the example above, we will include in
our array the information that the stem of the new entry
is “chase”. Next, we will add the part-of-speech informa-
tion, which we take from the existing entry for “follow”,
which is “v np* transle”. The syntactic information that
forms part of the “synsem” is again taken from the existing
entry, i.e. “LKEYS.KEYREL.PRED”. The semantic repre-
sentation is constructed partly from the existing entry and
partly from the stem form. The semantics for this entry for
“follow” is “ follow v 1 rel” which we take and adapt by
simply swapping the stem of “chase” with the stem of “fol-
low”. We approximate the phonological information from
the orthographic form, which will inevitably lead to occa-
sional errors (the wordsusableandunusable, for example,
require different specifications for their initial sound),but
these are rare.
We therefore define the new array elements as follows:

lexentry[chasev1,1] = chase
lexentry[chasev1,2] = v np* transle
lexentry[chasev1,3] = LKEYS.KEYREL.PRED

lexentry[chasev1,4] = chasev 1 rel
lexentry[chasev1,5] = con

This is all we need to do for each individual entry, as the
entire lexicon is going to be output from the array.

Creating the new extended lexicon

When our program has finished running through the simi-
larity measure file, it has produced a very large array with
all of the lexical information in it. The final task is to output
the information in LinGO lexical entry format. For this, we
simply slot the values defined in the array into the template
for each lexical entry.
We output the new entries into a separate lexicon file, which
is loaded after the main lexicon. This has already been im-
plemented as part of the COGENT project, with a set of
hand-crafted lexicon entries for the domain of medical texts
(patient information leaflets).

6. Evaluation
There are (at least) two types of evaluation required for
this exercise: (1) Are the additional lexical entries cor-
rect/appropriate? and (2) Do the additional lexical entries
improve the performance of LinGO? The first of these we

3279

have checked by manually examining the new entries pro-
duced. For the experiment where we added a single en-
try per unknown word, this involved 445 new entries. We
checked a random sample of around 50 of these, and no
major issues emerged.
In order to fully evaluate the usefulness of the method it is
necessary to compare the performance of the LinGO parser
(or generator) before and after the lexical enhancement.
This is, however, a lengthy and labour intensive task. We
have run a series of experiments aimed at determining the
level of performance of the LinGO parser with the original
lexicon and with various lexicons extended by means of the
software described here.
We wanted to test the parser on a small, general and relevant
corpus. As the similarity measures had been determined
from the BNC, we decided to take a small subset of this
corpus to run the parser on. We chose a subfile of the BNC
at random (the AD0 section). Having removed all of the
markup, we were left with 2018 sentences, with an average
sentence length of 18.9 words. This subcorpus has a total
of 38,125 words and 3773 distinct tokens.
The base lexicon we used had been extended for use in the
COGENT project with the addition of a total of 424 en-
tries relating to the medical field. We ran four experiments:
with the base lexicon; with the base lexicon extended with
a single entry for each unknown word (LinGO+1); with the
base lexicon entended with the first five entries for each
unknown word (LinGO+5); and with the base lexicon ex-
tended with the first twenty entries for each unknown word
(LinGO+20). The results for full parses can be seen in Fig-
ures 2 and 3.

Figure 2: Number of sentences with at least one full parse

The most obvious thing to note is that the system does not
manage to find full parses for a very large percentage of
the sentences. In the base case, 366 of the 2018 sentences
received full parses, just over 18%. However, it should be
stressed that the system had not been tuned for this corpus,
and the requirement for full deep parses mean that this is
a very difficult task. The next thing to note is that our ex-
tended lexicons do not make a very large difference. Again,
this is not something that we should be surprised about. The
actual numbers of new entries in this experiment is very
small, particularly when we consider Zipf’s law, so adding
445 entries for nouns that we assume not to be the most fre-

Figure 3: Number of sentences with more parses than the
base

quent (or they would already have been in the 22,000 word
lexicon) would not be predicted to make a very big differ-
ence to the number of sentences parsed.
Another thing that stands out from these results is that ex-
tending the lexicon by twenty entries for each new word ac-
tually causes the performance to decline, compared to the
other extended lexicons. This is, we believe, because of
other features of the LinGO system, specifically the inbuilt
cut-off for the number of edges, which leads to the system
failing when too many different edges are being considered.
This is therefore an issue that requires more detailed analy-
sis of the LinGO parsing algorithm.
So we see from this table that the number of full parses
increased by four with the LinGO+1 lexicon and by a fur-
ther three with the LinGO+5 lexicon. This is around a one
percent increase in each case. However, if we look more
closely at the parser’s performance we see evidence that
the lexical extensions may be contributing more.

Figure 4: Number of sentences with more edges than the
base

Figure 4 shows the number of sentences in which the parser
produced more edges than in the base system, even though
it might not have resulted in a complete parse. While it is
clearly not necessarily a good thing to generate large num-
bers of edges, it shows that the parser is able to progress
further. It will take much longer to examine the full and
partial parses to establish whether the edges generated are

3280

correct and why full parses are not resulting.
Figure 5 shows how the number of words that are unrecog-
nised is reduced with the extended lexicons.

Figure 5: Number of unrecognised words

The number of distinct tokens unrecognised in the base lex-
icon is 396. This is reduced by 25 in the extended lexicons5.
These 25 words represent 0.4% of the total words in the cor-
pus, emphasising that the words we are dealing with here
are not of the highest frequency, but not insignificant either.

7. Conclusions and discussion
This paper has described a small experiment to prove that
it is possible to usefully extend a lexicon for a deep pars-
ing system such as LinGO by using distributional similarity
measures. The results show that, while there is much room
for improvement in many directions, the approach appears
to provide a potentially very useful solution to the problem
of robustness in deep processing systems.
One thing that the figures above make plain is the impor-
tance of lexical coverage in the deep parsing task. The
number of unrecognised words in the base system is 396,
which amounts to 10.5% of the total number of distinct to-
kens in the corpus. The leads to a full parsing failure rate
of 82%.

Confidence

In order to give the greatest robustness to the LinGO sys-
tem, we would need to allow the use of entries in which
we do not necessarily have such great confidence, if that
is the only option. Currently the extensions to the lexicon
are loaded into the parser with equal status to the original
lexical entries. One of the features of the LinGO parser is
that it often generates a number of parses as well as a large
number of partial parses. Generating spurious parses be-
cause of unreliable entries is clearly, therefore, undesirable.
The crucial task is to get the right balance between preci-
sion and recall. Accessing the less reliable lexical entries
only when no parse can otherwise be found would clearly
help in reducing the number of spurious parses.

5The number is the same for all of the extended lexicons as
they do not differ in the number of distinct tokens represented,
only in how many different entries there are for that token.

We are therefore developing an approach which allows two-
stage lexical lookup, where the automaticaly generated en-
tries are only used where no parse is found initially. We
have used a similar approach in earlier parsing systems,
where complete syntactic parses were required but seman-
tic information was only needed for words relevant to the
domain. The difference here is that we need the lexical en-
tries in which we have less confidence to provide us with
semantic as well as syntactic information.
Another possible future development is to allow the lexi-
cal extension software to have access to much more infor-
mation from the distributional similarity software, or even
call it interactively. This would mean that the two processes
could run together on any new corpus, and the parser would
be dynamically tuned to the corpus on the basis of the dis-
tributional similarity of the words in that corpus. It would
also give an excellent opportunity to directly test the perfor-
mance of different approaches to distributional similarity
for this particular task.

Parsing vs generation

The experiments we have undertaken so far have only
looked at improving the parsing in LinGO. We have men-
tioned at various points above how the issues may be differ-
ent for generation. We shall now look further at this issue.
When parsing, a system can often perform adequately even
without full (syntactic and semantic) lexical informationfor
every word in the sentence. As mentioned above, there
are a range of systems which make use of very large scale
shallow lexical resources (e.g. syntactic class information
only), or even POS tagging software to provide the parser
with the minimum information required. Although this is
not the case with LinGO, it is nevertheless still true to say
that the parser can be expected to perform reasonably, even
if the semantic information included in additional lexical
entries is incomplete or even slightly inaccurate. This is
not the case with genreation.
Consider the generation task. In order to generate a sen-
tence from an underlying semantic representation it is es-
sential to have some means of representing every piece of
information in the semantic representation. As language
users, we very commonly “understand” sentences uttered
to us, even if we miss one or two of the words. However,
we do not typically find ourselves in the position of uttering
incomplete sentences because we can’t think of the word
we need.
The way in which we go about finding potential lexical ex-
tensions for the generation task would, in addition, be more
complex. We would need to look at the MRSs from which
we wished to generate and determine any semantic compo-
nents that had no equivalent in the lexicon. But we would
then need to find equivalent entries based on the relation-
ship between the semantic component and the surface re-
alisation. This is far less straightforward than the parsing
and examination of output that we have undertaken in the
current experiment.
The first step for us in this direction is to carefully hand-
craft a set of MRSs which would require entries that we
have generated automatically and see if they generate the
sentences we want and expect.

3281

Other parsing systems

We have presented the lexical extension technique as tested
on the LinGO ERG grammar and lexicon. We believe, how-
ever, that the technique could equally be applied to different
grammars (e.g. for different languages) and different sys-
tems. The novel part of our approach is to directly make
use of distributional similarity measures to determine re-
lations between unknown words in a corpus and known
words in that corpus to produce lexical entries modelled on
the known word. The aspects of the programme that make
it specific to LinGO ERG are really the insubstantial (cos-
metic) aspects of outputting formatted lexical entries. The
only area where there must be commonality is in the type
of lexical information that is specified. It does not matter to
the lexical extension software what, for example, the syn-
tactic or semantic labels are, only that they are defined. The
initial phase of reading in exisiting lexical information is,
similarly, not likely to be difficult to adapt for other lexical
database formats.
Therefore, although this is not a general purpose tool that
could be run “off-the-shelf” on other systems, the key el-
ements of the technique could be applied to other systems
and grammars.

Acknowledgements
This work was supported by EPSRC grant GR/S24480/01.
I would like to thank my colleagues on the COGENT
project at the Universitites of Brighton and Sussex for their
support. I would also like to thank the anonymous review-
ers for helpful comments on the abstract, and an earlier ver-
sion of the paper.

8. References
Timothy Baldwin, Emily M. Bender, Dan Flickinger, Ara

Kim, and Stephan Oepen. 2004. Road-testing the en-
glish resource grammar over the british national corpus.
In Proceedings of the fourth International Conference
on Language Resources and Evaluation, pages 2047–50,
Lisbon, Portugal.

Patra Barg and Markus Walther. 1998. Processing un-
known words in hpsg. InProceedings of the 36th In-
ternational Conference of the ACL and the 17th Interna-
tional Conference on Computational Linguistics, Mon-
treal, Quebec, Canada.

Ann Copestake and Dan Flickinger. 2000. An open source
grammar development environment and broad coverage
english grammar using hpsg. InProceedings of the Sec-
ond International Conference on Language Resources
and Evaluation.

Ann Copestake. 2005. Minimal recursion semantics: An
introduction. Research on Language and Computation,
3:281–332.

Christiane Felbaum. 1998.WordNet: An Electronic Lexi-
cal Database. MIT Press, Cambridge.

Frederik Fouvry. 2003. Lexicon acquisition with a large-
coverage unification-based grammar. InCompanion to
the 10th EACL, pages 87–90, Budapest, Hungary.

Julie Weeds and David Weir. 2005. Co-occurrence re-
trieval: A flexible framework for lexical distributional
similarity. Computational Linguistics, 31:4:439–476.

Yi Zhang and Valia Kordoni. 2006. Automated deep lexi-
cal acquisition for robust open texts processing. InPro-
ceedings of the fifth international conference on Lan-
guage resources and evaluation, pages 275–280, Genoa,
Italy.

3282

