
A Development Environment for Configurable Meta-Annotators in a Pipelined 
NLP Architecture 

Youssef Drissi, Branimir Boguraev, David Ferrucci, Paul T. Keyser, and Anthony Levas 
IBM T.J. Watson Research Center, Yorktown Heights, NY 10598, USA 

E-mail: {youssefd, bran, ferrucci, pkeyser, levas}@us.ibm.com  

Abstract 

Information extraction from large data repositories is critical to Information Management solutions.  In addition to prerequisite corpus 
analysis, to determine domain-specific characteristics of text resources, developing, refining and evaluating analytics entails a complex 
and lengthy process, typically requiring more than just domain expertise.  Modern architectures for text processing, while facilitating 
reuse and (re-)composition of analytical pipelines, place additional constraints upon the analytics development, as domain experts need 
not only configure individual annotator components, but situate these within a fully functional annotator pipeline.  We present the 
design, and current status, of a tool for configuring model-driven annotators, which abstracts away from annotator implementation 
details, pipeline composition constraints, and data management.  Instead, the tool embodies support for all stages of ontology-centric 
model development cycle – from corpus analysis and concept definition, to model development and testing, to large scale evaluation, 
to easy and rapid composition of text applications deploying these concept models.  With our design, we aim to meet the needs of 
domain experts, who are not necessarily expert NLP practitioners. 

 

1. Introduction 

Information Management is a fully integrated discipline 

that can give users access to the broad range of 

information they need. This information comes not only 

from traditional structured sources, but extends to a broad 

range of unstructured information (email, web content, 

etc.) which comprises over 80% (Moore, 2002) of all 

information available. Information analysis and 

extraction of this unstructured information from large 

multi-media data repositories (text, speech, video, etc.) 

are critical to Information Management solutions that 

expose this information to users.  

 

The process, however, of developing, refining, and 

evaluating the analytics, required for information 

extraction, is complex and lengthy, requiring knowledge 

of algorithmic techniques, programming in a variety of 

languages and processing content using underlying 

runtime frameworks. This process is iterative and cyclical 

in nature – analytics are incrementally enhanced and 

evaluated against previous results. 

 

This work addresses a class of problems arising from the 

needs of domain experts – who are not necessarily expert 

NLP practitioners – to develop text analysis applications 

rapidly and adapt these to different types of language 

resources and domains. Our approach focuses on  

1) understanding the cyclic/iterative nature of the overall 

process that a practitioner engages in,  

2) developing a software environment that provides 

tooling to assist in each step of the process, and  

3) providing a methodology for the user to follow for each 

process step/tool choice they make.  

 

Our goal is to make available a rich set of tools that users 

can apply depending upon their level of expertise as well 

as the technical challenges that the analytic development 

brings. Some tools may be very easy to use, require less 

expertise and work effectively for a limited range of 

problems, whereas other tools may require deeper 

knowledge and address problems that require more 

complex analytical processing and greater expertise.  

 

The Unified Domain Adaptation Tool (UDAT) is a 

software environment we have built to address these 

challenges. In this paper we will focus primarily upon a 

few distinguishing features and how these contribute to 

the extensibility and ease-of-use of UDAT. These features 

are:  

• The Ontology-centric approach where concepts are 

first class citizens that aggregate models (e.g. rules, 

pattern files, etc) used for finding them, 

• The Configurable Annotator Tool (CAT) Framework 

for easily developing concept models using different 

approaches (dictionary or pattern-based, etc.), and 

• The Knowledge Gathering and Synthesis (KoGS) 

Framework for exploring results. 

 

Sections 2 through 4 provide the requisite background and 

motivate our vision and the approach we took in this work. 

In Section 5, we discuss the analytics development 

process a practitioner follows. Sections 6 and 7 describe 

the CAT and KoGS frameworks which are central to the 

extensibility of UDAT. We provide a walk-through 

scenario in Section 8 that highlights the ease-of-use of 

UDAT and gives the reader an understanding of many of 

the capabilities of the system from the point of view of a 

practitioner who is not an NLP expert. Section 9 provides 

brief system notes. We end with a discussion and some 

concluding thoughts in Section 10. 

2. UIMA Configurable Annotators 

Frameworks like UIMA (Ferrucci & Lally, 2004), GATE 

(Cunningham, 2002), NLTK (Bird, 2006) facilitate a 

decomposition of the analysis process into individual 

components, each of which is responsible for a certain 

aspect of the analysis (Cunningham & Scott, 2004).  

3256



Broadly speaking, analysis components (also referred to 

as annotators or analysis engines) find and annotate a 

number of concept instances: domain or application 

specific named entities, their properties, and/or relations 

among them (e.g. Person, Company, Location, Product, 

ManagerOf, etc).  Assembling applications in such 

frameworks involves building processing pipelines from 

annotators organized sequentially, or in a more 

complicated flow. 

 

We focus on systems in which models
1
 are created to 

represent a concept, which can then be used by an 

annotator to find instances of the target concept.  A very 

simple model for a “City” concept would be a list of city 

names. Common model types include simple term lists, 

(semantic) dictionaries, grammars, pattern files, and 

statistical models.  Looking at this broad variety, we seek 

to assist end-users in developing models and configuring 

the model-based annotators, and composing a coherent set 

of these into a pipeline. 

 

Domain experts are likely to be unfamiliar (or less 

comfortable) with the notions of analysis engines, NLP 

pipelines, and the practical skills required to build 

complete annotators and applications based on those 

notions.  A challenge, then, is to allow their domain 

knowledge and insights to be interpreted by a tool which, 

in effect, mediates between an abstract description of how 

a concept may be expressed (e.g. in text) and a 

specification for finding instances of such expressions by 

applying an appropriate analysis engine. 

3. The Ontology-Centric Approach 

We present an ontology-centric approach for 

analytics/annotators development. Our design associates 

concepts with concept models, and delegates the 

interpretation of models to suitably configured 

meta-annotators.  A meta-annotator is a reusable analysis 

component, which can interpret concept models as 

abstract specifications for its behavior.  Examples of 

meta-annotators are a dictionary lookup component 

(whose dictionary may describe a set of semantically 

meaningful terms in a domain), or a pattern matching 

engine (which interprets a set of grammars to find patterns 

of expressions), or a classification module (which applies 

a separately trained model to the data).  Meta-annotators, 

also called configurable annotators, crucially maintain 

separation between the models for the concepts they 

annotate, and the underlying analysis engines which apply 

the models. It follows that the meta-annotator abstraction 

is a useful one, for the purpose of insulating domain 

experts from run-time details, and enabling them, and us, 

to focus on model elicitation and formulation. 

 

Our runtime framework is provided by UIMA (Ferrucci & 

Lally, 2004), the Unstructured Information Management 

                                                           
1 There may, and likely will, be multiple models for a single 

concept. 

Architecture, which defines mechanisms and interfaces 

for the purposes of defining, configuring and running 

technology-agnostic multi-component NLP annotators 

over text, speech and other multi-media. UIMA has been 

gaining broad acceptance both in industry contexts (Dale, 

2005) and in academic communities (see the UIMA 

Component Repository at CMU
2
; recently, it has become 

widely available as an Apache Open Source Incubator 

project
3
, and is currently the subject of an Open Standard 

initiative
4
. 

4. The Consumability Challenge 

From the point of view of domain experts there are 

obstacles to overcome before a fully functional 

application emerges from the set of domain concepts in 

which they traffic.  Not only do the models (in the sense 

described above) need to be developed, in order to 

compose a complete application from individual 

components, but individual models will also need to be 

tested and debugged against representative corpus data.  

 

This means that mechanisms need to be in place for 

readily associating a state of the model with any particular 

combination of test/development resources and analysis 

results. This is a necessary part of the full cycle of model 

development. 

 

In general, we refer to the set of challenges presented by 

the complexity of such operations as the framework 

“consumability” challenge. Our objective here is to 

minimize the expertise required and difficulty that is 

encountered throughout the process thus increasing the 

consumability, or ability of practitioners to engage in the 

process.   

 

A goal for meeting this challenge is to provide a set of 

configurable annotators that require little or no 

programming. “Configuring” these annotators is 

accomplished through the direct manipulation of 

graphical widgets that in the end result in executable 

annotators. Our focus in UDAT is ease-of-use for novice 

users, powerful capabilities for expert users and a 

commitment to an extensible architecture through the 

CAT and KoGS frameworks. 

5. The Analytics Development Process 

Our work focuses on meeting the challenge of 

consumability through the design of UDAT, which assists 

users throughout the process of full-cycle analytics 

development. Figure 1 illustrates this process. Beginning 

at the outer far left and proceeding clockwise we observe 

the process steps performed by the user:  

                                                           
2 http://uima.lti.cs.cmu.edu:8080/UCR/Welcome.do 
3 http://incubator.apache.org/uima/ 
4 http://www.oasis-open.org/committees/uima/ 

3257



 
Figure l: The Analytics development Process 

 

1) Identify domain relevant concepts and produce an 

Ontology,  

2) Develop executable Models for each concept, 

3) Configure and assemble the annotators into an 

Aggregate Analysis Engine,  

4) Run the Analysis Engine on the unstructured content to 

extract Structured Information, and  

5) Evaluate the quality of the Results derived from the 

structured information.  

The user may iterate through the process, possibly starting 

at different points in the cycle. 

 

We have developed a set of graphical tools for each step 

that abstract and simplify the process, which can 

otherwise be complicated and time consuming, requiring 

specialized knowledge of algorithm techniques, 

programming languages and processing content using the 

underlying UIMA framework. We illustrate the UDAT 

tooling that is associated with each process step within the 

inner circle of  Figure 1. Section 8 will illustrate, through 

an example scenario, how each of these tools is used.  

 

Before a meta-annotator is configured for composition 

within a larger engine/pipeline, its model needs to be 

developed and tested. Therefore, UDAT also supports the 

notion of a tight loop, which is a set of steps focused on 

the incremental development and testing of a specific 

meta-annotator model. This tight-loop pathway places 

heavy requirements on model editors, model generators, 

annotator pipeline builders and special purpose viewers 

for results exploration. 

6. Developing Analytics using CATs 

UDAT provides a visual editor for each model type that 

serves as a specific development environment for the 

models of that type (e.g. dictionary-based models,  

pattern-based models).  In the back-end of the editor a 

model generator component interprets the UI gestures to 

generate a concrete model, typically, within a set of 

notational and/or representational devices (e.g. XML 

3258



dictionary tables, a grammar language, a trained model). 

The model editor, the model generator, and the 

configurable annotator are bundled into a Configurable 

Annotator Tool component (CAT).  A CAT is a pluggable 

architectural component, which enables the development 

of a certain type of models, configuring the corresponding 

analysis engine, and applying the model to a corpus.  A 

distinguishing characteristic of UDAT is that it provides 

the framework that allows additional CAT components to 

be plugged in; the framework then manages their 

interactions with each other, and with other parts of the 

toolkit. 

 

The CAT framework is thus essential to UDAT's 

extensibility.  To support a new model type, the toolkit can 

be extended by adding a new pluggable CAT for that new 

model type.  Users can choose from different CATs to 

develop concept models best suitable to application needs. 

UDAT currently provides three CATs (see section 8). 

7. Exploring Analysis Results using KoGS 

In order to get meaningful insights from the analysis 

results, the collection of annotation metadata produced for 

the data corpus is processed to generate additional 

structured information and use it for advanced results 

exploration. Examples of such structured information 

include indices for enabling semantic search over the 

results, and databases of statistics about the concepts and 

instances found in a corpus. 

 

The advanced viewers of this kind fall into another 

category of architectural components called Knowledge 

Gathering and Synthesis tools (KoGS).  The KoGS 

framework affords plugability of tooling that contains  

1) a back-end for building structured information (e.g. 

creating indices, databases, etc.), and 

2) a front-end for exploring results (e.g. Results Viewers).  

 

 KoGS tools provide a broad set of functions, largely via 

the different Viewers, needed for exploring and 

evaluating the results, including tools to query the 

analysis results, such as tools for semantic search and 

database lookups.  

 

UDAT can be extended by adding KoGS tools that 

provide new Viewers to facilitate results analysis 

evaluation. The plugability provided by the CAT and 

KoGS frameworks affords an open-ended architecture 

that supports development of components by third parties 

as well as those developed in-house.  

8. A Walk-through Scenario 

In this section we illustrate the usage of UDAT through an 

example in which the domain analyst is not an NLP expert. 

The task facing the user is to extract “car sentiment” 

phrases from a document corpus which consists of 80 

short car reviews collected from various automotive web 

sites. The user starts to tackle this task by defining three 

concepts: 

• Sentiment (e.g. being impressed, liking, hating, loving, 

etc.), 

• CarFeature (e.g. pedals, engine, brakes, transmission, 

ride, etc.), and  

• CarSentiment (e.g. being impressed with the adjustable 

pedals).  

 

Figure 2 informally illustrates the kind of analysis that the 

domain expert/user would like to implement, a sample 

sentence, and the annotations we would expect our 

analytics to produce. 

 

 
Figure 2: Example of annotations 

8.1 User Interface Overview 

Figure 3 is a screenshot taken from UDAT and will be 

used throughout the example scenario discussion. It 

consists of 4 panes labeled 1 through 4. Pane 1 is called 

the Explorer and is the place where the user manages the 

four primary UDAT abstractions: Concepts, Documents, 

ConceptFinders and Results Sets. Pane 2 is the Editor 

pane and is the place where the user builds concept 

models. An Editor is available for each type of model that 

can be built in UDAT and always appears in this location.  

The space occupied by the panes labeled 3 and 4 is used to 

explore results using KoGS tools.  

8.2 Concept Definition 

The first process step is to define the concepts which the 

expert elucidates as representative for his/her domain. In 

UDAT, a domain is represented a the root node of a 

hierarchy of concepts. An ontology editor (pane 1 in 

Figure 3) is used to manipulate the hierarchy of concepts 

in the domain.  In our scenario, the user defines the 

“Automotive” domain and then adds the three requisite 

concepts under it as illustrated. Each concept may have 

one or more associated concept models.  The toolkit is 

pre-loaded with a configurable annotator tool for each 

different model type. We currently support three CATs: 

1) A Semantic Dictionary CAT which enables the 

graphical development of concepts that can be defined 

by listing terms that represent instances of the concept. 

2) An Annotation-Based Finite State Transducer (AFST) 

(Boguraev & Neff, 2007 and 2008) CAT provides the 

ability to graphically create models that consist of 

patterns that consider  upstream annotations as well as 

other features of the text. 

3) An AFST Cascade Editor CAT that allows advanced 

users to develop and manage sequences of AFST 

grammars written in the AFST language. 

3259



 
 

Figure 3: UDAT User Interface 

 

The Concepts are allowed to have multiple models (of the 

same or different model type); this enable combining  

different underlying technologies associated with the 

model types. For example, a concept can have any 

number of Semantic Dictionary models as well as AFST 

models. 

8.3 Corpus Specification 

A Corpus is a collection of documents to be analyzed. 

Users sometimes define corpora by extracting documents 

that contain a specific concept (or concepts) of interest. 

This allows them to focus upon the specific task at hand 

(e.g. development of an annotator for a specific concept) 

without the burden of analyzing a large corpus. Users are 

free to define corpora to meet the needs of the analytic 

development process. 

 

The next step in our example scenario discussion is to 

specify the Corpus. This is accomplished using the 

Explorer - by selecting the Documents Folder, defining a 

new Corpus and pointing it to the “Automotive” 

documents. 

8.4 Corpus Exploration 

Once a corpus is defined, the user can run the GlossEx  

KoGS tool (Park et al., 2002) to extracts the domain 

specific terms and phrases from the corpus. It provides a 

frequency count, the part of speech, and a metric for the 

domain specificity for each term/phrase. Exploration 

using this tool provides the user with the terms and 

phrases that are appearing in the corpus and allows them 

visibility into the lexical data that represent  

1 2 

4 

3 

3260



 
Figure 4: Extracted Glossary 

 

the concepts to be found.  Users can analyze these data to 

help them articulate concepts and instances, as well as 

position them in an ontological hierarchy.  The GlossEx 

KoGS tool is tightly integrated into the UDAT 

environment and affords a wide range of capabilities for 

working with domain terms, and building concepts, 

ontologies and associated Semantic Dictionary models. It 

presents data in a spreadsheet form that contains both 

system-defined as well as user-defined columns. 

 

Figure 4 shows some of the resulting nouns and adjectives 

that are most frequently occurring in the corpus. Note that 

a number these nouns represent the CarFeatures we are 

interested in and adjectives largely indicate the 

Sentiments.  

8.5 Concept Model Creation 

Dictionary Models can be easily created for Sentiment and 

CarFeature concepts by highlighting the terms of interest 

in the GlossEx viewer and dragging and dropping them 

onto the respective concept model in the Explorer. In this 

process step the user defines a CarFeature Dictionary 

Model and a Sentiment Dictionary Model and then drags 

and drops the appropriate highlighted data into the 

respective model. The Dictionary Model (CAT) graphical 

editor affords all necessary operations for building a 

dictionary model for a given concept. This also includes 

access to WordNet
5
 for getting suggestions on variants of 

a term. 

 

The AFST CAT is used to define patterns that specify the 

concept model of CarSentiment.  The AFST CAT 

provides a graphical editor that abstracts the underlying 

AFST syntax and allows the user to express AFST 

                                                           
5 http://wordnet.princeton.edu/ 

patterns graphically. Pane 2 on Figure 3 illustrates the 

process of building an AFST pattern. This is easily 

accomplished by dragging and dropping concepts from 

the Explorer onto this pane and interconnecting them with 

arcs. The semantics of this graph specify that the span of 

text delimited by the pattern {CarFeatures followed by 

Sentiment} or {Sentiment followed by CarFeatures} will 

be annotated with the concept CarSentiment. 

 

User interactions with a CAT graphical interface result in 

an intermediate representation tailored for graphical 

editing that captures the specification of the intended 

model semantics. This intermediate representation is 

transformed by the CAT Model Generator to produce a 

CAT Meta-Annotator Model suitable for running on a 

CAT Meta-Annotator. This process is transparent to the 

user and handled by UDAT. 

8.6 ConceptFinder Generation 

Once developed, sets of user-selected models drive the 

automatic definition of aggregate annotators that are used 

to find concepts of interest. We call this aggregate 

annotator a ConceptFinder. To create a ConceptFinder the 

user simply selects all the concepts to be found from the 

Explorer and assigns a name used to refer to it. This 

selection action is a signal whereby the user delegates to 

UDAT the task of composing ConceptFinders, 

configuring underlying meta-annotators and ensuring 

coherence of the underlying framework pipeline. In the 

Explorer pane (pane 1 in Figure 3) we show the concepts 

and resulting ConceptFinder called CarSentimentFinder.  

 

UDAT hides a number of complex issues associated with 

the generation of ConceptFinders.  The most challenging 

one is the dynamic construction of a complete deployable 

3261



and ready-to-run NLP pipeline of annotators given simply 

a set of concepts and models as input.  Annotators may 

require other annotators to run before them in the pipeline, 

in order to detect concepts upon which the target concepts 

depend.  Such dependencies translate into complex 

ordering constraints among the available annotators for 

constructing the pipeline. The challenge is to construct a 

coherent and well-configured annotator pipeline which 

satisfies complex constraints.  This is further compounded 

by the possibility that some constraints will not be 

explicitly declared.  

 

Full architectural discussion of UDAT is outside the scope 

of this paper. Here we briefly mention that this is 

informed by the need to analyze the network of 

dependencies between concept models in the underlying 

pipeline construction process.  This analysis, 

complemented by the use of pipeline templates enables 

the configuration of ConceptFinders. 

8.7 Results Generation and Exploration 

Concept finders can be run over data: a single document, 

or an entire corpus, or previously saved analysis results 

(whether these have been generated within the tool's 

development cycle, or imported from an outside analysis 

process).  Results sets are explicitly managed by UDAT 

and are key enablers to flexible evaluation and 

experimentation regimes themselves crucial for quality 

analytics development. 

 

The results data are generated and stored in the file system 

as well as in embedded databases.  The basic part of the 

results consists of annotated documents that can be 

viewed using an annotation viewer which suitably 

displays (by means of highlighting or other appropriate 

visual metaphors) the annotations, and the features for the 

concept instances found in the corpus. 

 

For this scenario, the user can simply select a 

ConceptFinder, (e.g. CarSentimentFinder), a corpus (e.g. 

AutomotiveSentimentCorpus) and the KoGS tools that 

they would like to use to explore the results. UDAT 

manages all actions related to the UIMA framework - 

running the ConceptFinder over the corpus, as well as 

building all structured repositories required by each of the 

KoGS tools requested. Once processed, each document 

can be browsed using the Annotation Viewer (a standard 

KoGS tool) to explore annotations and their respective 

feature.  

 

KoGS tools afford exploration of results in novel ways. In 

Figure 3 (panes 3 and 4) we show the Collection Statistics 

and the Concordance Viewers provided by the respective 

KoGS tools. The Collection Statistics Viewer has 2 panes. 

The Statistics Viewer presents the Concepts found, their 

frequency in the corpus and the average of specific 

concepts per document. For example, there were 466 

CarFeature annotations occurring on an average of 6.05 

times per document. The second pane gives a further 

breakdown for the concept selected and indicates  

1) the specific terms that were found,  

2) their frequency count in the corpus, and  

3) the average occurance per document.  

For Example, the term Car occurred 83 times in the 

corpus and on average appeared 1.07 times per document. 

This Viewer allows a user to quickly evaluate the 

effectiveness of the concept models that they create 

against a particular corpus. The Statistics Viewer can 

display up to seven runs to be compared side by side 

(from prior saved runs). This provides at-a-glance 

user-selected comparisons that are crucial in the 

tight-loop for evaluating the effect of iterative 

development of a concept. 

 

The Concordance Viewer (Fig. 3 - pane 4) is a KoGS tool 

that allows users to explore annotations by aggregating 

them in a variety of ways, in the context, in which they 

occur. The tool bar on the top right (8 icons) provides 

eight sorting and viewing possibilities. The sorting option 

shown in the figure displays the concepts on the left of the 

pane sorted in alphabetical order followed by the textual 

context of the term with that annotation. The term is 

shown in red and includes some distinguishing context to 

the left and to the right. Terms can also sorted 

alphabetically within a concept allowing the concurrent 

viewing of the context of multiple sentences that contain 

the same annotation and term. Another KoGS provides 

the 'Difference View', through which the analyst can 

compare in detail the difference between two similar 

analyses, by looking at the concordances produced by 

each (not shown in the figure). 

 

Both the Concordance and the Collection Statistics 

Viewers have the ability to present comparisons of results 

derived from different runs. The interplay of the 

Collection Statistics Viewer, the Concordance Viewer, 

and other result Viewers provides a set of exploration 

tools that are instrumental in the evaluation and 

incremental improvement of analytics. Providing a rich 

set of these Viewers as well as the ability to view them 

together has been an important design point in UDAT. 

9. System Notes 

UDAT was developed as an Eclipse
6

 Rich Client 

Platform
7

 (RCP) application using the JAVA 

programming language.  The plugin architecture of the 

Eclipse framework serves as a low-level robust 

foundation for making UDAT extensible by adding 

plugins, as needed. Each plugin may provide a certain 

feature of the UDAT framework, or may wrap 

architectural components such as CATs and KoGS 

components. The Graphical User Interfaces are based on 

Eclipse JFace
8
 and SWT

9
. 

                                                           
6 http://www.eclipse.org 
7 http://wiki.eclipse.org/index.php/Rich_Client_Platform 
8 http://wiki.eclipse.org/index.php/JFace 
9 http://www.eclipse.org/swt/ 

3262



 

UIMA is used as the underlying runtime framework for 

running the annotators in pipelines. The UIMA annotators, 

provided by the CATs, and the KoGS components might 

be implemented using independent technologies. 

However, once these technologies are wrapped in the 

UDAT architectural components, UDAT provides 

seamless interoperability between what started as an 

independent set of tools and technologies. For instance, 

UDAT supports a flexible flow through the full cycle 

development which might combine a number of CATs, 

KoGS components, and other elements which are based 

on technologies that would not normally “talk” to each 

other, otherwise. The detailed description of the UDAT 

architecture is outside of the scope of this paper, but may 

be the subject of a subsequent paper. 

10. Discussion & Conclusion 

The UDAT vision has generated a set of key requirements 
and ideas that have driven its design and implementation. 
These include: 
1) Consumability 
2) Extensibility 
3) Full Analytics Development Cycle Support 
4) Ontology-Centric Development Support 
5) Re-usability of Concepts and Analytics through   

Configurable Annotators 
 
The example use-case described in section 8 focused on 
the rapid development of text analysis applications by 
domain experts that are not expert NLP practitioners. This 
is one of UDAT’s main strengths. UDAT is, however, also 
designed to support users of varying levels of expertise. In 
addition, users can import results derived from UIMA 
analytics that were produced outside of the UDAT 
environment, and can build new concepts using imported 
annotation meta-data. The wide range of user support 
highlights our focus on Consumability – a requirement to 
provide a rich set of easy to use tools that a practitioner 
can apply depending upon their level of expertise as well 
as the technical challenges that the problem at hand brings 
to the analytics development. 
 

The CAT and KoGS frameworks are design points in 

UDAT that allow developers to easily plugin new 

configurable annotators for adding new analytics 

capabilities as well as adding new tooling that provide a 

rich set of exploration possibilities through Viewers. 

These broadly distinct, yet fully interoperable, categories 

of architectural components account for the diversity and 

open-endedness of function supporting domain-focused 

model development and application configuration. This 

allows for the layer of abstraction above the 

implementation and configuration details layers, which 

ultimately facilitates the domain expert users in building 

elaborate and deployable concept models. These 

frameworks support our requirement for Extensibility - 

the ability to easily add new pluggable components into 

UDAT to extend its functionality. 

 
Yet another important aspect of UDAT is our focus on 

understanding the full cycle of user task models that a 
practitioner engages in during the Full Analytics 
Development Cycle. 
 
Concept re-use has been a key requirement resulting in 
the pivotal design point of ontology-centric  
development. Users define ontological concepts and 
build analytic models for finding these concepts using 
techniques that are provided through configurable 
annotators. New concepts can be built upon previously 
developed concept models. This layering facilitates the 
creation of rich and complex concept analytics that are 
constructed out of simpler models.  
 
Concepts and their associated models can be assembled 
into ConceptFinders from repositories of domain 
independent and domain specific ontologies. The 
composability of existing concept analytics allows users 
to build applications in new domains through the re-use of 
existing concept repositories. These repositories provide 
Re-useable Intellectual Capital that can be deployed in 
a variety of established or new business settings that bring 
business value to a broad range of enterprises. 
 
In this paper, we have presented the UDAT vision, key 
design points and many of the features that are currently 
implemented.  We believe that UDAT provides a powerful 
environment for rapidly developing analytics and 
deploying applications in broad range of domains. We are 
currently evaluating this hypothesis by using UDAT in a 
range of problem domains in IBM research. 

11. References 

Bird, S. (2006). NLTK: The Natural Language Toolkit. In 
Demonstration Session, 45th Annual Meeting of the 
ACL, Sydney, Australia. 

Boguraev, B., Neff, M. (2007). An annotation-based 
finite state system for UIMA: User Documentation and 
Grammar Writing Manual, IBM T. J. Watson Research 
Center, Yorktown Heights, New York. 

Boguraev, B., Neff, M. (2002). Navigating through Dense 
Annotation Spaces. In Proceedings of the Sixth 
International Conference on Language Resources and 
Evaluation LREC, Marrakech, Morocco. 

Cunningham, H. (2002). GATE, a general architecture for 
language engineering. Computers and the Humanities, 
36, pp. 223--254. 

Cunningham, H., Scott, D. (2004). Software architectures 
for language engineering. Special Issue, Natural 
Language Engineering, 10(4). 

Dale, R. (2005). Industry watch. Natural Language 
Engineering 11, pp. 435--439. 

Ferrucci, D., Lally, A. (2004). UIMA: an architectural 
approach to unstructured information processing in the 
corporate research environment. Natural Language 
Engineering, 10, Special Issue on Software . 

Moore, C. (2002). Diving into Data, InfoWorld, October 
25. 

Park, Y., Byrd, R. and Boguraev, B. (2002). Automatic 
glossary extraction: beyond terminology identification. 
In Proceedings of the 19th International Conference on                   
Computational Linguistics, Taiwan. pp. 772--778. 

3263


