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Abstract
We describe the induction of lexical resources from unannotated corpora that are aligned with treebank grammars, providing a systematic
correspondence between features in the lexical resource and a treebank syntactic resource. We first describe a methodology based on
parsing technology for augmenting a treebank database withlinguistic features. A PCFG containing these features is created from the
augmented treebank. We then use a procedure based on the inside-outside algorithm to learn lexical resources aligned with the treebank
PCFG from large unannotated corpora. The method has been applied in creating a feature-annotated English treebank based on the
Penn Treebank. The unsupervised estimation procedure gives a substantial error reduction (up to 31.6%) on the task of learning the
subcategorization preference of novel verbs that are not present in the annotated training sample.

1. Introduction
The standard treebanks that are being created for the
world’s languages consist of labeled trees with indexed
empty categories. The choice of a simple formal vocabu-
lary for treebank annotation has advantages–for instance it
enables simple search methods and search languages, and
has spurred research on statistical parsing. For some other
purposes, including aspects of linguistic research, lexico-
graphic research and development, and research on high-
end parsing, it is a drawback that features such as inflec-
tional category, lemmas, sub-classification of clausal cate-
gories, subcategorization frames of verbs and nouns, and
localized information about long distance dependencies are
not overtly available in treebank annotations. In addition,
lexical resources where there is a systematic correspon-
dence between the lexicon and such fine-grained annota-
tion in a treebank database would also be valuable. For
instance, the lexical resource may contain features repre-
senting the subcategorization frames of verbs, which cor-
respond to structural configurations that the verb occurs in,
in a treebank. Given such an alignment, a treebank can be
compiled into a lexicon by collecting the combinations of
lexical entries and their local features found in the treebank.
This paper focuses on these two problems: one focus is a
development framework which allows existing treebanks to
be annotated by linguistically relevant features. The frame-
work includes creation of an augmented treebank database
and the creation of treebank PCFGs, including probabilis-
tic lexicons, based on the augmented treebank. The second
focus is the induction from unannotated data of treebank-
aligned probabilistic lexicons which encode lexical features
such as verbal valence (subcategorization) in pre-terminal
symbols. In this paper, we focus on learning verbal valence;
however there are many such lexically oriented features for
which treebank data is sparse, such as the attachment pref-
erences of adverbs to nominal, verbal or sentential nodes,
the valence of nouns and subclasses of adjectives. We use a
method based on constraint solving to add feature annota-
tions to the Penn Treebank of English (Marcus et al., 1993).
Features are then incorporated in the symbols of a context
free grammar and frequencies are collected, resulting in a

probabilistic grammar and a probabilistic lexicon which en-
codes lexical features.
Previous research has argued that because of sparseness of
lexical distributions, computational lexicons derived from
corpora should be based on very large corpus samples,
much larger than the roughly 50,000-sentence Penn Tree-
bank (for example, (Briscoe and Carroll, 1997)). (Beil et
al., 1999; im Walde, 2002) demonstrated that PCFG gram-
mars and lexicons with incorporated valence features could
be improved by iterative EM estimation; however their
grammar was not a treebank grammar, and therefore could
not be evaluated using standardized evaluation criteria. Our
treebank-aligned grammar and lexicon allows us to evalu-
ate lexical learning using a held-out portion of the treebank
for testing.
On the task of identifying the valence of token occurrences
of novel verbs, we get up to 23.38% error reduction fol-
lowing a standard inside-outside estimation procedure (Lari
and Young, 1990). A modified inside-outside procedure
which re-estimated lexical parameters while retaining syn-
tactic parameters in the PCFG gives a reduction in error rate
of 31.6%.
In the sections to follow, we first describe our methodol-
ogy for augmenting treebanks(§2.), building a PCFG from
the augmented treebank (§3.) and then a procedure based
on the inside-outside algorithm to re-estimate the treebank-
aligned lexicon using unannotated data (§4.). Finally, we
present evaluations of the resulting lexicon on the task of
verbal subcategorization detection. We also discuss the
modularity of the components of the system, and alternate
uses of the different modules in the distribution of the sys-
tem.

2. Treebank Feature Augmentation
Our methodology for augmenting the treebank with fea-
tures involves constraint-solving with a feature grammar
whose backbone is the context-free grammar obtained from
the treebank. First a feature constraint grammar is con-
structed by adding feature-constraints to a grammar ob-
tained from the vanilla treebank. The formalism used is
the Yap feature-constraint formalism (Schmid, 2000). The
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feature constraint annotations are similar in some respects
to those used in LFG frameworks like (O’Donovan et al.,
2005)– however, unlike (O’Donovan et al., 2005) who cre-
ate a treebank LFG grammar, our goal is to use this method-
ology for treebank transformation and to realize a PCFG
in the end. In the first step of the transformation process,
for each tree in the treebank, a trivial context-free shared
forest is constructed that represents a single tree. In the
second stage, the shared forest is passed to a constraint
solver, which solves constraints in the shared forest. This
stage adds features and may split a tree into several so-
lutions, writing out a feature shared forest. For solving
constraints, we use the parser Yap (Schmid, 2000), and a
feature-constraint grammar that we create using the vanilla
treebank grammar as backbone.

2.1. Feature Constraint Grammar
A context free grammar containing approximately30, 000
rules is obtained as the set of local tree configurations found
in a training portion of the treebank (in this paper, Sections
0-22 of the Penn Treebank). Feature constraints are added
to the rules using Perl and Lisp programs which examine
patterns in the rule shapes. The constraints assign con-
stant values to features or specify feature equalities. As
an illustration, consider auxiliary verb constructions. In
the Penn Treebank II convention, any local tree with a VP
parent and having both VP and verb children is an auxil-
iary verb construction. Hence, constraints suitable to auxil-
iary verb constructions should be added to any rule of this
form. In the example below, the first line gives the original
context free rule, and the subsequent lines the correspond-
ing feature constraint rule. Feature constraints in the Yap
formalism are enclosed in braces associated with context
free categories. A constraint consists of a feature name, an
equal sign and a value, followed by a semi-colon, and with
possible feature values being variables, constants, lists, etc.
(Schmid, 2000).

VP -> VB ADVP VP

VP {Vform=base; Slash=sl;} ->
‘VB { Val=aux; Prep=-; Vsel=vf;

Prtcl=-; Sbj=-; }
ADVP {}
VP { Slash=sl; Vform=vf; }

The above rule is for auxiliary VPs. A VP licensed by the
rule may have a variableVform on the complement VP
(the VP on the RHS of the above rule) which correlates with
the particular auxiliary verb (VB on RHS). For instance,
a progressivebe conditions the present participleVform
valueg). The dependence is expressed in the above rule
by using a variablevf to match theVform feature marked
on the complement VP with the value of aVsel feature
marked on the auxiliary verb. The verb is marked as an
auxiliary verb with the constraintVal=aux, using theVal
attribute which is also used to describe the valences of main
verbs. A slash feature is used in the standard way to express
wh dependencies; the rule matches theSlash values of
the parent and child VPs using a variablesl. The grammar
includes features which constrain the distribution of com-
mon empty categories. ThePrep (preposition),Prtcl

(particle) andSbj (subject) features on the verb have a
default value in this rule—for VP constructions involving
main verbs (non-auxiliary constructions),Prep gets a non-
default value if the verb has a PP complement,Prtcl gets
a non-default value for particle verbs, andSbj character-
izes the subject of an S complement. The backquote on VB
is a head marking that is required by the Yap formalism, but
which is irrelevant to our feature constraint grammar.
The next example illustrates the encoding of valence (sub-
categorization) on verbs. The VP rule below introduces the
trace of a passive NP, which in our notation is the empty
category +EI-NP+. A valence featureVal is marked on
verbs. The valence valuens on the past tense verb VBD
indicates a combination of NP and S complements. We use
a vocabulary of 31 basic valence values. A partial key for
the valence feature values used in examples in the paper
is shown in Figure 1. The slash value is matched between
the parent and the S child. The equationVform=n on the
parent identifies the passive verb phrase. In general, depen-
dencies such as passive and raising are constrained with lo-
cal features such asVform andVsel, reserving the slash
feature for A-bar dependencies.

VP -> VBD +EI-NP+ PP-TMP

VP {Vform=n; Slash=sl;} ->
‘VBD { Val=ns; Vsel=vf; Prep=-;

Prtcl=-; Sbj=-; }
+EI-NP+
S { Sbj=X; Slash=sl; Vform=vf; };

This rule also illustrates the strategy of projecting informa-
tion about the tree shape into a lexical item. A past tense
(VBD) verb occurring in the above configuration will get
marked with a specific valence valuens, and also withSbj
andVsel values copied from the S complement, and de-
fault values for the featuresPrep andPrtcl.
The basic valence (indicated byVal) is sub-classified by
additional features. TheVsel feature marks theVform
of a complement S, or for auxiliary verbs, the comple-
ment VP. This distinguishes, for instance, control verbs like
try which select an S withVform=to. TheSbj feature
marks whether the complement, if it is an S, has an empty
subject. For example, a control use of the verbtry has
Sbj=ei, marking an indexed null subject. The verbcon-
sideredin the treebank sentencethey are officially consid-
ered strategicgets pre-terminal values ofVal=s, Sbj=e,
andVsel=sc. These values indicates a clausal comple-
ment (s) which has an empty subject (e) since the sentence
is passive and is of the typesmall clause(sc). There are81
realized combinations of values forVal, Vsel, andSbj,
providing a moderately fine-grained classification of va-
lences. The featuresPrtcl andPrep further sub-classify
verbs with particle and prepositional complements, by in-
dicating the particular choice of particle or preposition.In
a method described in the next section, the effect will be
to construct a lexicon with fairly specific information about
the tree shapes associated with lexical items, using infor-
mation implicit in the treebank.
We also use features which are tree-geometric rather that
linguistic in nature, in the style of (Johnson, 1998; Klein
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z.-.-.- intransitive n.-.-.- NP
p.-.-.- PP np.-.-.- NP PP
s.-.-.- S b.-.-.- SBAR
t.-.-.- -PRD (predicate complement)
s.e.to control
s.-.sc active small clause complement
s.e.sc passive small clause complement

Table 1: Verbal subcategorization features

and Manning, 2003)). These are relevant to producing
a good PCFG model. An example is theVdom feature
marked on ADJP-PRD (predicative adjective phrase) in the
rule below. The valuevd for this feature has the interpre-
tation that the bearer of the feature directly or indirectly
dominates VP. Similarly, theparent attribute on PP is
tree-geometric contextual feature marking the upward con-
text.

ADJP-PRD -> ADJP PP S

ADJP-PRD {vdom=vd;} ->
‘ADJP {} PP { parent=adjp;} S {};

Since the feature constraint grammar is based on a treebank
backbone, it has a large number of rules, and since the Yap
formalism does not allow for factoring of constraints in an
inheritance hierarchy, the rules have redundant patterns of
feature constraints. This has some disadvantages in gram-
mar development, since there is no concise localization of
a given constraint. At the same time, the development envi-
ronment proves to be a comfortable one, because the tree-
bank nearly eliminates the issue of ambiguity. This allows
the computational linguist to concentrate on correct analy-
ses while developing the constraint grammar. We envision
this setup as a simple and easily deployable platform for
augmenting existing treebanks with features, creating lexi-
cal resources, and parsing.

The design for the grammar is largely motivated by the
PCFG compilation application described in the next sec-
tion. This has consequences for the complexity of the
feature analyses—notably, only atomic-valued features are
employed. It is clear that a grammar at this limited level
of complexity misses linguistically real phenomena, and
thus should be regarded as an approximation. The aim is to
strike a balance between linguistic sophistication and com-
putational and mathematical simplicity and tractability.

Figures 1 and 2 show sample trees in the transformed tree-
bank. The node labels and tree shape are as in the treebank,
except for simple transformations related to empty cate-
gories. The additional information consists of the atomic-
valued features which annotate each node in a tree. The
feature values make explicit certain information which is
implicit in the treebank. Importantly, features are marked
on lexical items—for instance a valence feature is marked
on verbs. This is the basis for the procedure for compil-
ing PCFG lexicons that have these features on lexical en-
tries (described in§3.) and for re-estimating better parame-
ter values for them (described in§4.).

tried VBD.s.e.to.- 32.0 VBN.s.e.to.- 11.0
VBN.n.-.-.- 5.0 VBD.z.-.-.- 1.0
VBD.n.-.-.- 1.0 VBD.s.e.g.- 1.0
VBN.z.-.-.- 1.0

attacked VBN.n.-.-.- 5.0 VBN.np.-.-.as 1.0
VBD.np.-.-.as 2.0 VBD.z.-.-.- 1.0

attain VB.n.-.-.- 2.0
attest VB.b.-.-.- 1.0

Figure 3: Entries of verbs in the PCFG lexicon. The last
two entries illustrate sparseness of the treebank lexicon.

29092.0 ROOT S.fin.-.-.root
14134.0 S.fin.-.-.- NP-SBJ.nvd.base.-.-.- VP.fin.-.-
13057.0 NP-SBJ.nvd.base.-.-.- PRP
13050.0 PP.nvd.of.np IN.of NP.nvd.base.-.-.-.-
11226.0 S.fin.-.-.root NP-SBJ.nvd.base.-.-.-

VP.fin.-.- -PER-.stop
10760.0 VP.to.-.- TO VP.base.-.-

Figure 4: Syntactic rule frequencies in the treebank PCFG

3. PCFG Compilation and Parsing
application

In treebank parsing applications, PCFGs are often created
by incorporating features into context free grammar sym-
bols (for example,(Klein and Manning, 2003)). We use a
method which compiles a frequency table for a PCFG from
the feature annotated treebank database (Privman, 2003).
For each symbol, a list of attributes to be incorporated into
the symbol is stipulated. For instance, it may be stipulated
that VP incorporates the attributesVform and Slash,
and that verbs incorporateVal, Vform andSbj. A pro-
gram reads the shared forest structures produced by con-
straint solving, and collects frequencies of occurrences of
local tree configurations, including context free symbols
and incorporated features. In cases where constraint solv-
ing introduced ambiguity, frequencies are split by a non-
probabilistic version of the inside-outside algorithm (the ra-
tio algorithm). The result is a rule frequency table and fre-
quency lexicon which can be used by a probabilistic parser.
Figures 3 and 4 illustrate entries in the PCFG lexicon and
grammar respectively.
PCFGs derived in this way can be used by a parser to con-
struct maximal probability (Viterbi) parses. We evaluate the
quality of the PCFG extracted from the transformed tree-
bank using standardPARSEVAL measures. We obtain max-
imum probability (Viterbi) parses for all sentences in the
standard test section of the Penn Treebank (Section 23), us-
ing the parser Bitpar (Schmid, 2004). Table 2 shows the
labeled bracketing scores for an optimal combination of
features incorporated in the PCFG symbols. The labeled
bracketing scores are comparable to state-of-the-art unlexi-
calized grammars. Figure 5 shows an example viterbi parse
using the PCFG. Incorporating different features into the
PCFG changes the labeled bracketing score of the PCFG;
recall that our framework allows us to stipulate which fea-
tures from the feature constraint grammar are to be incorpo-
rated into the symbols of the PCFG. To illustrate this point,
consider features on verbs and nouns related to valence. In

3161



Figure 1: A relative clause in the transformed treebank: Empty categories are flanked by plus signs.

Figure 2: Prepositional complements of nouns are marked on the noundiscounts(nval=p) along with the preposition
(nvalperp=for)

the grammar version whose scores are reported in Table 2,
features incorporated on verb and noun categories do not
include the specific preposition for prepositional subcatego-
rization frames. In another version of the grammar, we in-
clude specific prepositions from the prepositional comple-
ment into the verbal and nominal subcategorization frame.

The effect of including specific prepositions on these cat-
egories may be to make the grammar too sparse, resulting
in the reduction of the labeled bracketing score seen in Ta-
ble 3. Nevertheless, including these features is interesting
from the point of view of creation of lexical resources, since
it enriches the lexical information that is represented.
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Figure 5: A viterbi parse tree generated by the PCFG.

this paper Schmid(2006)
Labeled Recall 86.5 86.3

Labeled Precision 86.7 86.9
Labeled F-score 86.6 86.6

Table 2: Labeled bracketing evaluation, Penn Treebank sec-
tion 23.

Prepositions Prepositions
on verbs on nouns

Labeled Recall 86.11 85.98
Labeled Precision 86.50 86.3
Labeled F-score 86.31 86.14

Table 3: Labeled bracketing evaluation, for PCFGs with
prepositions incorporated in verbal and nominal categories,
Penn Treebank section 23.

Since not all features are incorporated in the PCFG, a PCFG
parse tree does not reflect a full analysis according to the
feature grammar. However, as a result of the alignment be-
tween the PCFG and the constraint grammar, constraints
can be solved in the maximal probability tree identified
by the Viterbi algorithm, or in the sequence ofN highest-
probability trees. This will eliminate trees which are not
consistent with the feature grammar, and annotate others
with a complete set of feature values. This results in fea-
ture trees like 1 and 2 for novel sentences.

4. Re-estimating Lexical Parameters of the
PCFG

The PCFG trained over the transformed treebank has pa-
rameters related to lexical properties of words such as sub-
categorization features on verbs, attachment preference of

adverbs (sentential, nominal, verbal adverbs), and valence
and prepositional preferences of nouns. However, since
these parameters are tied to particular words, they are not
well estimated in a treebank PCFG. In order to have a large-
scale lexicon with an accurate representation of such prefer-
ences, it is necessary to learn parameters from data of much
larger magnitude than available treebanks. We have experi-
mented with learning these parameters over a large unanno-
tated corpus using an unsupervised training method based
on the inside-outside algorithm. The inside-outside algo-
rithm iteratively re-estimates the parameters of a PCFG,
given unannotated data. We used a modified version of the
inside-outside procedure, in which values of lexical param-
eters are re-estimated from unannotated data, but values of
syntactic parameters originally learnt from the treebank are
retained in each iteration.

4.1. Smoothing the treebank model

The initial model used for the re-estimation procedure is a
smoothed treebank model. A smoothing scheme is required
in order to allocate frequency to combinations of wordsw

and POS tagsτ which are not present in the treebank and
also to all possible incorporations of a part-of-speech (POS)
tag. Otherwise, if the treebank model has zero frequency
for some lexical parameter, the inside-outside estimate for
that parameter would also be zero, and new lexical entries
would never be induced. Given an unsmoothed treebank
modelt0, the smoothed treebank modelt is obtained as fol-
lows. First a POS tagger is run on the unsupervised corpus
C, and tokens of words and POS tags are tabulated to ob-
tain a frequency tableg(w, τ). Each frequencyg(w, τ) is
split among possible incorporationsι in proportion to a ra-
tio of marginal frequencies int0, as in equation 1.w is the
word, τ is the part-of-speech tag, andι is the sequence of
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incorporated features on the tag.

g(w, τ, ι) =
t0(τ, ι)

t0(τ)
g(w, τ) (1)

Then the smoothed modelt is defined as an interpolation of
g andt0 for lexical parameters as shown in 2, with syntactic
parameters copied fromt0.

t(w, τ, ι) = (1 − λτ,ι)t0(w, τ, ι) + λτ,ιg(w, τ, ι) (2)

4.2. Re-estimation using Inside-Outside
Starting with the smoothed treebank modelt and corpus
C, two procedures are carried out. The first procedure
is the standard iterative inside-outside procedure (Lari and
Young, 1990). The second procedure has a frequency trans-
formation step interleaved between the inside-outside it-
erations. In this transformation, lexical parameters from
the re-estimated model and the original treebank model
are linearly combined to give a transformed lexicon used
in the next iteration. The values of syntactic parameters
used in each iteration are taken directly from the treebank
model. The lexical transformation is expressed in Equation
3, wheredi refer to the transformed model for iterationi.

di(w, τ, ι) = (1 − λτ,ι)t(w, τ, ι) + λτ,ιc̄i(w, τ, ι) (3)

t is the smoothed treebank lexical model andc refers to
models estimated from the corpusC. The termc̄i(w, τ, ι)
is obtained by scaling the corpus frequencies inci(w, τ, ι)
as in 4.

c̄i(w, τ, ι) =
t(τ, ι)

ci(τ, ι)
ci(w, τ, ι). (4)

λτ,ι is a parameter with0 < λτ,ι < 1 which may depend
on the tag and incorporation. The transformation preserves
the marginal tag and incorporation frequencies seen in the
treebank model.

5. Experimental setup
The treebank PCFG is trained over sections 0-22 of the
transformed Penn Treebank (minus approximately 7000
sentences held out for testing). The corpus used for re-
estimation is approximately 4 million words of unannotated
Wall Street Journal text (year 1997), with sentence length
restricted to less than 25 words. The re-estimation was car-
ried out over a cluster of computers using Bitpar (Schmid,
2004) for inside-outside estimation. The parameterλ in
Equation 3 was set to 0.5 for allτ andι, giving equal weight
to the treebank and the re-estimated lexicons. Starting from
a smoothed treebank grammart, we separately ran 6 iter-
ations of the interleaved estimation procedure, and 4 iter-
ations of standard inside-outside estimation. This gave us
two series of models corresponding to the two procedures.
We constructed a test set from the Penn treebank to evalu-
ate the learning of the subcategorization frames of novel
verbs. First, we selected 117 verbs whose frequency in
Treebank sections 0-22 is between 10-20 (mid-frequency
verbs). These verbs have appropriately varied subcatego-
rization frames. Prior to building the treebank PCFG, all
sentences containing occurrences of these verbs were held
out to form Testset I (1331 sentences). The effect of hold-
ing out these sentences from the PCFG training data is to
make these 117 verbs novel (i.e. unseen in training).

6. Subcategorization Acquisition
We focus on the task of learning the subcategorization
frames of verbs using the interleaved inside-outside re-
estimation process from§4.2.. The subcategorization frame
(SF) of verbs is a parameter of our PCFG – verbal tags in
the PCFG are followed by an incorporation sequence that
denotes theSF for the verb.
Lexical resources containing accurate and probabilistic ver-
bal subcategorization information are important for vari-
ous tasks like parsing, machine translation, etc. Creation
of a resource containing such information from large cor-
pora has received much attention in the community, with
(Brent, 1991), (Ushioda et al., 1993), and (Manning, 1993)
being early attempts at extracting frames from raw data.
(Briscoe and Carroll, 1997) induce 163 pre-defined frame
types, using apriori information about probabilities of par-
ticular frame types to filter the induced frames while (Ko-
rhonen, 2002) uses Levin classes to get better back-off esti-
mates for hypothesis selection at the filtering stage. An ap-
proach similar to ours is used in (Carroll and Rooth, 1998)
with a hand-written, head-lexicalised CFG and a raw cor-
pus to iteratively estimate the distribution of subcategoriza-
tion frames for particular predicates. Schulte im Walde
(2002) also uses a head-lexicalised grammar for German
to extract distributions for a large number of verbs from
a German newspaper corpus. There has also been work
to extract formalism-specific lexical resources from tree-
bank data, for example (Chen and Vijay-Shankar, 2000) for
LTAG, (Clark et al., 2002) for CCG, (Tsuruoka and Tsujii,
2004) for HPSG.

6.1. Evaluation

In order to evaluate the models obtained from the inside-
outside procedures, we focus on the task of detecting the
subcategorization frames ofnovel verbs (i.e. verbs that
have not been seen in the treebank). We first obtain
maximum-probability (viterbi) parses of all sentences in
Testset I (described in§5.) using the re-estimated models.
All tokens of the test verbs and their pre-terminal symbols
are extracted from the viterbi parses. The pre-terminal sym-
bol of verbs consists of a part-of-speech tag and an incor-
poration sequence encoding theSF. This tag-SFsequence is
compared to a gold standard, and is scored correct if the two
match exactly. Part-of-speech errors are scored as incorrect,
even if theSF is correct. The gold standard is obtained from
the transformed Penn-treebank trees. The incorporation se-
quence on verbs consists of 3 features (together referred
to as the subcategorization frame), as described in§2.1.:
Val (valence),Vsel (type of clause for for clausal com-
plements) andSbj (subject of the clausal complements).

Table 4 shows this error rate (i.e. the fraction of test items
which receive incorrect tag-incorporations in viterbi parses)
for various models obtained using the interleaved and stan-
dard re-estimation procedures.t0 is the model with the
test data from Testset I merged in (to account for unknown
words) using the same smoothing scheme given in§4.1.,
with λ = 0.001. This model has no verb specific informa-
tion for the test verbs. For each test verb, it has a smoothed
SF distribution proportional to theSF distribution for all
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Iterationi Interleaved Standard
Procedure Procedure

t0 33.36 33.36
1 24.40 28.69
2 23.45 25.56
3 23.05 27.86
4 22.89 28.41
5 22.81 -
6 22.83 -

Table 4: Subcategorization error for novel verbs.

verbs of that tag. The baseline error is about 33.4%. This
means that there is enough information in the average dis-
tribution of all verbs and in the syntax to correctly assign
the subcategorization frame to novel verbs about 66.6% of
the time. For the models obtained using the interleaved re-
estimation, the error rate falls to the lowest value of 22.81%
for the model obtained in the 5th iteration : an absolute re-
duction of 10.55 points, and a percentage error-reduction of
31.6%. The models obtained using standard re-estimation
do not perform as well.
Amongst previous work onSFacquisition from corpora we
find that relatively few parsing-based evaluations are re-
ported. Since their goal is to build probabilisticSF dictio-
naries, these systems are evaluated either against existing
dictionaries, or on distributional similarity measures. Most
are evaluated on testsets ofhigh-frequency verbs (unlike
the present work), in order to gauge the effectiveness of the
acquisition strategy. (Briscoe and Carroll, 1997) report a
token-based evaluation for seven verb types– their system
gets an average recall of 80.9% for these verbs (which ap-
pear to be high-frequencyverbs). This is slightly lower than
the present system (we have an overall accuracy of 83.16%
on all verbs (novel and non-novel), evaluated on a separate
test set consisting of 4300 sentences held out from the PTB)
However, for low frequency verbs (exemplars<10) they
report that results are around chance. We believe that an
evaluation over token occurrences is relevant to NLP tasks.
Table 5 shows the development of lexical entries for three
representative test verbs in four iterations of the interleaved
procedure. The frequencies are scaled according to the for-
mulas in§4.2.; only the top fiveSFs are shown. Absolute
frequencies in the unsupervised training sample are higher.
The first column is the smoothed treebank model with an
average distribution for these novel verbs. The column for
the model from the 4th iteration can be compared to the
last column, which shows lexical entries obtained from a
treebank model which included these verbs (scaled by0.5,
sinceλ in eq.3 is0.5).

7. Conclusions
We have presented a framework that allows for augmen-
tation of a treebank with linguistically motivated features
which also allows the building of a PCFG that can be fur-
ther used in applications for learning of lexical information.
The framework can be applied to languages with existing
treebanks in order to obtain treebank-aligned resources and
to bootstrap induction of lexical information from unanno-

tated data. We plan to use the framework to learn other
lexically dependent parameters such as the prepositional at-
tachment preference of verbs and nouns, attachment pref-
erence (sentential, nominal, verbal) of adverbs, valence of
nouns, etc. in order to create probabilistic lexicons use-
ful for parsing where this type of information about lexical
items is represented.

8. Distribution
The programs used to build the augmented treebank and
the treebank-aligned PCFG from the Penn treebank files,
and some of the resulting resources, are being distributed
in a release with the following functionality and/or compo-
nents. The software environment and/or additional required
software or databases are listed in parentheses.

1. Regularize the treebank. (lisp, awk, PTBII mrg files)

2. Build feature constraint grammar from the output of 1.
(perl, lisp)

3. Map each regularized treebank treeti.tb to a trivial
context free shared forestti.cpf representing one
tree. (lisp)

4. Solve feature constraints in each context-free shared
forest ti.cpf to produce a feature shared forest
ti.fpf. (yap-compiler, yap-parser, (Schmid, 2000))

5. Map feature shared forests to PCFG rules and lexical
entries with incorporated features. Parameter files for
several choices of incorporations are included. (yappf-
fun (Privman, 2003), java)

6. Adapt PCFG lexicon to a test corpus by tagging the
test corpus and smoothing the PCFG lexicon to in-
clude the word forms in the test corpus ((Schmid,
1994), perl).

7. PCFG Viterbi parsing with labeled bracket and va-
lence evaluation (bitpar (Schmid, 2004), evalb, perl)

8. Lexicon smoothing for modified inside-outside proce-
dure and re-estimation on unsupervised training cor-
pus (perl, bitpar).

9. Constraint grammar files that are the output of 3 for
trees in Treebank II sections 0-15 whose index modulo
10 is not 9.

10. PCFG grammar and lexicon files with incorporated
features for parsing sentences in PTB sections 0-22
with index 9 modulo 10.

11. Smoothed PCFG lexicon file with incorporated fea-
tures for parsing 4 million word WSJ corpus.

12. Re-estimated PCFG lexicon with incorporated fea-
tures for 4 million word WSJ corpus.

The experiment is organized with a make file which al-
lows the experiment to be built from the treebank distribu-
tion. The modular components can be used in ways other
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t It 1 It 2 It 3 It4 PTB
disagree VBP.n.-.- 0.0014 VBP.z.-.- 2.01 VBP.z.-.- 2.20 VBP.z.-.- 2.22 VBP.z.-.- 2.23 VBP.z.-.- 1.0

VBP.t.-.- 0.0012 VBP.p.-.- 0.98 VBP.p.-.- 1.17 VBP.p.-.- 1.20 VBP.p.-.- 1.22 VBP.p.-.- 1.0
VB.n.-.- 0.0011 VB.p.-.- 0.64 VB.z.-.- 0.60 VB.z.-.- 0.61 VB.z.-.- 0.61 VB.z.-.- 1.0
VBP.aux.-.h 0.0009 VB.z.-.- 0.56 VB.p.-.- 0.54 VB.p.-.- 0.53 VB.p.-.- 0.53 VB.b.-.- 1.0
VBP.b.-.- 0.0008 VBP.n.-.- 0.27 VBP.n.-.- 0.27 VBP.n.-.- 0.25 VBP.n.-.- 0.24 -

admit VB.n.-.- 0.0040 VB.n.-.- 2.06 VB.n.-.- 2.12 VB.n.-.- 2.13 VB.n.-.- 2.16 VB.n.-.- 0.5
VB.z.-.- 0.0009 VBP.b.-.- 1.27 VBP.b.-.- 1.49 VBP.b.-.- 1.48 VBP.b.-.- 1.48 VBP.p.-.- 0.5
VBP.n.-.- 0.0008 VB.b.-.- 0.63 VB.b.-.- 0.99 VB.p.-.- 0.32 VB.b.-.- 0.76 VB.z.-.- 0.5
VBP.t.-.- 0.0007 VBP.n.-.- 0.44 VB.p.-.- 0.32 VBP.n.-.- 0.31 VB.z.-.- 0.33 VBP.z.-.- 0.5
VB.t.-.- 0.0006 VB.z.-.- 0.33 VBP.n.-.- 0.32 VB.z.-.- 0.30 VB.p.-.- 0.32 -

decides VBZ.t.-.- 0.0014 VBZ.b.-.- 1.28 VBZ.s.e.to 1.14 VBZ.s.e.to 1.16 VBZ.s.e.to 1.16 VBZ.s.e.to 3.5
VBZ.n.-.- 0.0011 VBZ.s.e.to 0.90 VBZ.b.-.- 1.09 VBZ.b.-.- 1.04 VBZ.b.-.- 1.06 VBZ.b.-.- 1.5
VBZ.aux.-.h 0.0008 VBZ.z.-.- 0.63 VBZ.n.-.- 0.37 VBZ.n.-.- 0.36 VBZ.n.-.- 0.36 VBZ.n.-.- 0.5
VBZ.b.-.- 0.0006 VBZ.s.-.fin 0.42 VBZ.z.-.- 0.32 VBZ.z.-.- 0.35 VBZ.z.-.- 0.35 VBZ.p.-.- 0.5
VBZ.z.-.- 0.0005 VBZ.n.-.- 0.36 VBZ.p.-.- 0.29 VBZ.p.-.- 0.28 VBZ.p.-.- 0.28 -

Table 5: Lexical entries (top 5SFs) for three novel test verbs in successive iterations. The frequencies are scaled. The
last column shows the distribution of these verbs in a treebank model where they were not held-out. The verb tags are VB
(base), VBP (non-3rd-person present tense) and VBZ (3rd person present tense). Interpretation of valences (those in the
column for the fourth iteration) are b (that-clause), n (transitive), p (prepositional), s.e.to (control) and z (intransitive).

than the ones discussed here. For instance, feature con-
straints can be solved in the maximal probability tree re-
sulting from Viterbi parsing or each each of theN trees
with highest PCFG probability. This allows feature trees to
be constructed for novel data.
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