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Abstract
Pattern matching, or querying, over annotations is a general purpose paradigm for inspecting, navigating, mining, and transforming
annotation repositories—the common representation basis for modern pipelined text processing frameworks. Configurability of such
frameworks and expressiveness of feature structure-based annotation schemes account for the ‘high density’ of some such annotation
repositories. This particular characteristic makes challenging the design of a pattern matching engine, capable of interpreting (or impos-
ing) flat patterns over an arbitrarily dense annotation lattice. We present an approach where a finite state device carries out the application
of (compiled) grammars over what is, in effect, a linearized ‘projection’ of a unique route through the lattice; a route derived by a mix
of static pattern (grammar) analysis and interpretation of navigational directives within the extended grammar formalism. Our approach
achieves a mix of finite state scanning and lattice traversal for expressive and efficient pattern matching in dense annotations stores.

1. Dense Annotation Spaces

Recent years have seen a strong trend towards evolving no-
tions of robust and scalable architectures for natural lan-
guage processing, crucially utilizing annotation-based rep-
resentation for recording, and transmitting, results of indi-
vidual component analysis (Cunningham and Scott, 2004).

Beyond the generalized view of annotation formats de-
veloped in (Bird and Liberman, 2001), annotation-based
representational schemes have evolved to support complex
data models and multiply-layered annotation-based analy-
ses over the same corpus. For instance, to address some
issues of reusability, interoperability and portability, (Hahn
et al., 2007) at JULIE Lab1 have developed a comprehen-
sive annotation type system capturing document structure
and meta-information, together with linguistic information
at morphological, syntactic and semantic levels. This nat-
urally will result in multiple annotations over the same
text spans. Orthogonally, initiatives like the NSF project
on Unified Linguistic Annotation (ULA) and the Linguis-
tic Annotation Framework (LAF) developed within ISO2

(see, for instance, (Verhagen et al., 2007)’s MAIS, (Ide and
Suderman, 2007)’s GrAF) argue for the need for annota-
tion formats to support multiple, independent, and alter-
native annotation schemes, where a specific type of e.g.
semantic analysis can be maintained separately from, and
without interfering with, semantic annotations at other lay-
ers: consider, for instance, the ULA focus on integrating
PropBank-, NomBank-, and TimeBank-style annotations
over the same corpus, while maintaining open-endedness
of the framework so other annotation schemes can be simi-
larly accommodated. Multiple annotations—possibly even
carrying identical labels over identical spans—are also a
likely characteristic of such environments.

1The Language and Information Engineering Lab at Jena Uni-
versity, http://www.julielab.de/.

2International Standards Organization, Technical Committee
37, Sub-Committee 4, Language Resource Management, http:
//www.iso.org/iso/iso catalogue/catalogue tc.

From an engineering standpoint, such complexity in anno-
tation formats and schemes is already tractable. For in-
stance, by providing a formal mechanism for specifying
annotations within an arbitrarily complex type hierarchy
based on feature structures (further enhanced by multiple
analysis views within a document, and awareness of names-
paces for feature structure types), the Unstructured Infor-
mation Management Architecture framework (UIMA; (Fer-
rucci and Lally, 2004)3) offers the representational back-
bone for the requirements of the JULIE project, as well
as the ability to support (or be isomorphic to) MAIS’ and
GrAF’s multiple annotation layers.

Such annotation frameworks, however, make for dense an-
notation spaces; these are, essentially, annotation lattices.
Typically, there will be numerous multiple annotations over
the same text span. Annotations will be deposited in a com-
mon annotations store by the individual components of the
particular processing pipeline. Related, or inter-dependent
components may—but do not have to—deposit annotations
which are ‘aligned’ (i.e. not overlapping); non-related com-
ponents will have no such mandate. (For instance, just
bringing more than one tokenizer into the pipeline is certain
to produce mis-aligned tokens.) Trees (or tree fragments)
may be encoded by relative overlays of annotation spans,
possibly mediated by an auxiliary system of features (prop-
erties) on annotations.

In such annotation spaces, matching (or querying) over an-
notations requires interpretation of sub-graphs within an
annotation lattice. We assume that such a process is medi-
ated via some formal language; this paper addresses some
of the requirements—and underlying support—for such
language to resolve the ambiguities of traversal associated
with the kinds of lattices under discussion.

We argue for a specially adapted lattice traversal engine
designed with the capability to focus—simultaneously—
on sequences of annotations, on annotation structures iso-
morphic to tree fragments, and on specific configurational

3See also http://incubator.apache.org/uima/.
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relationships between annotations. For example, sequen-
tial constraints might be used in an annotation pattern for
some meaningful relationship between a pre-nominal mod-
ifier and the nominal head following it; tree matching over
a predicate-argument fragment may be used to identify the
node annotation for a labeled argument; and some process
may need to iterate over all annotations of certain type—
say noun phrases—excluding from its considerations NP
instances in a certain configurational relationship with other
annotations (e.g. not sentence-initial, or not internal to
a prepositional phrase), or which exhibit certain internal
structural properties (e.g. containing an annotation over a
temporal expression). (We will refer to such constraints, in
general, by using terms like ‘horizontal’ and/or ‘vertical’.)

Such examples illustrate some of the issues in navigating
annotation lattices; additional complexity may be added by
the characteristics of a particular lattice, or by the specific
needs of an application. For instance, multiple, non-aligned
token streams may pose a challenge to figuring out what
the ‘next’ token is, following some higher-level constituent.
Likewise, an application may need to aggregate over a set
of annotation instances—e.g. for consistency checking—
before it posts a higher-level, composite, annotation (con-
sider the constraint that an electronic signature may contain
at least two of name, affiliation, address, or phone number,
in any order; or that a temporal relation must have two ar-
guments, one of which is a temporal expression).

2. Navigational Challenges

As the above examples further indicate, in many situa-
tions an annotation may present an inherent ambiguity:
is it to be treated as an atomic object, or as a structured
fragment, the shape of which matters? Consider, for in-
stance, a representation scheme where proper names are
annotated (say, by [PName] annotations), with their inter-
nal structure further made explicit by annotating, as appro-
priate, for [Title] and [Name], itself further broken into
e.g. [First], [Middle], and [Last]. Some of these an-
notation types may, or may not, appear in any particular
instance. Now, it is possible to conceive of an application
which just needs to iterate over [PName]s; it is also possi-
ble, however, to imagine a need for only collecting e.g. ti-
tled proper names, or proper names whose [Last] compo-
nents satisfy some constraint. The former iteration regime
would only ‘care for’ [PName] annotations; the latter needs
to both identify such annotations and simultaneously in-
spect their internal components—possibly located several
layers below the top—within the same traversal step.

This unit-vs-structure dichotomy is orthogonal to a differ-
ent kind of ambiguity with respect to an annotation: is it to
be visible to an underlying lattice traversal engine or not?
Visibility in this sense may be contingent upon focusing on
one, and ignoring alternative, layers of annotation in, say,
ULA-style of analysis (e.g. , iterate over NP’s in PropBank
annotations, but ignore NomBank NP annotations). Alter-
natively, visibility may also be defined in terms of what
matters to an abstract ’pattern’: in the example of pars-
ing an electronic signature above, it is convenient to cast

the rule in terms of meaningful components, and not even
specify the optional use of punctuation tokens, such as com-
mas, hyphens, etc.—the intuition here is that the formalism
should drive a traversal regime which is only sensitive to
some, but not all, annotation types encountered.

Yet another perspective on visibility derives from the com-
bined effects of likelihood of multiple annotations over ex-
actly the same span, and the application’s need to inspect
two (or more) of them, conceptually during the same traver-
sal. This is complementary to our first scenario above, and
highlights the broad range of iteration regimes which need
to be supported by the annotation matching infrastructure.

Our work develops an annotation traversal framework
which addresses the challenges of navigating dense annota-
tion lattices. Fundamentally, the design seeks to exploit in-
sights from research in finite-state (FS) technology, appeal-
ing both to the perspicuity of regular patterns and the effi-
ciency of execution associated with FS automata. Our AFst
framework, however, makes suitable adaptations in order to
reduce the problem of traversing a lattice of annotations to
that of FS-tractable problem of scanning an unambiguous
stream of ‘like’ objects, in our case (UIMA) annotations.

Broadly speaking, we address similar challenges to those
identified by research on querying annotation graphs (Bird
et al., 2000). However, rather than focusing on strongly
hierarchical representations and mapping queries to a rela-
tional algebra (SQL) as in for instance (Lai and Bird, 2004),
we seek a solution ultimately rooted in ’linearizing’ the an-
notation lattice into an unambiguous annotation stream, so
that traversal can be realized as a finite-state process. This
fits better not just activities like exploration of an annotated
corpus, but also an operational model of composing an ap-
plication, where a pattern-matching annotation engine im-
plements, via a set of fully declarative grammars, an active
annotator (e.g. a parser, a named entity detector, or a fea-
ture extractor). The focus of this paper is to present the ba-
sic design points of the framework (and associated pattern
specification language) facilitating such linearization.

3. Related Work: Patterns over
Annotations

Several approaches address the problem of matching over
annotations. Abstractly, two broad categories can be
observed. A class of systems, like those inspired by
(Grefenstette, 1999), (Silberztein, 2000), (Boguraev, 2000),
(Grover et al., 2000), (Simov et al., 2002), essentially de-
construct an annotations store data structure into a string
(suitably adorned with in-line annotation boundary infor-
mation) and apply FS matching over that string. At rep-
resentational level, annotations may be represented inter-
nally either in a framework-specific way, or by means of
XML markup. There are many attractions to using XML
(with its requisite supporting technology, including e.g.
schemas, parsers, transformations, and so forth) to emu-
late most of the functions of an annotations store (but see
(Cassidy, 2002) for an analysis of some problems of adopt-
ing XML as an annotation data model, with XQuery as
an interpreter). However, not all annotations stores can
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be rendered as strings with in-line annotations: difficulties
arise precisely in situations where ambiguities discussed in
Section 2. are present. Consequently, overlapping, non-
hierarchical, multi-layered annotation spaces present seri-
ous challenges to traversal by such a mechanism.

Alternatively, overlaying FS technology on top of struc-
tured annotations which are ‘first-class citizens’ in their
respective architecture environments is exemplified by a
different class of systems, most prominently by GATE’s
JAPE (Cunningham et al., 2000) and DFKI’s SProUT
(Droẑdẑyński et al., 2004). While these two are substan-
tially different, a crucial shared assumption boils down to
the annotation traversal engine ‘knowing’ (with the knowl-
edge then implicitly used in the rule sets/grammars) that
components upstream of it will have deposited annotations
of certain type(s) in ways such that the lattice to be tra-
versed would behave like a flat sequence (in the case of
GATE), or would encode a strictly hierarchical set of type
instances (in the case of SProUT).This is not an assump-
tion which necessarily holds for projects like the ones out-
lined earlier (Section 1.), nor does it adequately describe the
proliferation of possibly ambiguous, or even contradictory,
annotations (especially from early components in complex
pipelines), typical of large-scale architectures where an ar-
bitrary number of annotator components may deposit con-
flicting/partially overlapping spans in the annotations store.

4. Elements of Annotation-Matching
Formalism

Our AFst framework addresses the design considerations
for traversing and navigating annotation lattices by ex-
posing a language which, to its user, provides constructs
for specifying sequential, structural, and configurational
constraints among annotations. It thus borrows notions
from regular algebra for pattern matching, tree traversal for
structure decomposition, and type prioritization for config-
urational statements; these are embedded in a notational
framework derivative of cascaded regular expressions.

4.1. Pattern Specification

In an annotations store environment, where the only ’cur-
rency’ of representation is the annotation-based type in-
stance, FS operations have to be defined over annota-
tions and their properties. AFst thus implements, in ef-
fect, a finite state calculus over typed feature structures, cf.
(Droẑdẑyński et al., 2004), with pattern-action rules where
patterns would be specified over configurations of type in-
stances, and actions which manipulate annotation instances
in the annotations store (see below). The notation devel-
oped for specifying FS operations is compliant with the no-
tion of a UIMA application whose data model is defined by
means of externally specified system of types and features.

At the simplest level of abstraction, grammars for AFst can
be viewed as regular expression (-like) patterns over anno-
tations. This allows for finding of sequences of annotations
with certain properties (e.g. nouns following determiners,
unbroken stream of tokens with certain orthographic fea-

ture (such as capitalized), or noun group–verb group pairs
in particular contexts). However, given that each transition
of the underlying FS automaton is licensed by an arbitrarily
complex set of constraints, the notation incorporates more
complex syntax for specifying what annotation to match,
what are the conditions under which the match is deemed
to be successful, and what (if any) action is to be taken with
respect to modifying the annotations store. Much of that
complexity is borne by a symbol notation, indicative of the
set of operations (typically over the annotations store) that
need to be carried out upon a transition within the transition
graph compiled from the FS skeleton. Thus, for instance,
where a character-based FS automaton would be examin-
ing the next character in its input tape, our AFst interpreter
may be asked to perform progressively more complex oper-
ations. Examples of such operations, expressed as symbols
on the arcs of an FS automaton, are typically: match over an
annotation of type T, possibly examining values of its fea-
ture(s) (Token[], Person[kind=∼"named"]), and post
a new annotation at the point of a successful match, over
a given input span, with optionally setting values for its
feature(s) (NP[]/]Subj[passive="false"]). Later, we
will show how elements from both the symbol and gram-
mar notations can be augmented to affect navigation.

A (very simple) grammar for noun phrases, defined over the
part-of-speech tags of [Token] annotations, is shown be-
low. The symbol <E> marks an empty transition (a match
which always ‘succeeds’), and the operators . and * spec-
ify, respectively, sequential composition, and zero or more
repetitions, of sub-patterns. In effect, the grammar looks
for a sequence of tokens, which starts with an optional de-
terminer, includes zero or more adjectives, and terminates
with a singular or plural noun. If such a sequence is found,
a new [NP] annotation is created into the annotations store.

np = <E>/[NP .
Token[pos=˜"DT"]|<E> .
Token[pos=˜"JJ"]* .
Token[pos=˜"NN"] | Token[pos=˜"NNS"] .

<E>/]NP ;

Note that Token is just another type in a UIMA type system:
there is nothing special about querying for its pos feature.
Thus, if an upstream annotator has deposited, say, tempo-
ral expressions in the annotations store, the pattern above
could incorporate certain type of expression as a nominal
premodifier, e.g. by specifying Timex[kind=∼"date"]
as an alternative to Token[pos=∼"JJ"].

In essence, by appealing to UIMA representational
devices—in particular, its type system specification nota-
tion which not only prioritizes types, but also defines a type
subsumption hierarchy—both sequential (and even order-
independent) patterns over annotations and vertical con-
figurations among annotations may be specified at differ-
ent levels of granularity, in an open-ended and application-
agnostic fashion. Moreover, by relocating the data model
to a specification outside of the traversal engine itself the
framework allows for a relatively small set of AFst language
constructs, which can manipulate annotations (both exist-
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ing and newly posted) and their properties, without the need
for e.g. admitting code fragments on the right-hand side of
pattern rules (as GATE does), or appealing to ‘back-door’ li-
brary functions from an FST toolkit (as SProUT allows), or
having to write query-specific functions (as XQuery would
require). Both ‘match’ and ‘transduce’ operations appear
as atomic transitions within a finite-state device. Match-
ing operations are defined as subsumption among feature
structures. Transduction operations (which largely remain
outside of the scope of this paper) not only create new an-
notations, but also facilitate, by means of variable setting
and binding, feature percolation and embedded references
to annotations as feature values.

4.2. Navigational Constraints

Additional notational devices—both at symbol-matching
and pattern-specification levels—capture, and convey to the
pattern interpreter, information relevant to navigating the
lattice. As we shall see, by referencing the UIMA type sys-
tem, vertical configurational constraints can be interleaved
within the normal pattern-matching operations.

In essence, AFst addresses the problem of explicitly speci-
fying the route through the lattice as part of a regular pattern
within the FST backbone by delegating the annotation lat-
tice traversal to UIMA’s native iterators—with, as we shall
see, suitable provisions for control. In general, UIMA itera-
tors are customizable with a broad set of methods for mov-
ing forwards and backwards, from any given position in the
text, with respect to a range of ordering functions over the
annotations (in particular, start/end location, type, and type
priority; this last parameter refers to the intuitive notion of
ordering of types with respect to which should be returned
first, when an iterator encounters multiple type annotations
over the same text span).

A key insight in our design is that a transition graph, once
compiled, specifies exactly the type of annotation required
by any given transition. At points in the lattice where this is
underspecified, the notation allows for guided choice. (As
we shall see, there is always a default interpretation, driven
by the particular type hierarchy and system of type prior-
ities.) Our insight thus translates into the dynamic con-
struction of a special kind of mixed iterator, which is dif-
ferent for every grammar as it depends on the set of types
over which the grammar is defined. It is this mixed iter-
ator which mediates the traversal of the annotation lattice
in a fashion corresponding to threading through it a route
consistent with all, and only, the set of types of interest to
the grammar. Note that grammar-level specification of hor-
izontal and vertical constraints is compiled into a particular
sequence of matches over annotations. In effect, the mixed
iterator removes the fan-out aspects of lattice traversal and
replaces them with a single pass-through route which be-
haves just like an unambiguous stream of ‘like’ objects.
The following section examines this in more detail.

5. Support for Navigational Control

The previous section outlined how the symbol notation cap-
tures extensions to the notion of FS-based operations, to

apply to a stream of ‘like’ objects: in this case, anno-
tations picked—in a certain order—from an annotations
store. Since these can be complex feature-structure ob-
jects, the symbol notation uses appropriate expressive de-
vices, designed to inspect the internal make-up of annota-
tion instances. The question remains, however, about the
mechanism whereby the AFst interpreter constructs the an-
notations stream which is paired, at execution time, with the
particular FST graph for a given grammar. In other words,
how is the route through the annotations lattice chosen, re-
sulting in a particular linearized projection of the arbitrarily
dense lattice to a stream congenial to the FS machinery.

There are essentially two complementary aspects of the
navigation problem. As we have already stated (Sec-
tion 4.2.), route selection is delegated to the UIMA iteration
subsystem: at a higher level of abstraction, an iterator is re-
sponsible for traversing the lattice in such a way that from
the AFst interpreter point of view, there is always an anno-
tation instance presented, unambiguously, as the next()

object to be inspected (according to the transition graph).
The type of this instance is defined with respect to a subset
of all the types in the annotations store; the exact manner of
this definition, and mechanisms for unambiguously select-
ing the next() one, are discussed in Section 5.1. below.
Navigation control is thus, in effect, distributed among the
definition of a suitable UIMA iterator and extensions to the
notation (largely for symbols, less so at a grammar level)
capable of informing the iterator.

We allow for a range of mechanisms for specifying, and/
or altering, the iteration; accordingly, there are representa-
tional devices in the AFst notation for doing this. Broadly
speaking, at grammar level there are three kinds of control:

◦ ‘typeset’ iterator, inferred from the grammar,
◦ declarations concerning behavior with respect to a

match,
◦ distributing navigation among different grammars, via

grammar cascading.

These controls mediate the left-to-right behavior of the in-
terpreter. Additionally, at symbol specification level, there
are devices for shifting the traversal path of the interpreter,
in a more up-and-down (vertical) direction.

5.1. Iterator Induction

As we have seen, a transition symbol explicitly specifies
the annotation type it needs to inspect at a given state. It
follows that by examining a grammar, it is possible to de-
rive a complete set of the annotation types of interest to this
grammar. A typeset iterator, then, is a dynamically con-
structed4 instance of a UIMA iterator, which filters for a sub-
set of types from the larger application’s type system, and
is configured for unambiguous traversal of the annotations
store. The grammar fragment in Section 4.1., for example,
will induce the construction of a typeset iterator filtered for
[Token]s only, no matter how many and what other types
are in the type system. Of course, there is nothing special
about [Token]’s (which are just types in a type system):

4At grammar compilation/load time.
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a different grammar, for example, relabeling [NP] annota-
tions to the left and right of a [VerbGroup] as [Subj] and
[Obj], would be agnostic of [Token]s.

More than one type may (and likely will) end up in the iter-
ator filter, either by explicit reference on a grammar symbol
or implicitly, as a result of the grammar specifying a com-
mon supertype as licensing a transition (supertypes act as
‘wild cards’ in the AFst notation). At points in the lattice,
then, where more than one of the types of interest have a
common ‘begin’ offset, the iterator will—in line with its
unambiguous nature, and crucially for effectively lineariz-
ing the lattice—have to make a choice of which annotation
to return as the next() one.

By default, the typeset iterator follows the natural order of
annotations in the UIMA annotations store: first by start po-
sition ascending, then by length descending, then by type
priority. Type priorities thus control the iteration over anno-
tations; they are particularly important in situations where
annotations are stacked one above the other, with the ‘verti-
cal’ order conveying some meaningful relationship between
types. A representation for proper names, like the one out-
lined in Section2., would capture—by means of explicit pri-
orities definition—statements like [PName] over [Title]
and [Name], and [name] over [First]/[Last]; similarly,
intuitions like [Sentence] sits ‘higher’ in the lattice ver-
tical order than [Phrase], itself above [Tokens].

With its broader filter, the typeset iterator for a gram-
mar like the one outlined above (relabeling [NP]-[VG]-[NP]
triples as [Subj]-[VG]-[Obj], and additionally making ref-
erences to [Token]s) would face traversal ambiguities at
points where the [NP] and [VG] annotations start—as there
are underlying [Token]s starting there as well. The iterator
will behave, however, unambiguously, according to the pri-
ority constraints above; this default behavior is largely con-
sistent with grammar writers’ intuitions. We will shortly
show how to alter this behavior.

Conversely, there may be situations where a pattern may be
naturally specifiable in terms of lower-level (priority-wise)
annotation types, but the navigation regime needs to ac-
count for presence of some higher types in the annotations
store, even if they are not logically part of the pattern spec-
ification. Consider an address annotator, where numbered
tokens may be part of a street address, and a date annotator,
which might interpret (some) numbers as years. If there are
[Address] annotations already, a [Date] annotator should
not ‘descend’ under them, to inspect [Address]-internal
[Token]s; yet there is no natural way in which date pat-
terns might be made aware of (pre-annotated) address com-
ponents. In fact, this is a common situation in pipelined
text processing environments, where multiple annotators of
varied provenance operate in sequence, but not necessarily
sharing knowledge of each other.

5.2. Grammar-Wide Declarations

In such situations, the second control device comes into
play: types external to a grammar can be brought into the
typeset iterator filter by means of an honour declaration:

honour % Address[] ;

month = Token[lemma=˜"January"] |
Token[lemma=˜"February"] |
... ;

date = <E>/[Year . :month|<E> .
Token[string=˜:ˆ[12]\d{3}$:]/]Year ;

Without the honour declaration, the grammar fragment
above would induce a typeset iterator over [Token]s, and
the pattern would trigger over something like ... 1650 Sun-
set Boulevard, posting [Year] over 1650. The declaration
adds [Address] to the typeset iterator filter, preventing in-
spection of the [Token]s under [Address].

Other declarations affecting navigation are boundary,
focus, match, and advance. Typically, the scope of
the iterator is defined with respect to a covering annota-
tion type; by default, this is [Sentence]. The intent here
is to prevent posting of new annotations across sentence
boundaries. The boundary declaration caters for other
situations where the scope of pattern application is impor-
tant: we would not want to, for instance, have the [Subj]-
[Obj] relabeling pattern to trigger across a clause boundary,
with a verb group marking the beginning of a [Clause]
annotation—boundary % Clause[]; sees to that. (Note
that there may be multiple boundary annotations.) Our
typeset iterator is thus defined as a sub-iterator under a
boundary annotation, with the first annotation of a type in
the set that starts at or after the beginning of the boundary
annotation and finishing with the last one of a type in the set
that ends at or before the end of the boundary annotation.

The focus declaration allows restricting the operation of
a grammar to just those segments of the text source ‘be-
low’ one or more focus annotation types. Arbitrary con-
straints (and arbitrary levels of nesting) can be specified on
a focus type. This caters to situations where different (sets
of) grammars are appropriate to e.g. different sections of
documents, and allows for retargeting of grammars.

A match declaration controls how the iterator decides what
match(es) to return as successful; parameters here may be,
for instance, match % longest; (the default), or match
% all;). While not directly affecting navigation per se,
this affects the iterator behavior, and thus plays into the mix
of devices whereby the grammar writer can fine-tune the
pattern application process.

Finally, an advance declaration specifies how/where to
restart the iterator immediately upon a successful match.
By default, the iterator starts again with the next annota-
tion after the last one it posts. This allows any specified
right context (to the pattern just applied) to be considered
for the next match (the current pattern). There are two al-
ternative behaviors that can be invoked via this declaration:
an advance % skip; or advance % step;. In the for-
mer case, the iterator is advanced to the first position after
the end of the match; in the latter, the iterator is advanced
to the next position after the start of the match. skip thus
does not examine right context to a prior match; the alterna-
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tive regime is useful in situations where more fine-grained
context examination is essential for pattern application.

The scope of all declarations is the entire grammar. Note
that it is always possible to partition a grammar and de-
rive an equivalent grammar cascade, with different declara-
tions applying to the pattern subsets in the multiple gram-
mar sources.

5.3. Grammar Cascading

In fact, grammar cascading is the third global mechanism
for controlling navigation. Grammar cascades were orig-
inally conceived as a device for simplifying the analysis
task, by building potentially complex structures by partial,
incremental, analysis and from the bottom up (e.g. first find
[NP] annotations, then do some more syntactic phrase anal-
ysis, and only then use all the information in the annotations
store to promote some [NP]s to [Subject]s).

Grammar cascading, however, has an additional role to play
in facilitating navigation, especially in dense annotation
spaces with multiple annotations present over the same text
span. Separating patterns which target related, and small,
subsets of types into different grammars achieves, in ef-
fect, a stratification of the annotations store. Different pat-
terns, at different levels of granularity of specification, can
be concisely and perspicuously stated, without bringing too
many different annotation types (especially from different
levels of analysis and representation), into the typeset iter-
ator’s filter.

5.4. Up-Down Attention Shifts

There are two primary notational devices for redirecting the
iterator’s attention in vertical, as opposed to horizontal, di-
rection. One of them deals with situations we encountered
earlier: how to register a match over a ‘higher’ annotation,
while simultaneously detecting a pattern over its compo-
nents. In Section 5.1. we saw how to point the typeset it-
erator at the higher, or lower, level of traversal. Here, we
introduce another special purpose iterator: mixed, for dual
scanning regimes.

Mixed iteration is essential for a common task in pattern
matching over layered annotations stores: examining a
‘composite’ annotation’s inner contour. We already saw
examples of this, such as collecting titled proper names
only, or proper names whose [Last] components satisfy
some constraint (Section 2.); matching on noun phrases
with temporal premodifiers (Section 4.1.). Arguably, this
kind of traversal can be realized as a single-level, left-to-
right, scan over annotations with appropriately rich and
informative feature structure make-up (i.e. have features
carry the information whether a [PName] instance has a
[Title] annotation underneath it. In an environment, how-
ever, where annotators can (and will) operate independently
of each other, and where, furthermore, annotations from
different processes can coexist, we cannot rely on consis-
tent application of disciplined recording of annotation inner
structure exclusively by means of features.

In order to see whether a sequence of annotations that a

higher annotation spans conforms to certain configurational
constraints, what we would need to communicate to the in-
terpreter amounts to the following complex command:

◦ test for an annotation of a certain type, with or without
additional constraints on its features;

◦ upon a successful match, descend into this annotation;
◦ test whether a given pattern matches exactly the

sequence of lower annotations covered by the higher
match;

◦ if the sub-pattern matches, pop back (ascend) to a point
after the higher level annotation;

◦ succeed,
◦ and then proceed.

Implementationally, the ‘upper iterator’ is stacked, the cur-
rent annotation becomes the boundary annotation, a new
typeset subiterator is instantiated with the lower types in its
filter, and the next lower level is linearized for performance.

The notational device used for such an operation employs a
pair of push and pop operators, available as meta-specifiers
on symbols. Conceptually, if Higher[...] is a sym-
bol matching an annotation which could be covering other
annotations, Higher[...,@descend] would signal the
‘descend into’ operation. (The @descend, and match-
ing @ascend, are instances of interpreter directives—
notational devices which, while syntactically conforming
to elements in an AFst symbol specification, function as
signals to the interpreter to shift to a higher/lower lattice
traversal line.)

Dual scanning offers a way to perform tree traversal, in
annotation structures where overlayed, edge-anchored an-
notations encode a tree structure, by means of interpreting
full/partial alignment and relative coverage of spans. Con-
sider the following convention.

◦ an annotation corresponds to a tree node;
◦ two annotations with different spans belong to the same

sub-tree of their spans are strictly overlapping: i.e. the
span of one must completely cover the span of the
other;

◦ the annotation with the longer span defines a node
which is ‘above’ the node for the annotation with the
shorter span;

◦ if the two annotations are co-terminous at both ends, the
annotation with higher priority defines the higher node
of the two in the sub-tree.

It is straightforward to visualize a tree for [PName] annota-
tions (e.g. “[[President] [[Vladimir] [Putin]]]).

[PName
[Title ... Title]
[Name
[First ... First] [Last ... Last] Name] PName]

Within such a convention, the following expression en-
codes, in effect, a query against the set of Person trees
in the database, which will match all persons who can be
referred to as “Dr Smith”:

3022



findDrSmith =
<E>/PName[@descend] .
Title[string=˜"Dr"] .
<E>/Name[@descend] .

First[]|<E> . Last[string=="Smith"] .
<E>/Name[@ascend] .

<E>/PName[@ascend] ;

In a number of situations, inspecting configurational prop-
erties of the annotations lattice requires an operation con-
ceptually much simpler than tree traversal. The @descend/
@ascend mechanism requires that the grammar writer be
precise: the entire sequence of annotations at the lower
level needs to be consumed by the sub-iterator pattern, and
the exact number of level shifts (stack push and pop’s) have
to be specified, in order to get to the right level of interest.

In contrast, the expressive power of the notation gains a lot
just by being able to query certain positional relationships
among annotations in vertical direction. A set of different
interpreter directives, again cast to fit into the syntax of AFst
symbols, test for relative spans overlap, coverage, and ex-
tent. Symbols specifying such configurational queries may
look like the following.

Token[_costarts=˜Sentence[]]
Subject[_covers=˜PName[]]
PName[_costarts=˜NP[],_coends=˜NP[]]

The first example matches only on sentence-initial tokens,
the second tests if there is a proper name within the span of
[Subject], and the third one examines whether a [PName]
annotation is co-terminous with an [NP] annotation.

The inventory of such directives is small; in addition to
the three examples above, there is also below. In con-
trast to the way ‘descend/ascend’ operates, here inspection
of appropriate context above, or below, is carried out with-
out disturbing the primary, left-to-right iterator movement.
This improves the clarity of pattern specification, results in
a more efficient runtime characteristics, and allows for test-
ing for configurational constraints among two levels of a
lattice separated by arbitrary (and perhaps unknown) num-
ber of intermediate layers.

6. Conclusion

This paper focuses largely on support for navigating an-
notation spaces: i.e. those aspects of a notational system
whereby patterns over annotation sequences and constraints
over annotation configurations can be succinctly expressed
and efficiently carried out by an interpreter largely operat-
ing over an FST graph. The full language specification can
be found in (Boguraev and Neff, 2007). The AFst frame-
work is fully implemented as a UIMA annotator, complete
with grammar and symbol compilers and a runtime engine.
A number of optimizations (most prominently to do with
pre-indexing of all instances of annotations from within the

current typeset iterator, maintaining order and span infor-
mation on all possible routes through the lattice instantiat-
ing only the iterator type set) ensure efficient performance
in the light of real data.

The framework supports diverse analytic tasks. Most com-
monly, it has been used to realize a range of named entity
detection systems, in a variety of domains. Named entity
detection has typically been interleaved with shallow syn-
tactic parsing, also implemented as a cascade of AFst gram-
mars (Boguraev, 2000). The ability to mix, within the same
application, syntactic and semantic operations over an an-
notations store offers not just well known benefits like gen-
eralizing over syntactic configurations with certain distri-
butional properties—e.g. for terminology identification in
new domains (Park et al., 2002). More recently, we com-
bined fine-grained temporal expression parsing (realized as
a kind of named entity recognition for time expressions)
with shallow parsing for phrase, and clause, boundaries, for
the purposes of extracting features for classification-based
temporal anchoring (Park et al., 2002).

While the bulk of the grammar formalism evolved from
the requirements of ‘linear’ pattern specification, consid-
erations of e.g. constraining patterns to certain contexts
only, expressly managing lattice traversal at higher levels
of a grammar cascade, and resolving ambiguities of choice
between e.g. lexical (token-based), semantic (category-
based), and syntactic (phrase-based) annotations over iden-
tical text spans, have informed extensions of the formalism
to do specifically with lattice traversal, and motivated the
notational devices described in the previous sections. Issues
of reconciling syntactic phrase boundaries with semantic
constraints on e.g. phrase heads, especially where semantic
information is encoded in types posted by upstream annota-
tors unaware of constraints upon the grammars intended to
mine them, have largely led to the design of our different it-
erator regimes, up-and-down attention shifts, scan controls,
and principles of type priority specification and use. Most
recently, we have encountered situations where the density
of the annotations lattice—due to proliferation of semantic
types—is such that a strictly unambiguous iteration regime
is poorly served by the need to control it by explicit up/
down directives, informed by a type priority system: after
all, if the upstream annotator(s) responsible for depositing
the plethora of types in the annotations store do not have
a uniform and consistent notion of priorities, it may be the
case that such a notion can be inferred at the point where a
set of AFst grammars come to play.

This motivates one of the principal items in our future work
list: extending the run-time with a new iterator, designed to
visit more than one annotation at a given point of the input.
Informally, this is to be thought of as a ‘semi-ambiguous’
iterator: it will still be like a typeset iterator, but in situa-
tions where instances of more than one type (from its type
set) being encountered in the same context, the iterator will
visit all of them (in contrast to choosing the higher priority
one, or following explicit @descend/@ascend directives.

From an implementation point of view, the AFst architec-
ture already allows for ‘plugging’ in of different iterators,
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effectively swapping the (default) unambiguous typeset it-
erator with the semi-ambiguous variant outlined above.
Given the inherently grammar-wide ‘scope’ of an itera-
tor, the cascade model allows for mixing different iterators
while still processing the same input.

An additional extension of the framework is motivated
by the observation that with the extended expressiveness
of annotation-based representational schemes—especially
in line with UIMA’s feature-based subsumption hierarchy
of types—syntactic trees can be directly encoded as sets
of annotations, by means of heavy use of pointer-based
feature system where a (type-based) tree node explicitly
refers to its children (also type-based tree nodes). Such
a representation differs substantially from the implied tree
structure encoded in annotations spans (as outlined in Sec-
tion 1.). Within the iterator plug-in architecture discussed
here, such tree traversal can be naturally facilitated by a
special-purpose, ‘tree walk’ iterator. Note that this is a dif-
ferent, and potentially more flexible, solution than one de-
ploying tree-walking automata, like reported for instance
in (Srihari et al., 2008)—as it naturally addresses the vari-
ability in encoding schemes mediating between tree char-
acteristics (possibly dependent upon linguistic theory and
processing framework) and the corresponding annotation-
based representation.

These proposed extensions would complete the set of de-
vices necessary for annotation lattice navigation, no mat-
ter how dense the lattice might be. Overall, the AFst
formalism—and in particular the notational components
for considering, and reacting to, both horizontal and ver-
tical contexts—offers a perspicuous, efficient, scalable and
portable mechanism for exploring and mining dense anno-
tation spaces.
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Witold Droẑdẑyński, Hans-Ulrich Krieger, Jakub Piskorski,
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