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Abstract 
We discuss factors that affect human agreement on a semantic labeling task in the art history domain, based on the results of four 
experiments where we varied the number of labels annotators could assign, the number of annotators, the type and amount of training 
they received, and the size of the text span being labeled. Using the labelings from one experiment involving seven annotators, we 
investigate the relation between interannotator agreement and machine learning performance. We construct binary classifiers and vary 
the training and test data by swapping the labelings from the seven annotators.  First, we find performance is often quite good despite 
lower than recommended interannotator agreement. Second, we find that on average, learning performance for a given functional 
semantic category correlates with the overall agreement among the seven annotators for that category. Third, we find that learning 
performance on the data from a given annotator does not correlate with the quality of that annotator’s labeling. We offer 
recommendations for the use of labeled data in machine learning, and argue that learners should attempt to accommodate human 
variation. We also note implications for large scale corpus annotation projects that deal with similarly subjective phenomena. 

1. Introduction 
We conducted a series of pilot annotation studies in 

the context of identifying specifications for marking up 
textual input for an image cataloger’s toolkit (Klavans et 
al. 2008). Given an image, and a text extract that describes 
the work depicted in the image, we aimed to identify the 
semantic functions of the text. By semantic function, we 
mean the type of  information provided; for example, a 
description of the work depicted in the image, versus 
biographical background on the artist (Passonneau et al. 
2007). Interannotator agreement (IA) on semantic or 
pragmatic annotation tasks such as ours is typically 
difficult to achieve [see (Artstein & Poesio 2005) for a 
brief review]. Because, variation within and across 
individuals is an inherent feature of language use, we 
decided to investigate how this variation affects learning 
performance.   

In consultation with domain experts, we developed a 
set of seven functional semantic categories to apply to 
paragraphs or sentences associated with specific images. 
Our categories were derived from what we observed in the 
texts, but have a loose correspondence with categories of 
information discussed in the image indexing literature 
(Layne 1994; Chen 2001; Baca 2003). By marking up 
electronic text with these categories, catalogers can select 
the type of information they want to see in searching for 
metadata.  Figure 1 in the next section illustrates three of 
the seven categories that we focus on in this paper. 

Our goals in conducting our pilot annotation studies 
were to understand why previous investigators have found 

such a wide range of agreement on similar tasks (Giral & 
Taylor 1993; Markey 1984), and to develop annotation 
specifications for our large scale study. We conducted 
four experiments under a variety of annotation constraints 
to guide the design of a large scale annotation effort. Our 
goal with respect to contributing to the image cataloger’s 
toolkit is to find a set of one or more labels that would be 
useful to image catalogers, and that an automatic classifier 
can apply with high reliability to a comparable corpus of 
art history survey texts. However, it has been a continuing 
concern in our previous work to understand the impact of 
human variation (e.g., on discourse in Passonneau & 
Litman 1997; on summarization in Nenkova et al. 2007). 
Our pilot data presented us with the opportunity to 
examine the relation between learning performance and 
which annotator’s data we select.   

If an annotator fails to agree well with other annotators 
and makes non-systematic choices, machine learning 
performance can be expected to be relatively lower than 
for annotators with good agreement. However, if an 
annotator makes idiosyncratic choices that are 
nevertheless based on reasoned criteria, there is no reason 
a machine learning algorithm should fail to discover 
patterns in that annotator’s choices. Our goal here is to 
explore on several levels whether IA correlates with 
learning performance. 

Using very simple text representation features, we find 
relatively good learning performance despite low IA. We 
also find that on average, learning performance for a 
given functional semantic category correlates with the IA 
for that category, measured across seven annotators. For 
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example, we find the highest IA among seven annotators 
on Historical Context, and we find that the Historical 
Context classifiers do best. This is a reassuring result. 
However, we also find that learning performance on a 
particular annotator’s data does not correlate with the 
annotator’s ranking, based on averaging the annotator’s 
pairwise agreement with other annotators. This is less 
reassuring, and suggests that factors in addition to an 
annotator’s IA should be considered in selecting data for 
machine learning. 

In the next section, we present a brief example of our 
functional semantic categories,  followed by a section 
discussing related work. In section 4, we discuss the 
results of our annotation experiments. In section 5, we 
present results on the impact of selecting data from 
different annotators for machine learning. We discuss 
these results in section 6, and conclude in section 7 with 
recommendations regarding learning from inherently 
subjective data. 

2. Brief Example 
The domain of digital images and texts we focus on 

for our study of functional semantic categories parallels 
the ARTstor Art HistorySurvey Collection (AHSC), a 
Mellon funded collection of 4,000 images. The AHSC is 
based on thirteen standard art history survey texts, thus 
there is a strong correlation between the images and the 
texts. The AHSC images all have tombstone metadata 
(e.g., the name of the work, the artist, date, the location of 
the work), but very few have subject matter metadata. As 
input for our studies, we are currently using two texts 
from the AHSC concordance, scanned and encoded in 
TEI-Lite (http://www.teic.org/Lite/teiu5 split en.html). 

Using the TEI-Lite markup as input, we developed a 
simple algorithm to associate a sequence of one or more 
paragraphs with each image caption. The descriptive 
information a paragraph provides about an image can be 
categorized into types depending on the semantic function 
of the text. Figure 1 illustrates text from the first part of a 
few paragraphs associated with an image of a relief 
portrait of Akhenaten and his family. The image comes 
from the ARTstor Images for College Teaching: 
http://www.arthist.umn.edu/aict/html/ancient/EN/ 
EN006.html. The text fragment is from one of the texts in 
the concordance to the ARTstor Art History Survey 
Collection. Here we have separated several sentences 
from the paragraph into labeled text spans exemplifying 
the three categories we performed machine learning on. 
As illustrated here, a single sentence can have subparts 
with distinct semantic functions (e.g., Implementation 
and Image Content for the sentence beginning Known as 
the Amarna style,…).  

If we can automatically classify sentences into 
functional semantic categories, we can add this 
information to the electronic document markup, as shown 
in the provisional XML representation in Figure 1. The 
categories appear as values of a semcat attribute. Note that 
the XML shows a sentence-level assignment; we do not 
attempt to label subspans within sentences. However, in 

both the manual annotation and machine classification, we 
allow multiple labels per text span. 

The full list of functional semantic labels includes the 
three shown in Figure 1, plus four more: Interpretation, 
Biographic, Significance and Comparison. Annotators 
could choose Other when none of the above applied. The 
labels, definitions, and examples appear on a set of web 
pages replicating the guidelines we provided in our 
labeling interface: http://www1.ccls.columbia.edu/~beck/. 

The image/paragraph pair in Figure 1 is drawn from 
our first human labeling experiment (see Table 1 below). 
Two of the co-authors independently labeled all 
paragraphs, with the option of selecting multiple labels. 
The instructions were to pick a single label for each 
paragraph if possible, and  to pick multiple labels only if 
the functions were equally balanced. The two labelings 
assigned to the full paragraph excerpted in Figure 1 were 
(Image Content, Historical Context) and (Image 
Content, Significance), thus both labelers viewed the 
paragraph has having two relatively equal semantic 
functions.  They agreed on one of the functions, and 
disagreed on the other.  In section four, we refer to the use 
of a weighted agreement coefficient to treat such cases as 
partial agreement. 

3. Related Work 
There have been no studies we know of that look at all 

three issues we address, namely the factors affecting IA 
on a semantic labeling task, machine learning 
performance on the same data, and the relation between 
the two. We briefly review each issue taken separately. 

In the twenty some years since Markey’s (1984) 
comprehensive summary and comparison of forty years of 
inter-indexer consistency tests, no comparable review has 
appeared, and her observations still appear to hold. 
Although her goal was to use the conclusions from 
previous work to sort through the issues involved in 
indexing visual material, all the tests referenced in her 
paper were on indexing of printed material. The 
agreement scores, using accuracy (percent agreement), 
range from 82% to a low of 4%. Markey noted that 
greater inter-indexer consistency was attained when 
indexers employed a standardized classification scheme, 
comparable to a controlled vocabulary. However, even 
with controlled vocabularies, percent agreement ranges 
from 34% to 80%. 

Percent agreement has the weakness that it is highly 
sensitive to the number and absolute frequency of 
categories assigned. If two categories are used, one of 
which is extremely frequent, percent agreement will 
necessarily be high (Artstein & Poesio 2005). While we 
use more robust methods for quantifying inter-annotator 
agreement, we find a similar range of values across four 
labeling experiments we conducted. 

Giral and Taylor (1993) looked at indexing overlap 
and consistency on catalog records for the same items in 
architectural collections; they examined record data for 
title, geographic place names, and so on, including an 
analysis of subject descriptors. On large samples (>1400) 
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of records from the Avery Index to Architectural 
Periodicals and the Architectural Periodicals Index, they 
compare proportions of items in their samples that match 
according to a variety of criteria, and compute 90% 
confidence intervals based on a formula for binomial 
proportions. For subject descriptors, only 7% match 
entirely, and they find overlap in descriptors in only about 
40% of the remaining cases (+/- 3%). 

The text classification task we address differs from 
many NLP classification tasks in that the type of text we 
look at has not been widely studied, and the categories are 
orthogonal to topic. Three recent studies that also pertain 
to atypical texts and non-topical classification tasks are 
Teufel and Moens (2002), Hachey and Grover (2004), and 
Argamon et al. (2007). On the task of categorizing 
sentences from scientific articles into argumentative 
classes, Teufel and Moens get IA values of between 0.70 
and 0.80 from pairs of well-trained annotators, and 
between 0.35 and 0.72 on briefly-trained annotators. We 
find a similar range but lower absolute values on texts 
which are inherently more subjective. For labeling of legal 
arguments, Hachey and Grover get IA of 0.83 for one pair 
of well-trained annotators. Argamon et al. propose 
stylistic features derived from semantic functions of 
lexical items, and evaluate their features on a variety of 
tasks, such as authorship or sentiment evaluation. 

The work most related to ours is a forthcoming article 
by Riedsma and Carletta who report on simulations of 
learnability from data with different levels of agreement. 
They present evidence that performance of machine 
learners does not correlate directly with agreement levels, 
and argue that systematic or patterned disagreements can 
lead to spurious learning, and are more harmful than 
disagreements that represent noise. 

4. Human Labeling 
Given the wide range of measures of human 

agreement on a related task where librarians classify 
documents with respect to an existing set of categories 
(Markey 1984) (Giral & Taylor 1993), we wanted to 
understand what factors might lead to variations on IA in 
our task. We conducted four pilot studies on the labeling 
where we varied the number of labels that could be 
assigned to a single item (one, two or unrestricted), the 
size of the text fragment being labeled (paragraph or 
sentence), the number of annotators (two to seven), and 
the type of training for annotators (none, static examples 
presented to trainees). Experiments one through three 
were done on paper and pencil or electronic editors; for 
four a and four b we implemented a labeling interface. 

To measure IA, we use Krippendorff’s Alpha 1  
(Krippendorff 1980) along with MASI, a set-based 
distance measure (Passonneau 2006). MASI allows partial 
credit when the set of labels chosen by one annotator 
overlaps another’s set. Used in the context of Alpha, 
MASI weights the comparison of every pair of annotators’ 
choices for a given unit in a way that takes into account 
                                                 
1 Multi-annotator weighted Kappa (Arstein & Poesio 
forthcoming) gives us almost identical IA values. 

the relative sizes of the set of labels chosen by each 
annotator, and the type of overlap between the two sets.  
To quantify the relative size of the overlap, MASI 
incorporates Jaccard (1908), which is the ratio of the size 
of the set intersection to the set union.  Jaccard does not 
take into account whether two sets are in a subsumption or 
difference relation; the former is monotonic, thus 
represents a less serious semantic conflict.  MASI 
incorporates an equi-distant 4 point scale from 0 to 1 
corresponding to the four possibilities of set identity, set 
subsumption, set difference and set disjunction. The 
example pair of labels from section 2, (Image Content, 
Historical Context) and (Image Content, Significance) 
would get a MASI distance of (1/2 x 1/3) for partial 
agreement rather than 0 for complete agreement or 1 for 
complete disagreement; see (Passonneau 2006) for details. 
Because IA coefficients do not directly capture the 
quantity of matches across annotations, we also report the 
average F measure taking each next annotation as the 
target of comparison. As we see in Table 1, the average F 
measure is about the same for rows 3 and 4, although IA 
is lower in row 4.  

Annotation efforts typically aim for agreement 
measures above a threshold of 0.67, due to Krippendorff 
(1980).  We have previously argued that because IA 
coefficients do not have a known probability distribution, 
and because they are applied to many kinds of data and 
for many types of annotator judgements, there is no one 
ideal threshold (Passonneau 2006; Passonneau et al 2006).  
Instead, we suggest that interpretation of IA values is an 
empirical question that depends in part on how the data 
will be used. It can be investigated in many ways, for 
example relating measures of tasks in which the 
annotations are used to the observed agreement levels. 

For the four pilot studies, annotators were presented 
with images, the associated texts, and annotation 
guidelines. Table 1 shows the four experiments with the 
size of the data set, how many labels annotators could 
select, how many annotators were used, and the Alpha 
MASI values. IA varies widely across experiments. 
Comparison of rows 1-3 with 4 and 5 in Table 1 indicate 
that IA is higher when  annotators can select multiple 
labels, which is consistent with our previous results on a 
lexical semantic annotation task (Passonneau et al., 2006).  
The biggest drop in IA, at experiments 4a and 4b, is due 
to the constraint that labelers select a single label.  

We also found that IA varies widely between 
annotators, suggesting that the task is inherently easier for 
certain individuals. The two annotators from experiments 
1 and 2 are included in all the experiments, and always 
have high IA with each other. In looking at IA for all pairs 
of annotators in experiments 3 through 4b, we find 
conflicting results regarding experience and training. In 
experiment three, the novices had lower average pairwise 
agreement while in experiments 4a and 4b the three 
annotators with the highest IA values were new to the 
task. This may be due in part to the fact that there was 
little training in experiment 3, which was done using the 
annotator’s favorite text editor, compared with experiment 
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4, where we provided a labeling GUI with more detailed 
guidelines that incorporated four training examples. We 
find a very wide range of overall agreement depending on 
the unit being labeled, where a unit is an image and all 
paragraphs associated with it (4 paragraphs per image in 
experiment 1, 2.7 in exps. 2-5). Across the ten units in 
experiment 4a, IA ranged from 0.40 to 0.02. Finally, 
sentences had higher agreement than paragraphs.2 

Table 1 indicates that IA varies across experimental 
conditions, and we found that pairwise IA varies across 
individuals. We also looked at consistency within the 
same individual. The annotation for experiment 4a was 
originally performed in January, 2007, and included three 
of the co-authors.  Two of the co-authors reannotated the 
same data in March, 2008; alpha was 0.88 for one 
(referred to as B below) and 0.34 for the other (referred to 
as A’ below).  For B, twenty two out of twenty four items 
had the same label in the two annotations; for A’ only 
fourteen out of twenty four were the same.  

We conclude from the IA results that the labeling task 
is very subjective, yet the reception to our categories from 
image catalogers, visual resource professionals, and other 
domain experts has been uniformly positive. In addition, 
the annotators who have participated in our studies find 
the judgements difficult to make, but find the categories 
meaningful and relevant for distinguishing among types of 
information provided about an image.  

For the machine learning experiments where we look 
at the relation to agreement, we use the labelings from 
experiment 4a. One important advantage to using this 
data, despite the fact that overall interannotator agreement 
is relatively low here, is that annotators chose a single 
label.  This simplifies the computation of IA, and the 
interpretation of results.  

We assume that an annotator who is more consistent 
with other annotators makes judgements that are less 
idiosyncratic and more representative of the linguistic 
community. In line with this assumption, we ranked 
annotators by their average pairwise IA. First, we 
collapsed all labels other than the three of interest (Image 
Content, Historical Context, Implementation) into a single 
Other category. Then we averaged the six alpha values for 
each annotator paired in turn with the other annotators. 
Pairwise IA ranged from 0.46 to -0.10. The annotator 
averages ranged from 0.32 to 0.10. Annotator A’, who had 
low self-consistency, had a relatively high average 
pairwise IA of 0.31 (sd=0.10); annotator B had high self-
consistency and a moderate average pairwise IA of 0.21 
(sd=0.15). 

5. Machine Learning 
                                                 
2 We have recently completed an annotation effort on a larger 
dataset consisting of 50 images and 600 sentences. We 
implemented a new interface, and provide true training examples 
with feedback. Five annotators participated, and independently 
labeled all sentences. We have better results, with very similar 
patterns of agreement. IA is highest among domain experts, and 
varies across image/text units. 
 

We investigated the learnability of three of our 
functional semantic categories: Image Content, 
Historical Context and Implementation.  There were  
insufficient examples from the other categories. All 
learning was done using WEKA (Witten and Frank, 
2005). Due to the small size of our dataset, and the 
similarities of the categories, we used Naïve Bayes, which 
can perform well even when the independence assumption 
is violated. We trained a binary NB classifier for each 
semantic category; it performs better with smaller corpora 
than multinomial NB (Sebastiani, 2002). Also, we wanted 
to investigate the relation of IA to learning for each 
semantic category independent of the others. 

5.1. Data sets 
To look at the relation between IA and machine 

learning performance, we conducted three pairs of 
experiments, one pair for each semantic category. The 
first experiment in each pair has disjoint training and test 
data, and the second uses ten-fold cross-validation. 

 In the first of each pair (train100test30 in Tables 2-4), 
we train using 100 paragraphs taken from a single chapter 
about Egyptian art and architecture, labeled by a single 
annotator (the same one in all experiments).  We test 
using thirty randomly selected paragraphs from chapters 
covering the art and architecture of ancient Egypt, 
Romanesque Europe, and twentieth century Western art 
and architecture. For twenty four of the thirty test 
paragraphs we have labelings from seven annotators. The 
remaining six paragraphs consist of the training examples 
from our labeling interface, which were drawn from our 
earliest pilot studies. The second set of experiments in 
each pair uses all 130 paragraphs (crossval 130).  

5.2. Feature Sets and Learning Algorithm 
To facilitate comparison of results when we swap data 

from different annotators, we used very simple feature 
sets: bag-of-words (BoW), part of speech tags (POS), and 
a combination of the two. Before we select terms as 
features for the training data, we apply preprocessing that 
tokenizes the text, lowercases words, removes 
punctuation, then passes the token through WordNet's 
“morphy” function to return a lemma. The part-of-speech 
tagger is a 4-level backoff tagger: bigram then unigram, 
both trained on the Brown corpus, then a regexp tagger 
followed by the assignment of a single default tag for 
unknown parts of speech.  

5.3. Results 
 Tables 2 through 4 show the machine learning results 

when we vary which annotator’s labelings we swap in.  
Following the recommendation of Huang et al., we report 
results using the area under the receiver operating 
characteristic (ROC) curve, which they have argued on 
theoretical (2003a) and empirical (2003b) grounds to be 
more reliable, consistent, and discriminative than 
accuracy.  

Each table shows the performance for each of the three 
feature sets (bow, pos, both) under the two conditions 
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(train100/test30, crossval130) using labelings from the 
seven annotators (who). The top three annotators have 
nearly the same average pairwise IA, so we label them A, 
A’ and A”.  The remainder we label in alphabetical order 
of their descending rank (B through E). The last two rows 
of each table show the mean roc scores for all seven runs 
and their standard deviations. 

We computed IA on three datasets for Historical 
Context, Image Content and Implementation where 
anything other than the label of interest was mapped to 
Other. The overall IA among seven annotators for 
Historical Context versus Other was Alpha=0.39; this is 
higher than for the full dataset with eight labels, where IA 
was 0.24 (see Table 1). For Image Content versus Other 
IA was 0.21, and for Implementation IA was 0.19.  

There was higher average performance for Historical 
Context, which had the highest IA. For example, in the 
10-fold cross validation condition, the average 
performance for Historical Context classifiers using both 
features is 0.77 (sd=0.05) compared with 0.63 (sd=0.05) 
for Image Content and 0.60 (sd=0.03) for Implementation. 
The higher sd for the Historical Context classifiers 
indicates a wider range in performance values.  

Because our classes represent function rather than 
content, we believe the optimal features we find in our 
future work will differ from other text classification tasks. 
Note that the part-of-speech features do well, particularly 
for the Image Content class. This is not the case for 
typical text classification tasks, which generally do best 
with bag-of-words (cf. Forman 2003). The best 
performing pos feature for Image Content is present 
tense, which corresponds to cases we observe where the 
image is described as a visual “tour” in present tense.  

The key issue of interest here is how the order in each 
“who” column compares with the alphabetical order 
representing the ranking of annotators.  In general, the 
ranking of machine learning runs differs from the 
annotator ranking. The 100-paragraph training set was 
labeled by D; unsurprisingly, D’s runs score relatively 
high.  If we exclude D, the two orderings are most similar 
for the Historical Context classifiers, and most dissimilar 
for Implementation. To quantify the observation that 
individual IA scores do not line up with learnability, we 
used Pearson’s correlation coefficient (excluding D). For 
example, for each annotator in the second to last column 
of Table 2 (Historical Context, crossval130, both), we 
replaced the annotator symbol with that annotator’s 
average pairwise IA score, and computed the correlation 
with the last column. As shown in Table 5 the correlation 
for this case was 0.59, which was the best overall. The 
correlation for the condition (Historical Context, 
train100test30, both) was only 0.05. In general, 
correlations were quite poor, and there were two cases 
with a high inverse correlation of -0.87: 
(Implementation, crossval130, both) and (Historical 
Context, crossval130, bow). 

Four summary observations of interest regarding the 
disparity between annotator rank and learning 
performance are: 

1. Annotator A is the highest ranked annotator but 
runs using this data are often at the lowest or next-
lowest performance ranking. 

2. Annotator B is only the fourth best annotator, but 
runs using this data are often in the top two for 
Image Content and Implementation classifiers. 

3. Annotator E is the lowest ranked annotator but 
occasionally has the highest ranked runs. 

4. A comparison of  the ordering in the who column 
across feature sets for a given classifier and  
evaluation method (train100test30 vs. 
crossval130) shows that whether a feature 
performs well depends on whose data was used. 

Points 1 through 3 above suggest that IA scores do not 
predict how well machine learners can perform on an 
annotator’s data.  Machine learning performance can be in 
an inverse relation to the annotator’s average pairwise IA, 
or can be non-predictive in a less extreme way. Point 4 
suggests that feature selection performance can be 
contingent on who annotates the data. 

We also consider whether annotator consistency has 
an impact on learning performance. Annotator B, whose 
self-agreement was 0.88, was a mid-ranked annotator. For 
the Historical Context runs, the B runs were also mid-
ranked. For the other two classifier runs, the B runs often 
ranked first or second, except for the Implementation 
using POS features. Annotator A’ was a high-ranked 
annotator with low self-agreement of 0.34.  The runs for 
A’ were generally much lower than would be expected 
given the annotator rank, except on the Implementation 
classifiers on the 100train30test trials.  It is tempting to 
infer that  annotator B relied on strategies that were more 
stable both across time and within the corpus, and that 
annotator A’ relied on strategies that were less so. 
However, we believe further work on such issues is 
required to support such a conclusion. 

6. Discussion 
We presented the results of four human labeling 

experiments. One of the most significant factors affecting 
IA was the number of labels that could be assigned, thus 
in our current large-scale effort, we have returned to 
allowing an unrestricted number of labels, as in our first 
two pilot experiments. Another key factor was the specific 
image/paragraph set being labeled; we have not yet 
determined whether we can raise IA on the more difficult 
texts. The two most expert labelers (two of the co-authors) 
continued to have high IA with each other throughout the 
four experiments. Novices seemed to perform much better 
once we provided a labeling interface and training.  
Although it is possible we could achieve higher IA, for 
example by revising the categories or increasing the 
training, the more general conclusion we draw is that the 
judgements we have elicited are inherently subjective. 

IA for a given semantic function appears to correlate 
with overall learning performance for the corresponding 
classifier. As we have relatively little data for 
Implementation, and results on only three of the seven 
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classifiers, we plan to run a similar experiment on our 
new, larger dataset to see how results compare. 

IA for a given annotator appears not to correlate with 
overall learning performance. For example, choice of 
annotator among three who have virtually the same 
average pairwise IA does not result in similar learning.  
The results differ both with respect to how well the 
learner performs, and which features yield the highest 
performance. In (Riedsma & Carletta forthcoming) we 
find an explanation for how this might occur. They use 
simulated data to argue that a quantitative measure of 
agreement does not provide insight into the qualitative 
type of agreement. In our real dataset, annotator A, whose 
runs yield low performance scores for the Historical 
Context classifier, may have patterns of disagreement that 
confuse the learning algorithm 

7. Conclusion 
Because we are conducting IA studies in tandem with 

machine learning, we can investigate the relationship 
between the two on a complex annotation task pertaining 
to functional semantic categories. Our results bear out the 
simulation study presented in Riedsma and Carletta, that 
good learning performance can occur when agreement is 
less than the 0.67 threshold proposed by Krippendorff 
(1980).  This does not mean, of course, that good learning 
performance never requires higher levels of agreement.  
Instead, it shows that in richly annotated datasets such as 
this one, where we have attempted to develop a set of 
fully covering categories, IA and learnablity interact with 
the distributions of various categories in the labeled data, 
and with the strategies employed by individual annotators 
as reflected in their annotation decisions. 

We draw the following tentative conclusions regarding 
the use of manually annotated data in machine learning: 

1. We need to interpret machine learning results 
informed by an understanding of how IA varies 
across the classes to be learned; 

2. We should perform machine learning on data 
labeled by more than one annotator in order to 
determine whether annotators are using different 
strategies, as reflected in differential performance 
across feature sets; 

More generally, we believe more research is needed on 
the interaction between conventional IA metrics, or other 
ways of evaluating annotator reliability, and machine 
learning performance on manually annotated data. 

Implicit in the range of results seen here is a much 
deeper methodological issue. The prevalent paradigm for 
machine learning in NLP that uses manually labeled data, 
and the prevalent paradigm for assembling manually 
annotated datasets, is to arrive at a single labeling, often 
referred to as a gold standard.  Deviation from the gold 
standard is viewed as problematic, rather than as an 
inherent property of language use. If we train learners on 
data that fails to capture the natural variation we see 
across human language users, we risk reaching an impasse 
regarding the phenomena that are meaningful precisely 
because they are the least widely agreed upon. 
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Historical  Of the great projects built by 
Context    Akhenaten hardly anything 
 remains . . . Through his choice of 
 masters, he fostered a new style. 
Implementa- Known as the Amarna style, 
tion it can be seen at its best in 
Image  a sunk relief portrait of Akhenaten 
Content and his family.  The 
 intimate domestic scene suggests 
Historical  that the relief was meant to serve 
Context     a shrine in a private household. 

 
 
 
 
 
 
 
 
 
 
 

Enhanced XML representation: 
<p> 

<semcat type=”historical_context”> Of the great projects built by Akhenaten hardly anything remains. 
.</semcat> . . . 
<semcat type=”historical_context”>Through his choice of masters, he fostered a newstyle.</semcat> 
<semcat type=”implementation”>Known as the Amarna style, it can be seen at its best in a sunk relief 
portrait of Akhenaten and his family. </semcat> 
<semcat type=”image_content>The intimate domestic scene suggests</semcat> 
<semcat type=”historical_context”>that the relief was meant to serve as a shrine in a private 
household</semcat>. . . 

</p> 

 
Figure 1. Semantic classification of text extracts  

 
 

 
Exp. Dataset #labels/text #annotators Alpha-MASI Mean F  

1 I: 13 images, 52 paragraphs any 2 0.76 0.80 
2 II: 9 images, 24 paragraphs any 2 0.93 0.87 
3 II: 9 images, 24 paragraphs two 5 0.46 0.47 
4a III: 10 images, 24 paragraphs one 7 0.24 0.41 
4b III: 10 images, 159 sentences one 7 0.30 0.43 

Table 1. Interannotator consistency under various conditions 

2847



 

Train100/Test30 10-Fold Crossval130 
who bow who pos who both who bow who pos who both 
D 0.976 D 0.889 D 0.976 A’’ 0.822 A’ 0.709 A’’ 0.830 

A’’ 0.781 A’’ 0.789 A’’ 0.781 A’ 0.795 D 0.703 A’ 0.802 
B 0.744 A’ 0.741 B 0.744 B 0.778 A’’ 0.696 C 0.779 
A’ 0.699 B 0.659 A’ 0.699 D 0.771 E 0.694 D 0.777 
C 0.663 A 0.625 C 0.663 C 0.765 B 0.684 B 0.775 
A 0.625 E 0.563 A 0.625 A 0.647 C 0.668 A 0.755 
E 0.472 C 0.505 E 0.479 E 0.680 A 0.654 E 0.660 

Avg 0.709 Avg 0.682 Avg 0.710 Avg 0.751 Avg 0.687 Avg 0.768 
sd 0.154 sd 0.134 sd 0.153 sd 0.063 sd 0.020 sd 0.053 

Table 2. Historical Context Classifiers 

 

 

Train100/Test30 10-Fold Crossval130 
who bow who pos who both who bow who pos who both 
D 0.625 E 1 D 0.625 B 0.710 B 0.73 B 0.712 
B 0.571 B 0.757 B 0.571 D 0.662 D 0.727 D 0.657 
A 0.563 D 0.734 A 0.563 A’’ 0.636 A 0.705 A’’ 0.643 
C 0.563 A 0.711 C 0.563 A’ 0.613 A’’ 0.687 A’ 0.620 
A’’ 0.559 A’’ 0.681 A’’ 0.559 C 0.604 C 0.668 C 0.596 
A’ 0.556 C 0.648 A’ 0.556 A 0.600 E 0.661 A 0.594 
E 0.543 A’ 0.537 E 0.543 E 0.590 A’ 0.633 E 0.585 
Avg 0.569 Avg 0.724 Avg 0.569 Avg 0.631 Avg 0.687 Avg 0.630 
sd 0.026 sd 0.141 sd 0.026 sd 0.043 sd 0.036 sd 0.045 

Table 3. Image Content Classifiers 

 

 

Train100/Test30 10-Fold Crossval130 
who bow who pos who both who bow who pos who both 
B 0.722 A’ 0.674 B 0.722 E 0.643 A’’ 0.695 E 0.632 
A’ 0.700 D 0.613 A’ 0.7 B 0.631 A 0.639 B 0.612 
D 0.625 A’’ 0.603 D 0.625 C 0.616 D 0.631 C 0.603 
E 0.625 B 0.444 E 0.625 D 0.598 C 0.559 A’’ 0.601 
C 0.614 E 0.388 C 0.614 A’’ 0.596 E 0.531 A’ 0.596 
A’’ 0.516 C 0.205 A’’ 0.516 A’ 0.589 B 0.527 D 0.593 
A 0.326 A 0.130 A 0.326 A 0.546 A’ 0.515 A 0.551 
Avg 0.590 Avg 0.437 Avg 0.590 Avg 0.603 Avg 0.585 Avg 0.598 
sd 0.134 sd 0.210 sd 0.134 sd 0.032 sd 0.070 sd 0.025 

Table 4. Implementation Classifiers 

 

 

Historical Context Image Content Implementation 
train100test30 bow 0.05 train100test30 bow -0.25 train100test30 bow -0.43 
  pos 0.18   pos -0.75   pos -0.01 
  both 0.59   both 0.42   both -0.43 
crossval130 bow 0.11 crossval130 bow -0.06 crossval130 bow -0.77 
  pos -0.87   pos 0.07   pos 0.46 
  both 0.71   both 0.14   both -0.87 

Table 5. Correlations of roc scores on learning with average pairwise IA 
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