
Diacritic Annotation in the Arabic Treebank and Its Impact on Parser
Evaluation

Mohamed Maamouri, Seth Kulick, Ann Bies

Linguistic Data Consortium
University of Pennsylvania

{maamouri,skulick,bies}@ldc.upenn.edu
Abstract

The Arabic Treebank (ATB), released by the Linguistic Data Consortium, contains multiple annotation files for each source file, due in
part to the role of diacritic inclusion in the annotation process. The data is made available in both ”vocalized” and ”unvocalized” forms,
with and without the diacritic marks, respectively. Much parsing work with the ATB has used the unvocalized form, on the basis that
it more closely represents the ”real-world” situation. We point out some problems with this usage of the unvocalized data and explain
why the unvocalized form does not in fact represent ”real-world” data. This is due to some aspects of the treebank annotation that to our
knowledge have never before been published.

1. Introduction
The Arabic Treebank (ATB), released by the Linguistic
Data Consortium, contains multiple annotation files for
each source file. This is due in part to the role of dia-
critic inclusion in the annotation process, in which diacritic
marks that are usually absent from the written text are in-
cluded in the annotation along with the Part-of-Speech tags
and syntactic structure. The data is made available in both
”vocalized” and ”unvocalized” forms, with and without the
diacritic marks, respectively. Much parsing work with the
ATB has used the unvocalized form, on the basis that it
more closely represents the ”real-world” situation.

The purpose of this paper is twofold. First, we discuss some
problems with this usage of the unvocalized data by parsers
and explain why the unvocalized form does not in fact rep-
resent ”real-world” data. This is due to some aspects of
the treebank annotation that to our knowledge have never
before been published. Second, we discuss why diacrit-
ics cause an Arabic text NLP pipeline to be more complex
than an English NLP pipeline, and we describe how we
have modified the ATB corpus to better reflect this com-
plexity, offering researchers the maximum flexibility for ex-
perimentation with different types of parser input.

There is now extensive documentation included with the
release covering these issues and other details.

2. Overview of ATB Annotation and the
Role of Diacriticization

Arabic is a highly inflected language. It has many different
word forms for any given lemma, which include the root,
its internal structure, prefixes, suffixes and clitics. One rea-
son for this ambiguity is the absence of diacritic markers
in most written text, such as the ATB newspaper sources.
These diacritics include representations of short vowels,
gemination, and definiteness marking. The marking of the
presence of the glottal stop (hamza) is also sometimes left
out in the case of initial alif. For convenience, we will also
use the terms ”vocalized” and ”unvocalized” for the forms
with and without the diacritic marks, respectively.

The role of diacritic annotation in the ATB is discussed in
(Maamouri and Bies, 2004) but for our purposes the crucial
points are these:

1. The source text consists of words that are treated
as whitespace-delimited tokens. (We call these the
”source” tokens.) As noted above, these tokens are
usually lacking diacritic information.

2. The ATB uses a level of annotation more accurately
described as morphological analysis than as part-of-
speech tagging. The source token is run through the
Buckwalter Arabic Morphological Analyzer (Buck-
walter, 2004). This provides all possible analyses of
the token, each analysis consisting of (1) breaking a
word into its various segments (prefixes, suffixes, gen-
der and Case endings) and (2) providing a vocalization
for each segment, with the diacritics appropriate for
that solution. The annotator picks one such analysis
as the proper solution for this token. We refer to this
solution as the POS token, which includes the break-
down of the source token into its various segments,
each one vocalized.

For example, Figure 1 shows a sample output of the
Buckwalter analyzer, excerpting from its complete
output for the input token ktb I.

�
J » . In our ter-

minology, ktb is the source token. The annota-
tor picks one of the possible solutions, and this so-
lution would be what we call the POS token. For
example, katab/PV+a/PVSUFF_SUBJ:3MS and
kutib/PV_PASS+a/PVSUFF_SUBJ:3MS are the
first two potential POS tokens.

3. Depending on the solution, the POS token may be split

2773



up into different tokens. Clitics that play a role in
the syntactic structure are split off into separate to-
kens (e.g., object pronouns cliticized to verbs, cliti-
cized prepositions, etc.).

Again continuing the example, none of the possible
solutions (and therefore possible POS tokens) in Fig-
ure 1 contain segments that get split off,since Case suf-
fixes and agreement morphemes do not get split. In
Section 3.1. however we will see some examples that
do get split.

4. We refer to the tokens resulting from this splitting pro-
cess as the ”Treebank” tokens. These are the tokens
that are used for treebank annotation. Of course, it is
often the case that a POS token does not have to be
split, and the corresponding Treebank token is identi-
cal to the POS token, which in turn is identical to the
source token, except for the added diacritic informa-
tion.

5. The treebanking proceeds using these Treebank to-
kens. The trees have until recently been released
in two forms - ”without-vowel” and ”with-vowel”,
without documentation explaining how the ”without-
vowel” trees are created. The ”with-vowel” trees are
the syntactic trees with tokens that are the Treebank
tokens with full diacriticization. It appears to have
been assumed, not unreasonably, by some users of the
ATB that the ”without-vowel” trees contain tokens as
they appeared in the original text, with the addition of
the splitting off of clitics as done to make the Tree-
bank tokens. The reality is actually more complex, as
described in Section 3.1., with implications for what
parsing evaluation should use for parser input.

3. Parser Evaluation
The first results on parsing the ATB were presented in
(Bikel, 2004). This work was based on data available early
in the ATB project, from what is now the first part of ATB,
the AFP section. More recent results were presented in
(Kulick et al., 2006) and (Maamouri et al., 2006), both of
which used the ANNAHAR data (the third section). Our
focus here is not with the actual parsing results, but rather
the framework used for the evaluation.

3.1. Unvocalized data and ”real-world” parsing
The first parsing work faced an immediate question - should
the unvocalized or vocalized form of the corpus be used?
There were potential arguments for either choice:

unvocalized - In any Arabic NLP pipeline for processing
text, it must be assumed that the input to the overall
pipeline is unvoweled data, for the simple reason that
real-life data does not have the diacritic information.
Therefore, one might decide to use the unvoweled data
as input to the parser because, as (Bikel, 2004) put it,
”that would ultimately be necessary for any real-world
parser”, and that is indeed the choice that (Bikel, 2004;
Kulick et al., 2006) made.

<solution>
<lemmaID>katab-u_1</lemmaID>
<voc>kataba</voc>
<pos>katab/PV+a/PVSUFF_SUBJ:3MS</pos>
<gloss>write + he/it [verb]</gloss>

</solution>
<solution>
<lemmaID>katab-u_1</lemmaID>
<voc>kutiba</voc>
<pos>kutib/PV_PASS+a/PVSUFF_SUBJ:3MS</pos>
<gloss>be written/be fated/be destined +

he/it [verb]</gloss>
</solution>
<solution>
<lemmaID>kitAb_1</lemmaID>
<voc>kutub</voc>
<pos>kutub/NOUN</pos>
<gloss>books</gloss>

</solution>
<solution>
<lemmaID>kitAb_1</lemmaID>
<voc>kutubu</voc>
<pos>kutub/NOUN+u/CASE_DEF_NOM</pos>
<gloss>books + [def.nom.]</gloss>

</solution>
<solution>
<lemmaID>kitAb_1</lemmaID>
<voc>kutuba</voc>
<pos>kutub/NOUN+a/CASE_DEF_ACC</pos>
<gloss>books + [def.acc.]</gloss>

</solution>
<solution>
<lemmaID>kitAb_1</lemmaID>
<voc>kutubi</voc>
<pos>kutub/NOUN+i/CASE_DEF_GEN</pos>
<gloss>books + [def.gen.]</gloss>

</solution>
<solution>
<lemmaID>kitAb_1</lemmaID>
<voc>kutubN</voc>
<pos>kutub/NOUN+N/CASE_INDEF_NOM</pos>
<gloss>books + [indef.nom.]</gloss>

</solution>
<solution>
<lemmaID>kitAb_1</lemmaID>
<voc>kutubK</voc>
<pos>kutub/NOUN+K/CASE_INDEF_GEN</pos>
<gloss>books + [indef.gen.]</gloss>

</solution>
<x_solution>
<voc>ktb</voc>
<pos>ktb/NOUN_PROP</pos>
<gloss>NOT_IN_LEXICON</gloss>

</x_solution>
<x_solution>
<voc>katb</voc>
<pos>ka/PREP+tb/NOUN_PROP</pos>
<gloss>like/such as + NOT_IN_LEXICON</gloss>

</x_solution>

Figure 1: Excerpt from output of Buckwalter analyzer for
ktb I.

�
J»

2774



vocalized - However, it is not necessarily the case that the
unvocalized data would be the input to the parser in a
”real-world” situation. There could be a preprocess-
ing step inserting some or all of the missing diacritics,
analogous to a Part-of-Speech tagger providing tags
before input to the parser. So it is also a reasonable
choice to construct parser experiments with the vocal-
ized data. The role of diacritics in an NLP pipeline
that includes parsing is very much an open question.

While this second choice is also reasonable, it is very likely
that the parsing work referred to did not have access to
an independent module for diacritic inclusion, and without
such a system it becomes much harder to evaluate how a
parser would work in an actual NLP pipeline.

Our concern here is not to argue for using either of the two
alternatives. Our concern instead is to point out and explain
why it is that even the unvocalized data is not an accurate
representation of what the ”real” data looks like.

The reason for this is that for words that get split as part
of the cliticization process, what has been released as the
unvocalized form is not taken from the original source text
file, but rather is just the vocalized form with short vowels
stripped out. Because the vocalized form can also include
certain types of orthographic normalization not present in
the original source, it is sometimes the case that the con-
catenation of the unvocalized form of treebank tokens is
not the same as the original source token that was broken
up into those treebank tokens. (For words that do not get
split, the unvocalized form is what one would expect - the
word as it appears in the original source text file.)

Therefore, work that uses the unvocalized information (e.g.,
parsing on the unvocalized trees) is actually using a sort
of hybrid data, which is neither a faithful representation of
the original text data, nor the complete result of diacritic
inclusion.

We give here two examples of why this can be the case.

• The white-space delimited input string (source token)
is llqDA’1

ZA
�	

�
�
® Ê Ë . The l Ë is a prefix for the

preposition ”li” Ë� , and the chosen solution from
the morphological analyzer gives the POS to-
ken li/PREP + Al/DET + qaDA’/NOUN. The
preposition is split off, creating two (vocalized) tree-
bank tokens: li Ë� and AlqaDA’ ZA

�	
�

��
® Ë

�
@. Note that

in addition to the insertion of the short vowels i in the
first word and a in the second word, the second word
also has the consonant A.2

1We are using the Buckwalter transliteration scheme.
2This is because the sequence lAl is written as ll in Arabic

orthography.

The unvocalized forms of the tokens are l and
AlqDA’, resulting from stripping out the short vow-
els. The point is that the unvocalized token AlqDA’
contains an initial alif A that is not included in the
source text. The unvocalized token therefore contains
disambiguating information that is not present in the
source text.

• The source token is Aly ú


Í@. The vocalized solution

for the POS token is <ilay/PREP+˜a/PRON_1S,
in which there are two segments, <ilay/PREP and
˜a/PRON_1S. The pronoun is split off, creating two
(vocalized) treebank tokens.

Focusing just on the PREP, the vocalized treebank to-
ken is <ilay, which not only adds the short vowels i
and a, but also corrects for the ”missing hamza” prob-
lem by normalizing A to < The unvocalized form of
this token results from stripping out the short vowels,
and so is <ly. This is however not what is included
in the original text file, which did not have the correct
hamza placement, with A instead of <.

Out of 355870 instances of tokens in third section of the
ATB (the section which has recently been used for parsing
experiments), 13298 (3.7%) have this discrepency between
the unvocalized form and the text that is actually included
in the original source file. In the current release of the ATB
part 3, we have significantly expanded the documentation
to make all these facts clear, and to also provide a repre-
sentation of the unvocalized form that is a more accurate
representation of the contents of the original source file.

3.2. Interaction between the unvocalized and
vocalized forms

The question of what the input to the parser should be is
actually considerably more complex than just the relatively
simple decision of using unvocalized or vocalized data.

There are several aspects to data processing that need to oc-
cur within an Arabic NLP pipeline: tokenization, diacritic
inclusion, Part-of-Speech tagging, and parsing.3 It is likely
that some of these steps should be integrated together, and
work has been done along these lines (e.g., (Habash and
Rambow, 2005)), and depending on how this is done, the
parser input might be expected to have tokenization but not
diacritics, or only some subset of the diacritics, etc. This
is in contrast to English, for which tokenization is trivial
and there is of course no issue with diacriticization, and so

3And diacritic inclusion should itself probably be broken into
subtasks for word-internal diacritics or diacritics representing
Case or Mood information. We are abstracting away from this
issue in this abstract.

2775



the only issue for parser evaluation is whether to use gold
Part-of-Speech tags or the output of a POS tagger.
While the nature of the parser input for Arabic is a matter
for empirical investigation, we have modified the release
format of the ATB to allow maximum flexibility for exper-
imentation with different inputs to the parser, by making
more explicit the links between the unvocalized and vocal-
ized trees. We have done this in two different ways:

1. The text files that include information about the tokens
before and after the splitting of the original tokens now
both include pointers to the original source file. This
allows the use of this standoff annotation for relating
the different levels.

2. In addition to the trees with unvocalized and vocal-
ized tokens, we now include trees in which the termi-
nals are complex items, including the original token
from the source file, both the unvocalized and vocal-
ized forms, the lemma, and the gloss, thereby bring-
ing together information that was previously scattered
across different files.

4. Acknowledgements
We would like to thank Ryan Gabbard, Mitch Marcus, and
all the members of the Arabic Treebank team for helpful
discussions.
This work was supported in part by the Defense Ad-
vanced Research Projects Agency, GALE Program Grant
No. HR0011-06-1-0003. The content of this paper does
not necessarily reflect the position or the policy of the Gov-
ernment, and no official endorsement should be inferred.

5. References
Daniel M. Bikel. 2004. On the Parameter Space of Lexi-

calized Statistical Parsing Models. Ph.D. thesis, Depart-
ment of Computer and Information Sciences, University
of Pennsylvania.

Tim Buckwalter. 2004. Arabic morphological analyzer
version 2.0. LDC2004L02. Linguistic Data Consortium.

Nizar Habash and Owen Rambow. 2005. Arabic tok-
enization, part-of-speech tagging and morphological dis-
ambiguation in one fell swoop. In Proceedings of the
43rd Annual Meeting of the Association for Computa-
tional Linguistics (ACL’05), pages 573–580, Ann Arbor,
Michigan, June. Association for Computational Linguis-
tics.

Seth Kulick, Ryan Gabbard, and Mitchell Marcus. 2006.
Parsing the Arabic Treebank: Analysis and improve-
ments. In Proceedings of TLT 2006. Treebanks and Lin-
guistic Theories.

Mohamed Maamouri and Ann Bies. 2004. Developing
an arabic treebank: Methods, guidelines, procedures,
and tools. In Ali Farghaly and Karine Megerdoomian,
editors, COLING 2004 Computational Approaches to
Arabic Script-based Languages, pages 2–9, Geneva,
Switzerland, August 28th. COLING.

Mohamed Maamouri, Ann Bies, and Seth Kulick. 2006.
Diacritization: A challenge to Arabic treebank annota-
tion and parsing. In Proceedings of the British Computer

Society Arabic NLP/MT Conference, London, UK, Octo-
ber.

2776


