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Abstract
We present an evaluation of inter-sentential coreference annotation in the context of manually created semantic networks. The semantic
networks are constructed independently be each annotator and require an entity mapping priori to evaluating the coreference. We
introduce a model used for mapping the semantic entities as well as an algorithm used for our evaluation task. Finally, we report the raw
statistics for inter-annotator agreement and describe the inherent difficulty in evaluating coreference in semantic networks.

1. Introduction

This paper presents an analysis of inter-sentential coref-
erence relationships encoded in a manually annotated se-
mantic network. The MultiNet semantic network formal-
ism (Helbig, 2006) forms the basis of the annotation task
used in this work. Under this formalism, each sentence in
a discourse contributes information to the entire semantic
network. These partial semantic entities are joined together
by way of coreference links between unique concepts (i.e.
the objects which define unique entities). Our particular
annotation task is the extension of the deep-syntactic anno-
tation currently available in the Prague Dependency Tree-
bank (PDT) (Hajič et al., 2006). Thus adding constraints to
the annotation which we describe in this paper.

Our annotators have manually constructed semantic net-
works for individual sentences while also maintaining
coreference links between sentences; thereby providing
complete semantic networks for an entire discourse. While
the notion of coreference is related to the traditional notion,
the goal here is to ensure that a coherent semantic network
is constructed. This means that the concepts (entity objects)
being annotated as coreferent must be interpreted as unique
entities. In the present work, we explore a technique which
maps the nodes of the semantic networks annotated by two
different annotators. We use this technique to analyze the
quality of the coreference annotations.

The remainder of the paper is organized as follows. In
Section 2. we introduce the theoretical background of the
MultiNet semantic network framework. Section 3. presents
a description of the data we used for the annotation task,
the model used to obtain a mapping between the labeling
of multiple annotators, and the algorithm used to identify
agreement. An evaluation of the coreference annotations is
presented in Section 4. Finally, a discussion about the diffi-
culties in the annotation process as well as the evaluation is
presented in section Section 5.

2. MultiNet Semantic Networks
The representational means of Multilayered Extended Se-
mantic Networks (MultiNet), which are described in (Hel-
big, 2006), provide a universal formalism for the treatment
of semantic phenomena of natural language. To this end,
the MultiNet is a parsimonious representation which pro-
vides a graphical interpretation of the semantic interactions
realized throughout a discourse. This has an additional ad-
vantage of making the MultiNet networks easier to interpret
without extensive knowledge of the formalism and there-
fore simplifies the training of annotators.
In Figure 1, we present an example MultiNet annotation
for the following sentence from the Wall Street Journal:
Stephen Akerfeldt, currently vice president finance, will
succeed Mr. McAlpine.
As this network is for a single sentence, there are explicit
inter-sentential coreferences. There are, however, intra-
sentential coreferences links, those directed edges which
are labeled EQU (meaning there is equality between the
nodes C75 and C77 as well as C81 and C4). The net-
works is interpreted as follows: arcs indicate a semantic
relationship between nodes (or sets of nodes). There are
over 60 different categories of semantic relationships which
describe the interactions between concepts; the concepts
are encoded as nodes. Each concept is decorated further
with detailed information that describes the type of con-
cept. Note that an arc can be treated as a concept if in fact
the semantic relationship is being treated in the discourse
as a concept
In addition to the intra-sentential semantic relationships, a
concept may be linked to a previously used concept in the
discourse. For example, Mr. McAlpine had been mentioned
previously in the discourse where this sentence appeared.
Note that the text associated with node C4 does not actu-
ally appear in this sentence. C4 is a node from a previous
sentence which has been presented here to note the corefer-
ence. The annotator has placed an EQU arc between nodes
C4 and C81 to indicate there is a coreference relationship,
and that C4 preceeded C81 in the discourse (depicted by the
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Figure 1: MultiNet annotation of the sentence “Stephen Akerfeldt, currently vice president finance, will succeed Mr.
McAlpine.” Nodes C4 and C8 are re-used from previous sentences.

direction of the directed arc). These are the inter-sentential
coreference links necessary to transform the set of localized
semantic interactions into a complete semantic network that
describes the relationships of concepts presented in a dis-
course.
A detailed annotation manual can be found at:
https://wiki.ufal.ms.mff.cuni.cz/projects:content-annotation

Manual annotations are performed using a graphical user
interface, allowing the labeler to create nodes and arc and
add labels to the nodes and arcs. Recall that our goal is to
incorporate these annotations into the Prague Dependency
Treebank. In order to facilitate this, the Tectogrammati-
cal Representation (deep-syntax) trees of the PCEDT (PDT
annotation of the Penn WSJ Treebank) are used to induce a
default network. The nodes of the Tectogrammatical trees
are directly mapped to MultiNet concepts, which may be
further modified by the annotator. This imposes a loose
constraint on the networks that are produced by the an-
notators: the networks will inherit structure from the Tec-
togrammatical trees.
In the following sections, we will examine the positive im-
pact these annotation constraints have on the evaluation of
networks annotated by multiple people.

3. Annotation: Data, Methodology, and
Evaluation

The evaluation presented in this paper has been carried out
on a subset of The Wall Street Journal articles from the
Penn Treebank (Marcus et al., 1993), which have been an-
notated at multiple levels of analysis according to the PDT
guidelines. The source data was publicly released as the
Prague Czech-English Dependency Treebank (Cuřı́n et al.,
2004), a corpus of parallel English and Czech annotations
of the Penn Treebank. In this work, we have only explored
the MultiNet annotation on the English component of this
corpus.

The different levels of annotation are derived from
the Functional Generative Description (FGD) of lan-
guage (Sgall et al., 1986) which is the basis of the PDT an-
notation effort. This includes detailed morphological anal-
ysis, surface syntactic analysis, and deep-syntactic analy-
sis; the latter is called the Tectogrammatical Representa-
tion (TR) as it was referred to in the original FGD work.
Tectogrammatical trees are stripped of function words (syn-
semantic lexical items), leaving only the content bearing
words as first-class nodes in the trees. Information derived
from the function words is encoded in the labels and nodes
of the TR dependency trees.
As mentioned above, the MultiNet annotation procedure
begins with a TR tree, from which the annotator is given
a default network that maintains links to the TR tree. The
annotator then creates new nodes and arcs as necessary, and
labels the nodes and arcs. Any concept, represented as a
MultiNet node, which has previously been used in the dis-
course is available to the annotators via the annotation tool
interface. When an annotator believe a concept in the cur-
rent sentence has been previously mentioned, they can add
this node to the current network (the node maintains it’s
identifier from the previous context). The annotator then
creates an EQU link between the node for the previously
used concept and the newly observed concept.

Sentences Words
Two-annotators 67 1793
Three-annotators 46 1236

Table 1: Annotated corpus. A subset of sentence from En-
glish side of the PCEDT (a PDT-style annotation of the
WSJ treebank).

We trained three annotators to use the MultiNet graphical
annotation tool (Novák, 2007). We reserved a set of sen-
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tences from the corpus for training the annotators. These
sentences are excluded for the inter-annotator analysis pre-
sented here. The complete evaluation for the three anno-
tators contained 67 annotated sentences. Of these 67, only
46 sentences where annotated by all three annotators. The
remaining sentences were annotated by only two of the an-
notators (see Table 1). All annotators are native English
speakers and were trained on the held-out data.
The result of the annotation process is a set of manually
annotated graphs. These graphs contain links to the tec-
togrammatical trees, which provide reference points for
annotations from different annotators. Furthermore, the
coreference link are maintained through the reuse of con-
cept nodes when creating a graph. In order to evaluate
agreement between two annotators, we first focus on the
sentence-level graphs. We proceed as follows: first, we find
an absolute mapping between the annotators for the Multi-
Net nodes. Then, we evaluate the coreference chains by
identifying a canonical node that identifies the coreference
chain.

3.1. Mapping Multiple Annotations
Mapping the MultiNet concepts as annotated by multiple
annotators is necessary before further analysis can be done.
The annotators are free to create new concept nodes if they
deem it necessary to describes the semantic concepts within
a sentence. One annotator may find it sufficient to use
a node derived from the tectogrammatical tree, while an-
other another may find the default node insufficient. In or-
der to evaluate inter-annotator agreement for the network
structure, we derived a technique to find an minimum-error-
mapping for the nodes of a sentence. We employ the same
technique in this work, where the goal is to evaluate coref-
erence.
We used a relatively obvious technique for mapping the
two graphs. First, all nodes that are derived from the tec-
togrammatical tree have an absolute identifier: the original
tectogrammatical node. Therefore, the mapping between
TR-derived nodes is fixed. The remaining concept nodes
in the MultiNet tree are aligned in order to minimize the
inter-annotator error for the graph annotation effort (inde-
pendent of coreference annotations). It turns out that there
are usually only a few new concept nodes created by the
annotators for any one sentence, therefore, we can simply
explore all mappings.
Formally, we start with a set of tectogrammatical trees con-
taining a set of nodes N . The annotation is a tuple G =
(V,E, T, A), where V are the vertices, E ⊆ V ×V ×P are
the directed edges and their labels (e.g., agent of an action:
AGT ∈ P ), T ⊆ V ×N is the mapping from vertices to the
tectogrammatical nodes, and finally A are attributes of the
nodes, which we ignore in this initial evaluation.1 Analo-
gously, G′ = (V ′, E′, T ′, A′) is another annotation of the
same sentence and our goal is to quantify the differences
between G and G′. This requires a mapping from V to V ′.
To find the optimal mapping we need a set Φ of admissi-
ble one to one mappings between vertices in the two an-

1We simplified the problem also by ignoring the mapping from
edges to tectogrammatical nodes and the MultiNet edge attribute
knowledge type.

notations. A mapping is admissible if it connects vertices
which are indicated by the annotators as representing the
same tectogrammatical node:

Φ =

{
φ ⊆ V × V ′

∣∣∣ (1)

∀
n∈N
v∈V

v′∈V ′

((
(v,n)∈T∧(v′,n)∈T ′

)
→(v,v′)∈φ

)
∧ ∀

v∈V
v′,w′∈V ′

((
(v,v′)∈φ∧(v,w′)∈φ

)
→(v′=w′)

)
∧ ∀

v,w∈V
v′∈V ′

((
(v,v′)∈φ∧(w,v′)∈φ

)
→(v=w)

)}

In Equation 1, the first condition ensures that Φ is con-
strained by the mapping induced by the links to the tec-
togrammatical layer. The remaining two conditions guar-
antee that Φ is a one-to-one mapping.
Then we can define the optimal mapping φ∗ as

φ∗ = argmax
φ∈Φ

(F (G, G′, φ)) (2)

where F is similar to the F1-measure:

Fm(G, G′, φ) =
2 ·m(φ)
|E|+ |E′|

(3)

where m(φ) is the number of edges that match given the
mapping φ.

m(φ) = |Mdl|+
3
4
· |Mwl|+

1
2
· |Mdw|+

1
4
· |Mww| (4)

|Mdl| is the number of edges where both direction and the
label matches, |Mwl| is the number of edges, where the di-
rection is wrong but the label matches, |Mdw| is the num-
ber of edges, where the direction is the same but the labels
differ, and |Mww| is the number of edges, where the both
direction and the label differ.
The coefficients in Equation 4 were chosen by hand in or-
der to prefer mappings of the edges with more matching
parameters and at the same time mappings where there are
at least some structural correspondences. The relation type
received more weight than the edge direction, because it is
more informative. In the sequel, all results presented are
obtained using the optimal mapping φ∗ for each sentence.
Each concept (node) which occurs in more than one sen-
tence is evaluated (these are the coreferent concepts which
connect the sentence-level semantic networks). We choose
a canonical concept for the one of the annotators by follow-
ing the coreference chain to the earliest point at which the
concept is mentioned in the discourse. This canonical con-
cept is then identified in the second annotators graph. For
every occurrence of the concept in each annotators graphs,
we identify whether it is mapped under the previously de-
scribe sentence-level mapping. For any concept that is
mapped, we identify whether it’s canonical concept is also
mapped. If so, this is a match under our metric. The com-
plete algorithm is presented in Figure 2.
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Input: Alternative annotations, G = (V,E, T, A) and G′ = (V ′, E′, T ′, A′)
Output: List of coreference agreements and disagreements
foreach v ∈ V subject to |{n ∈ N ; (v, n) ∈ T}| > 1 do

Find the first occurrence of the concept n0 ∈ N , where (v, n0) ∈ T ;
Find the v′0 ∈ V ′ such that (v′0, n0) ∈ T ′;
if there is no such v′0 then

print(”missingR0 for ” + v);
else

foreach n ∈ N where n 6= n0 ∧ (v, n) ∈ T do
Find the v′ ∈ V ′ such that (v′, n) ∈ T ′;
if there is no such v′ then

print(”noMap for ” + v + ” at ” + n);
else

if v′ = v′0 then
print(”ok for ” + v + ” at ” + n);

else
print(”mismatch of ” + v′ + ” and ” + v′0);

Figure 2: Comparing of two alternative coreference annotations. The asymptotic algorithmic complexity is O(|V | + |T |)
because every inner loop iterates over different sets of n.

Annotator Sentences Unique concepts (non-singleton) Non-singletons per sent (std. dev.)
SM 46 1248 (120) 2.6 (1.86)
CW 67 1713 (248) 3.7 (2.05)
CB 67 1800 (174) 2.6 (1.24)

Table 2: Annotation statistics for coreference evaluation. Non-singleton concepts are those with at least one coreference
link.

4. Empirical Evaluation
We have run the coreference agreement evaluation on our
annotated data, for which the relevant statistics are pre-
sented in Table 2. we report the raw results of the evalu-
ation in Table 3. We have chosen not to report any further
statistical evaluation due to 1) the limited amount of data
available for analysis, and 2) the subtle dependency on the
mapping procedure used as a basis for the analysis.
The results in are divided into four categories of corefer-
ences:

mismatch One annotator uses a different canonical con-
cept as the coreference target.

missingR0 The first mention of the concept in one anno-
tator’s graphs does not have a counterpart in the best
matching network of the other annotator.

noMap The concept which is coreferring to a previous
sentence in one annotators graph has no mapping to in
the other annotators graph.

ok The coreferring concept used in the sentence by one an-
notator is mapped to a concept in the other annotator’s
graph and the canonical concepts from both annotators
are mapped.

In Figure 3, we present a depiction of the agreement results
that shows there is quite a bit of variance under the metric
for ok agreements. Note that annotator SM appears to have
less agreement in general.

5. Error Analysis

We have manually reviewed the disagreements as found us-
ing the above described metric. We have found that there
are one of two explanations for many of the errors. One
reason for disagreement appears to be an inadequate de-
scription of the coreference task in the annotation guide-
lines. The other error is related to the automatic mapping
technique used in our evaluation.

The annotation guidelines do not indicate which
previous concept to use when annotating coref-
erence. An example of this was found for net-
work annotations for sentences following this sen-
tence from section F20 of the Penn WSJ Treebank:
The U.S. trade representative, Carla Hills, . . .
In the subsequent text, Carla Hills is used to identify the
person. One annotator chose to use Carla Hills as the
coreferent concept, but another chose to use The U.S.
trade representative. The equality of a entities found in
appositions of this sort can be resolved either by refining
the annotation guideline or automatically preprocessing
the data to identify appositive phrases.

The other source of error is related to the automatic map-
ping technique described in this paper. When one annota-
tor’s structural annotation is significantly different than the
alternative annotation, the mapping algorithm will arbitrar-
ily choose a mapping. This in turn misguides the corefer-
ence annotation algorithm.
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Status mismatch missingR0 noMap ok
Article Pair
F20 CB-CW 17 1 5 14

SM-CB 15 0 24 11
SM-CW 23 1 22 4

F21 CB-CW 3 0 6 8
SM-CB 6 0 1 3
SM-CW 5 0 2 3

F22 CB-CW 9 1 7 8
SM-CB 7 1 0 3
SM-CW 10 0 5 7

F26 CB-CW 6 0 5 7
F27 CB-CW 5 0 6 16

Table 3: Experimental results of pairwise coreference annotation agreement evaluation. The labels CB, CW, and SM,
identify the individual annotators.
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Figure 3: The agreement for all pairs of annotators, CBCW, SMCB, and SMCW. The data shows high variance w.r.t. the
distribution of ok cases.

6. Conclusion and Future Work

We have presented a technique to evaluate coreference links
in a semantic network annoation framework as well as the
evaluation results on a small set of data annotated by three
independent labalers. Evaluation under the current tech-
nique is inconclusive due to the complex nature of the anno-
tation scheme and the integrated labeling of both structure
an coreference structures.

Semantic network annotation is a relatively complex task
which requires a high cognitive load even with the most
parsimonious representations. Our preliminary results
show that annotators are capable of producing similar an-
notations under the MultiNet representation. We hope that
refinement in both the annotation guidelines and the evalu-
ation technique will prove that MultiNet is an appropriate
representation for high-agreement semantic network anno-
tations.
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We intend to use the proposed technique for subsequent
coreference tasks in the role of consistency checking. We
note that our technique is effective in determining that both
the structural and coreference annotations agree.
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Meaning of the Sentence in Its Semantic and Pragmatic
Aspects. D. Reidel, Dordrecht, The Netherlands.

2751


