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Abstract 

In this paper we describe an approach that both creates crosslingual acoustic monophone model sets for speech recognition tasks and 
objectively predicts their performance without target-language speech data or acoustic measurement techniques.  This strategy is based 
on a series of linguistic metrics characterizing the articulatory phonetic and phonological distances of target-language phonemes from 
source-language phonemes.  We term these algorithms the Combined Phonetic and Phonological Crosslingual Distance (CPP-CD) 
metric and the Combined Phonetic and Phonological Crosslingual Prediction (CPP-CP) metric.  The particular motivations for this 
project are the current unavailability and often prohibitively high production cost of speech databases for many strategically important 
low- and middle-density languages. 
 First, we describe the CPP-CD approach and compare the performance of CPP-CD-specified models to both native language 
models and crosslingual models selected by the Bhattacharyya acoustic-model distance metric in automatic speech recognition (ASR) 
experiments.  Results confirm that the CPP-CD approach nearly matches those achieved by the acoustic distance metric.  We then test 
the CPP-CP algorithm on the CPP-CD models by comparing the CPP-CP scores to the recognition phoneme error rates.  Based on this 
comparison, we conclude that the CPP-CP algorithm is a reliable indicator of crosslingual model performance in speech recognition 
tasks. 

 

 

1. Introduction 

Speech technologists typically use acoustic measurements 

to determine similarity among acoustic speech models for 

crosslingual modeling and there are a variety of distance 

metrics available (e.g., Sooful & Botha, 2002).  

Additionally, HMM similarity can be evaluated indirectly 

through comparison of HMM performances in ASR 

experiments.  For acoustic measurements, speech data 

must be accessible for model training.  However, speech 

data unavailability is a practical concern in that most 

commercially available speech databases are principally 

restricted to high-density languages while the vast 

majority of languages are low- and middle-density 

languages.  Low- and middle-density languages have not 

been exposed to intense data collection and resources for 

these languages are subsequently either limited or 

completely unavailable.   

A high-density language is characteristically a 

majority language associated with a large, economically 

advantaged population of speakers, a significant 

proportion of which regularly uses computers or has 

computer experience.  The language bears official status 

or non-official predominant use in one or more countries 

and is also recognized as important by foreign 

governments.  Finally, the language is supported by a 

writing tradition and has been studied and well 

documented in various types of language resources.  In 

regards to speech modeling, it is this last factor of 

language resource availability that proves most 

significant.  In particular, a high-density language is 

associated with several commercially available speech 

resources of various types (and quality).  Examples of 

such high-density languages are major dialects of Arabic, 

English, Mandarin, and Spanish. 

A low-density language, in contrast, lacks many of the 

high-density characteristics.  The population of speakers 

may be quite small, economically disadvantaged, and 

have little or no computer experience.  The language may 

be considered a minority language in the countries where 

it is spoken and is not judged to be very significant by 

foreign governments or language researchers.  A writing 

system may be completely lacking for the low-density 

language or only non-standardized writing systems may 

exist in limited use; thus language resources are sparse or 

non-existent.  Many Native American and minor African 

languages would fall into this category.  Finally, a 

middle-density language shows a balance of those 

extremes exhibited by high- and low-density languages 

and would include, for example, many Chinese, Indian, 

and African languages in the emerging market. 

Hence crosslingual modeling and performance 

prediction that necessitate no target-language speech data 

have a great value for the resource limited low- and 

middle-density languages by taking advantage of the 

well-trained models of, typically, high-density languages.  

Our approach is specifically suited to target low- and 

middle-density languages that are (1) associated with a 

writing system but perhaps lack significant, readily 

available language resources and (2) related to other, 

typically high-density languages for which language 

resources are easily accessible. 

While this approach was developed with low- and 

middle-density languages in mind, it may also be an 

adequate alternative modeling strategy for any language 

when database acquisition time or expense is limited.  
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2. Prior Work 

The general objective of crosslingual modeling for ASR is 

to create a set of acoustic models from one or more source 

languages for a target language and for that acoustic 

model set to achieve adequate recognition performance in 

the target language.  To do this, it is generally recognized 

that the selected source models must be similar in 

phonetic coverage to the corresponding target-language 

phonemes.  Thus, crosslingual model creation and 

recognition prediction is largely a problem in phoneme 

similarity estimation.   

Purely knowledge-based approaches to phoneme 

similarity prediction generally attempt to identify 

articulatory similarity between phonemes across 

languages.  The typical strategy is subjective and 

label-based, where two phonemes are judged to be more 

or less similar depending on their transcription labels 

(Köhler, 1996; Schultz & Waibel, 1997 & 2000). 

In contrast to the label-based strategy, researchers in 

such fields as dialectometry, language acquisition, and 

language reconstruction commonly use automatic 

feature-based approaches to articulatory similarity 

between phonemes.  In these methods, phonemes are 

represented by a distinctive feature vector and a phonetic 

distance or similarity algorithm is used to align phoneme 

strings between related words (Connolly, 1997; Kessler, 

1995 & 2005; Kondrak, 2002; Nerbonne & Heeringa, 

1997; Somers, 1998).  

In principle, the feature-based approach admits more 

precise specification of phonemes because it supports 

allophonic variance.  For example, a standard 

feature-based approach to allophony representation 

restricts feature inclusion to only those features relevant 

to all realizations of the phoneme.  Another common 

approach retains features that are relevant to all 

allophonic variants, but leaves their values underspecified 

(Archangeli, 1988). 

A strategy for specifying allophony and characterizing 

phonetic distance or similarity between phonemes is only 

one component in predicting phoneme similarity without 

acoustic data.  Because phonemes necessarily interact, it 

is also important to consider the phonology, or at least, the 

phonotactics of the overall constructed system.  Ideally, 

the distribution characteristics of the resulting acoustic 

models will match the distribution characteristics of their 

corresponding target-language phonemes. 

3. Crosslingual Model Creation and 
Prediction Method 

The crosslingual model creation and performance 

prediction methods described here are based on a 

combination of metrics characterizing the articulatory 

phonetic and phonological distribution distances of 

phonemes from source and target languages.  For this 

reason, we identify the collection of measurements and 

the approach overall as Combined Phonetic and 

Phonological or CPP (Liu & Melnar, 2005).  The only 

resource assumed for each target language is a 

high-quality pronunciation dictionary. 

The first step in the CPP approach is the definition of 

each source and target language phoneme by a set of 32 

distinctive feature categories specifically designed to 

capture allophonic variation.  Next, the phonetic distance 

between each target-language phoneme and all 

source-language phonemes is measured.  We base our 

phonetic distance measurement on weighted articulatory 

features where the value of a weight for a feature is 

derived from the frequency of the feature in all the 

source-language lexica.  In our experiments, we use the 

Manhattan distance where the distance between 

phonemes equals the sum of the absolute values of 

individual feature distances. 

The phonological distance between the source and 

target languages is then estimated by calculating the 

lexical monophoneme and biphoneme distribution 

distances between each source language and the target 

language.  For each language, a pronunciation lexicon is 

used for this purpose.  The pronunciation lexicon and a 

phonetic description of the pronunciation labels used are 

the only language resources required for the target 

language in this approach. 

The phonetic distance, monophoneme and biphoneme 

phonological distance scores are then weighted so that the 

impact of phonetic distance equals that of phonological 

distance; these scores are subsequently combined to 

identify the closest source-language phoneme matches for 

each target-language phoneme.  The pre-existing acoustic 

models for the top two most similar source-language 

phonemes for each target-language phoneme are selected 

for the crosslingual target-language model set.  Because 

phoneme similarity is based on the combined scores of 

phonetic and phonological distances, we call this metric 

the CPP Crosslingual Distance or CPP-CD.  The 

CPP-CD model is schematized in Figure 1. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Schematization of the CPP-CD approach 

 

The precise formulation of CPP-CD metric is 

provided in Liu & Melnar (2005) and is not repeated here. 

We similarly predict the performance of the 

crosslingual model set by measuring the weighted sum of 

relative phoneme distances.  Each target-language 

phoneme is assigned an importance weight based on the 

phoneme's lexical frequency.  Then the contribution and 

interference effect of all the donor phonemes to each 

target-language phoneme is measured.  For each target 

phoneme, a matching and confusing phoneme set is 
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defined.  A matching set consists of the most similar (i.e. 

least distant) donor phonemes; these have a contribution 

effect in target phoneme identification.  A confusing set 

consists of all the donor phonemes except those in the 

corresponding matching set; because confusing phonemes 

might have some phonetic proximity to the target 

phoneme, they potentially have an interference effect in 

target phoneme identification. 

Since individual phoneme contribution is represented 

by a distance measure, the total contribution is derived as 

a harmonic sum of individual contributions.  The total 

interference effect relative to a target phoneme from a set 

of confusing phonemes is derived from the distance of 

each individual donor phoneme in the same way.  The 

contribution or interference effect of a donor phoneme to 

the target phoneme is derived from the same component 

distance measures used in the derivation of CPP-CD, i.e. 

it consists of the phonetic, monophoneme, and biphoneme 

distance measurements.  We therefore call the prediction 

algorithm the CPP Crosslingual Prediction or CPP-CP.  

See Figure 2 for a model of the CPP-CP algorithm. 

Because prediction is distance-based, the smaller the 

CPP-CP score, the higher the predicted performance of 

the crosslingual models.  For a set of languages, we 

evaluate CPP-CP scores relative to recognition phoneme 

error rates (recognition results with the crosslingual 

models on the native speech data).  The reliability of the 

prediction score is verified by its agreement with the 

phoneme error rate in recognition tests, as shown in the 

next section. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Schematization of the CPP-CP approach 

 

Because the prediction score is based on distance, the 

smaller the CPP-CP score, the higher the predicted 

performance of the crosslingual models.  For a set of 

languages, we evaluate CPP-CP scores relative to 

recognition phoneme error rates (recognition results with 

the crosslingual models on the native speech data).  

Where the prediction scores match the general trend of the 

recognition phoneme error rates, we consider the relative 

prediction scores reliable.
1
 

                                                           
1 At the time of LREC submission, the details of the CPP-CP 

approach were undergoing internal clearance review; for this 

reason, formulae are not presented. 

In general, recognition error is expected to be higher 

for those languages having larger biphoneme inventories.  

A higher number of biphonemes in a language correlates 

to more phonotactic possibilities and thus greater 

potential confusability among monophoneme models.  

Furthermore, since the CPP-CD algorithm is based on 

phonetic and phonological distances, it follows that 

overall target-source language proximity is also 

significant.  Two languages may be said to be proximate if 

they are closely related linguistically or if the populations 

of speakers intermingle or otherwise habituate 

coterminous areas (i.e. are contact languages (Trask, 

1996)).  A higher degree of phonological similarity is 

expected among related and contact languages than 

among languages that lack such proximate relations. 

In addition to biphoneme inventory size and language 

proximity, the quality and consistency of the language 

resources must be considered important performance 

factors.  In particular, negative performance factors 

include: (1) inconsistency in data quality and task 

complexity across languages due to database availability 

and (2) sub-optimal native model quality for some 

languages due to training data insufficiency.  In 

conducting these experiments, we have made no effort to 

improve or harmonize the existing language resources; 

rather, our intent is to test the CPP strategy with our 

current databases.  This reflects a very practical business 

scenario where time is not available for extended database 

processing. 

4. Experiments, Results, and Analysis 

4.1 CPP-CD 

To test our CPP-CD approach to modeling, we first 

compare it to both an acoustic distance approach and to 

native monolingual modeling in ASR experiments 

targeting five high-density languages for which we have 

speech data for testing: Latin American Spanish, Italian, 

Japanese, Danish, and European Portuguese.  For ease of 

presentation, we refer to each major target or source 

dialect as a language in the remainder of this paper.       

For the acoustic model distance measurement, we 

adopt the Bhattacharyya metric (Mak & Barnard, 1996).  

The reference models are built with the top two native 

models chosen from source languages based on their 

acoustic distance from the corresponding native target 

model. 

For native language modeling, a native monolingual 

model set had been built by training with native speech 

data for each of the target languages.  The acoustic 

features are 39 regular MFCC features including cepstral, 

delta, and delta-delta. The databases included CallHome, 

VAHA, EUROM, SpeechDat, and GlobalPhone, among 

others.   Because the models trained with native 

language speech data are used in measuring model 

distance in the Bhattacharyya metric, it is expected to 

work better than our CPP-CD metric, which only 

estimates acoustic similarity indirectly through 

articulatory phonetic similarity and overall phonological 
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similarity. 

For both the CPP-CD and Bhattacharyya approaches, 

we use twenty languages from six major language groups 

defined by genetic relation: (i) Afro-Asiatic: Egyptian 

Arabic; (ii) Altaic: Japanese, Korean; (iii) Germanic: 

American English, British English, Danish, Dutch, 

German, Swedish; (iv) Italic: Brazilian Portuguese, 

Canadian French, European Portuguese, Italian, 

Latin-American Spanish, Parisian French; (v) Sinitic: 

Cantonese, Mandarin, Shanghainese; and (vi) Slavic: 

Czech, Russian.  Among these twenty languages, three 

may be considered middle-density languages in the sense 

that they are relatively underrepresented in terms of 

available speech resources.
2
  These are Brazilian 

Portuguese, Cantonese, and Shanghainese.  For each 

crosslingual experiment, the target language is left out of 

the source language pool for model selection.   

The word recognition results of these experiments are 

provided in Table 1, along with biphoneme inventory 

sizes. 

Observe that the performance of CPP-CD constructed 

models nearly matches the performance of the native 

models for Spanish and surpasses those for Italian.  The 

CCP-CD approach performs better than the 

Bhattacharyya acoustic distance approach for Italian, 

Spanish, and Japanese and not as well for Portuguese and 

Danish.  Overall the CPP-CD and Bhattacharyya acoustic 

approaches perform similarly.  The average recognition 

result using the Bhattacharyya-derived models is 82.89% 

while the average CPP-CD result is 82.65%; thus, the 

difference is trivial. 

 

Target 

Language 

Biphon. 

Inv. 

Native 

Baseline 

Acoustic 

Distance 
CPP-CD 

Italian 613 98.42 98.27 98.52 

Spanish 520 94.49 88.61 93.06 

Japanese 643 95.36 76.72 78.76 

Portuguese 776 96.31 77.91 72.74 

Danish 980 94.36 72.95 70.15 

 

Table 1: Model performance comparison  

(word accuracy %) 

 

As noted, we expect crosslingual monophoneme 

models to perform better for languages with fewer 

biphonemes.  This expectation is validated in Table 1.  

The two languages with the lowest number of biphonemes 

are Italian and Spanish and their crosslingual models have 

the best word recognition performances.  The largest 

biphoneme inventory belongs to Danish, and both Danish 

crosslingual model sets have the worst performance 

results.  For Japanese and Portuguese, the relative 

performance differs using the two distance metrics.  

                                                           
2 We consulted the speech resource catalogues of the Linguistic 

Data Consortium (LDC), European Language Resources 

Association (ELRA), and Appen Ltd. to informally evaluate 

speech database availability.  For both Shanghainese and 

Cantonese only one speech database is available, while 

Brazilian Portuguese is associated with three speech databases. 

Portuguese has the third best performance and Japanese, 

the fourth, using the Bhattacharyya method, while these 

languages are swapped in performance rank using the 

CPP-CD approach. 

Three of the five test languages belong to the Italic 

branch of the Indo-European language family (Spanish, 

Italian, and Portuguese), and there are a total of six Italic 

source languages.  This leaves five Italic source languages 

for each of the three Italic test languages.  The test 

languages include one Germanic language (Danish); this 

language is also associated with five closely related 

languages.  Besides these close inter-group relationships, 

Germanic and Italic languages are distantly related to 

each other and have a long history of close contact.  In 

contrast with this, Japanese is only related to one source 

language, Korean, though does have a long history of 

contact with the Sinitic languages. 

Based solely on language proximity, we would predict 

the Italic and Germanic languages to perform the best.  

Spanish and Italian do conform to this expectation, while 

Danish and Portuguese do not.  Above, Danish's 

crosslingual model performance is correlated with 

Danish's large biphoneme inventory size.  We observe 

here that Portuguese has the second highest number of 

biphonemes and suggest that this might likewise account 

for the relatively low crosslingual model performances. 

In conclusion, the CPP-CD crosslingual performance 

results are comparable to those derived from the acoustic 

model distance measurement and conform to expectations 

based on the known performance factors of biphoneme 

inventory size and language proximity.  

4.1 CPP-CP 

We now use the CPP-CP algorithm to generate prediction 

scores for each of the five test languages.  Recall that 

phoneme error percentage is the phoneme recognition 

result using the CPP-CD-derived models on the native 

speech data.  If the trend of the prediction scores matches 

the trend of the phoneme error rates, we consider the 

relative prediction scores reliable. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3: Comparison of phoneme error rates and  

CPP-CP scores (1) 
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Figure 3 confirms that the trend of the CPP-CP scores 

does match that of the phoneme error rates, and, based on 

these results, we may tentatively conclude that these 

CPP-CP scores are indicative of actual recognition 

performance.  The results presented in Figure 3 

furthermore suggest that target-language crosslingual 

model sets that have a CPP-CP score of less than 1 are 

likely to achieve acceptable recognition performance 

levels (Spanish, Italian, and Japanese CPP-CP models 

average a word accuracy of 90.11%). 

Testing with additional, lower-density target 

languages substantiates this judgment.  In a second 

experiment, we create CPP-CD-derived models for the 

three identified middle-density languages, Brazilian 

Portuguese, Cantonese, and Shanghainese.  We use the 

same twenty source languages selected for the first 

experiment and likewise compare their crosslingual 

phoneme error rates and CPP-CP scores. 

Consider now in Table 2 the biphoneme inventory size 

and number of closely related languages corresponding to 

each of the eight test languages.
3
  Brazilian Portuguese is 

another Italic language and thus is closely related to five 

of the remaining nineteen source languages.  Like 

European Portuguese, the Brazilian Portuguese 

biphoneme inventory is large; in fact, with 1046 

biphonemes, Brazilian Portuguese has the largest test 

language biphoneme inventory.     

 

Target 

Language 

Biphoneme 

Inventory 

Related 

Languages 

Average 665.75 4.125 

Cantonese 320 2 

Shanghainese 428 2 

Spanish 520 5 

Italian 613 5 

Japanese 643 1 

Eur. Portuguese 776 5 

Danish 980 5 

Br. Portuguese 1046 5 

 
Table 2: Comparison of performance factors 

among the eight test languages 

 

Cantonese and Shanghainese are both Sinitic 

languages; besides being closely related to each other, 

they are also genetically related to Mandarin.  Their 

biphoneme inventories are the smallest with 320 and 428 

biphonemes respectively. 

If we hold average values as a relative indication of 

performance, we see that among the eight languages, only 

two, Italian and Spanish are above average for both 

factors. 

Figure 4 provides the phone error rates and prediction 

scores for the complete set of test languages.  As in Figure 

3, we see that the trends of the CPP-CP scores and phone 

error percentages correspond.  Among the middle-density 

                                                           
3  Only related language information is provided here.  

Establishing relevant contact language status is beyond the 

scope of this study. 

languages, only Cantonese has a prediction score below 1, 

indicating that its crosslingual model set is expected to 

achieve a practical use recognition level.  We suggest that 

the very small biphoneme inventory size of Cantonese 

contributes to this relatively low prediction score. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4: Comparison of phoneme error rates and  

CPP-CP scores (2) 

 

We note that the Shanghainese crosslingual models 

perform less well than predicted relative to the other 

languages.  This is surprising given that the Shanghainese 

biphoneme inventory size is very small and the number 

and genetic type of related languages are the same as 

those of Cantonese.  However, the Shanghainese database 

has not been subject to validation that would confirm its 

overall quality and consistency.  We therefore admit the 

possibility that the poor Shanghainese crosslingual model 

performance is attributable to substandard 

native-language resources. 

5. Conclusion 

The experiments presented herein demonstrate that the 

CPP strategy is an effective method for both selecting 

monophone models for crosslingual recognition and 

predicting the recognition performance of the derived 

model sets.  Because the CPP approach requires no 

target-language acoustic data, it is especially useful for 

creating and validating crosslingual model sets for target 

languages lacking speech data resources, such as low- and 

middle-density languages.  As many emerging markets 

are populated by low- and middle-density language 

speakers, this tool can be of great assistance in entering a 

market quickly and cost-effectively.  
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