
From Extracting to Abstracting: Generating Quasi-abstractive Summaries

Zhuli Xie ∗, Barbara Di Eugenio†, Peter C. Nelson†

∗Applications and Software Research Center, Motorola
1295 E. Algonquin Road, Schaumburg, Illinois 60173, U.S.A.

Zhuli.Xie@motorola.com

†Department of Computer Science, University of Illinois at Chicago
851 S. Morgan Street, Chicago, Illinois 60606, U.S.A.

{bdieugen,nelson}@cs.uic.edu

Abstract
In this paper, we investigate quasi-abstractive summaries, a new type of machine-generated summaries that do not use whole sentences,
but only fragments from the source. Quasi-abstractive summaries aim at bridging the gap between human-written abstracts and extractive
summaries. We present an approach that learns how to identify sets of sentences, where each set contains fragments that can be used
to produce one sentence in the abstract; and then uses these sets to produce the abstract itself. Our experiments show very promising
results. Importantly, we obtain our best results when the summary generation is anchored by the most salient Noun Phrases predicted
from the text to be summarized.

1. Introduction 1

Automatic text summarization has attracted more and more
attention in recent years, e.g., see the official website of the
Document Understanding Conferences2 (DUC). Although
many summarization systems already show impressive re-
sults, state-of-the-art has not progressed beyond summaries
composed of whole sentences extracted from the sources,
as also discussed in an overview of DUC-2005 (Dang,
2005). Producing human-like summaries would seem to
require radical advances in both text comprehension and
generation. On the contrary, as others (Barzilay and McK-
eown, 2005; Soricut and Marcu, 2006), we believe it is
possible to produce more human-like summaries via text-
to-text generation techniques. In this paper, we present our
approach to generatingquasi-abstractive summaries, a new
type of summary produced by text-to-text generation tech-
niques. Quasi-abstractive summaries are composed not of
whole sentences, but of fragments that are extracted from
the original text. Hence, the sentences that appear in a
quasi-abstractive summary are in general different from the
sentences that appear in the original document, like the sen-
tences in a human-written abstract.
We claim that such a quasi-abstractive summary is better
than an extractive summary. In fact, our quasi-abstractive
summaries (anchored by salient topics, see Section 4.2.2.)
are significantly better than two different types of extrac-
tive summaries: the average cosine similarity between
the quasi-abstractive summaries and the human-written ab-
stracts is 29.4% better than the lead-based extractive sum-
maries, and more importantly, 13.9% better than the extrac-
tive summaries generated by ADAMS, our adaptive sum-
marizer based on gene expression programming (Xie et al.,
2006). The ROUGE scores (Lin, 2004) are higher as well:
the ROUGE-1 and ROUGE-2 are 31.5% and 64.3% better
than the lead-based summaries, and 2.8% and 19.3% better

1The work reported here was completed while the first author
attended the University of Illinos at Chicago.

2http://www-nlpir.nist.gov/projects/duc/index.html

than ADAMS respectively.
Our approach to generating quasi-abstractive summaries
comprises two main steps: 1) train a classifier that can iden-
tify candidate sentence sets(CSS’s). Each CSS contains
all the sentences from the document that have one or more
fragments in common with a specific abstract sentence; 2)
use the learned model to build the CSS’s for a new docu-
ment, and generate the summary by using the sentences cre-
ated from the CSS’s. In the second step, we enhance simple
n-gram probabilities by anchoring them via the most salient
NPs, as predicted by using several features of the NPs, in-
cluding centrality (Wasserman and Faust, 1994). The in-
novative aspects of our approach are: generating candidate
sentence sets and using fragments from sentences in those
sets to generate the summary; and approximating the un-
folding of topics in the abstract by means of NP central-
ity. In this paper, we present a full fledged end-to-end sys-
tem, that demonstrates that our approach gives very promis-
ing results. In the conclusions, we will discuss alternative
methods we are planning to try for each of the two steps.

2. Quasi-abstractive summaries
Extractive summaries are composed of sentences selected
from the source documents, and included in the summary
in their entirety. Consider the top part of Figure 1. It
shows an original abstract and the summary generated by
ADAMS, our extractive summarizer. The overlap3 between
the two consists of only two phrases. If counted in words,
the overlap comprises only 21% of the abstract. However,
in general there are many sentences in the document that
more closely correspond to the sentences in the abstract.
(Jing, 2002) showed that six operations are often seen in
human-written abstracts: reduction, combination, syntac-
tic transformation, lexical paraphrasing, generalization or
specification, and reordering. Those operations identify the

3In this paper, the “overlap” is defined as a matching sequence
of adjacent words between two sentences. One sentence may have
multiple overlaps with other sentences.

190

Two sentences from a human written abstract:

A1 We introduce the bilingual dual-coding theory as a model for bilingual mental representation.

A2 Based on this model, lexical selection neural networks are implemented for a connectionist transfer project in machine
translation.

Extractive Summary (by ADAMS):

E1 We have explored an information theoretical neural networkthat can acquire the verbal associations in
the dual-coding theory.

E2 The bilingual dual-coding theorypartially answers the above questions.

Candidate sentence set for A1:

S1 The bilingual dual-coding theorypartially answers the above questions.

S2 There is a well-known debate in psycholinguistics concerning the bilingual mental representation. . .

Candidate sentence set for A2:

S3 We have explored an information theoretical neural networkthat can acquire the verbal associations in the dual-coding
theory.

S4 It provides a learnable lexical selectionsub-system for a connectionist transfer project in machine translation.

Figure 1: Phrase overlaps with abstract sentences

sources of up to 81% of the abstract sentences. For ex-
ample, as shown in the bottom part of Figure 1, sentences
S1, S2, S3, andS4 from the text, cover more phrases from
sentencesA1, A2 in the abstract. In this case the overlap
rises to 64% of the abstract. If those overlapping phrases
can be identified from the text to be summarized, we will
advance our path to generating abstractive summary sen-
tences one big step; the rest is to feed those phrases to
a language generation module to produce the final sen-
tence. Doing so will definitely improve cosine similarity,
which is a bag-of-words metric, since the more overlap two
texts have, the higher their similarity value. The summa-
rization community has also been using ROUGE-n metrics
(Lin, 2004). More overlap between abstract and summary
will also improve the ROUGE-n metrics, since ROUGE-
n are recall measures. Our approach to generating quasi-
abstractive summaries consists of the following steps:
Learn model that can identify Candidate Sentence Set
(CSS). In turn, this step consists of:

• 1a. Label: generate patterns of correspondence be-
tween sentences in the abstract and sentences in the
text to be summarized. For each sentenceAi in the
abstract, find sentences from the text that contain its
fragments. These sentences compriseAi’s CSS, rep-
resented by the sets of points in different shapes on the
right side of diagram (I) in Figure 2.

• 1b. Train classifier to identify the CSS’s. The prob-
lem is not straightforward, because the classes of the
target feature are variable. In fact, the number of sen-
tences in an abstract varies across different documents
and it is not clear on what it depends. For instance,
the length of the 178 abstracts from CMP-LG ranges
from 2 to 14 sentences. Therefore, when given a new
text, we do not know how many classes there will be.

Moreover, clustering would not work, since clustering
algorithms tend to put similar instances together, but
sentences in a CSS may not be similar to each other
at all. In Figure 1 sentences S3, S4 should be in A2’s
CSS; however, S3 and S4 have nothing in common ex-
cept for the function words “a/an” and “the”. Hence,
we built a decision-tree classifier to recognize whether
a pair of sentences belongs to the same CSS (see dia-
gram (II) in Figure 2). This classifier uses 9 shallow
statistical features, which include the position of each
sentence within the document, their cosine similarity,
the sentence pair entropy, etc.

Generate summary for a new document. Also this step
comprises two substeps.

• 2a Generate CSS’s.Sentence pairs are built as the
cross-product of all the sentences in the text. Then
those pairs are run through the classifier. The pairs
classified as “1”, which means both sentences are in
the same CSS, will be merged to form each of the fi-
nal CSS’s. This step is shown in diagram (III) in Fig-
ure 2, and results in a set of CSS’s ordered by the low-
est sequence indices of the sentence pairs in each of
the CSS’s.

• 2b Realize summary.Each summary sentence is gen-
erated on the basis of one CSS. For each CSS, we com-
pute n-gram probabilities for the words that appear in
the document sentences belonging to that CSS. The
actual sentences are generated according to two mod-
els,SQa(Simple Quasi-abstractive) andQaST(Quasi-
abstractive with Salient Topics).

191

Figure 2: Candidate Sentence Sets Discovery Diagram

3. Learn the CSS model
3.1. Step 1a: Label

To train the CSS generator, we first need to create our train-
ing data, namely, the CSS’s for our corpus. We build on
the detailed study of decomposition of abstract sentences
in (Jing, 2002). Jing trained a HMM to identify fragments.
We, however, adopt a simpler approach based on string
overlap, since our goal is to find phrases which cover a sum-
mary sentence as much as possible, not to account for how
the decomposition is performed by humans. Our approach
is shown in Algorithm 1. For each sentenceAi in the ab-
stract, this algorithm returns aCSSi that contains all the
sentencesSj that overlap withAi (Lj is thej-th fragment
in sentenceSj overlapping withAi, in the source document
D). In our experiments, we use the corpus CMP-LG com-

Algorithm 1 Candidate Sentence Set Generation
procedure GetCandidateSentenceSet(Ai)

1: CSSi:=∅
2: for each sentenceAi in an abstractdo
3: Ti:=Tokenize(Ai);
4: Ti:=RemovePunctuation(Ti);
5: end for
6: repeat
7: (Lj , Sj):=FindLongestCommonToken(Ai, D);
8: Ti:=Ti.Remove(Lj);
9: CSSi:=CSSi ∪ Sj ;

10: until Lj = ∅||Ti = ∅

prising 178 documents. This corpus contains 863 abstract
sentences in total. If we exclude overlaps that consist of
one single word, an abstract sentence will correspond to 1

to 15 sentences (overlap length≥ 2), or 1 to 8 sentences
respectively (overlap length≥ 3). It turns out that a signifi-
cant portion (70.8%) of abstract sentences are composed of
fragments of length≥ 2, which can be found in the text to
be summarized. Since in the generation stage we will use
n-gram probabilities withn ≥ 2, we set the minimal length
of overlap to two in Algorithm 1. We now have a training
corpus of documents and their CSS’s, to be used to train a
model that automatically identifies CSS’s.

3.2. Step 1b: Train the CSS classifier

We reformulate our classification task as: Given a set of
documents, where all CSS’s have been labelled, transform
each document into a sentence pair set where each instance
is represented by a feature vector and the target feature
is whether the pair belongs to the same CSS. This idea is
shown in Figure 2, diagram II.

For a text witha sentences, in total
a(a− 1)

2
pairs will be

generated. We encode each pair as a vector of 9 shallow
statistical features, which include:location of paragraph
containing each sentence;position of each sentencewithin
the document;length of each sentence, measured in number
of wordsl(si), and normalized by the Sigmoid function:

LNi =
1− e−α

1 + e−α
, α =

l(s1)− µ(l(s))
σ(l(s))

where µ(l(s)) is the average length of sentences, and
σ(l(s)) is the standard deviation of the sentence lengths;
cosine similaritybetween the two sentences;length of their
longest common n-gram; sentence pair entropy

EN = −
k∑

i=1

{Freq(wi) · log[Freq(wi)]}.

wherewi ∈ s1, s2, wi is a content-word, andFreq(wi) is
the frequency ofwi in that document.
The features above by no means are complete. We chose
them simply because they are easily obtained and domain
independent. Other linguistic motivated features may be
considered in our future work.
The CMP-LG corpus generated a total of 8,152,713 in-
stances. However, this collection of instances is extremely
imbalanced, since the positive instances only amount to
0.398%. Extremely imbalanced data sets cause the dom-
inant class of the target features to be favored. Two whole
workshops (Japkowicz, 2000b; Chawla et al., 2003) and a
full special issue of the SIGKDD Explorations Newsletter
(Chawla et al., 2004) have been devoted to this problem.
A common technique to address this problem in machine
learning is to replicate instances of the minority class to
reduce the unfair preference (Chawla et al., 2002; Japkow-
icz, 2000a; Akbani et al., 2004). This is the approach we
followed as well, hence, we replicated the instances in the
minority class to reduce the unfair preference. In the exper-
iments reported below, the positive instances are boosted to
about 11% of the total data. The augmented data set was in-
put to three classifiers: Naı̈ve Bayes (NB), Support Vector
Machines (SVMs) and decision trees (DTs). We used three
freely available packages, Borgelt’s NB classifier (Borgelt,

192

1999), SVM-light (Joachims, 2002) and YaDT (Ruggieri,
2004) respectively. We ran three way cross validation,
where in each run the classifier is trained on 2/3 of the
data and tested on the remaining third. Table 1 reports
the average results across the three runs, obtained via NB,
SVMs4, and decision trees respectively. We can see from
Table 1 that DTs performs the best among the three classi-
fiers in terms of F-measure; and the precision is well over
0.6, which give us some confidence that the DTs can ac-
curately classifies positive instances. In Step 1b we tried
all three classifiers to predict the CSS’s and hence generate
summaries for unseen testing documents. It turns out NB
doesn’t do so well; and SVMs and DTs perform compara-
bly. We finally used DTs because it has better F-measure,
and also because SVMs take much longer time to train.

Classifier NB SVMs DTs

Accuracy 0.867 0.901 0.895
Precision 0.385 0.706 0.634

Recall 0.345 0.172 0.296
F-measure 0.364 0.276 0.404

Table 1: CSS Discovery Results

Boosting affects the distribution of instances in the test set
as well. Hence, the classifier will identify for us correct
positive instances, but also report some false positive in-
stances. However, we are actually only interested in the
positive instances it labels, not in the pure classification
performance of the classifier itself. Without boosting, the
classifier would just not give us any positive instances at
all. Also note that the duplicates (of positive instances) are
removed when we form the Candidate Sentence Sets.

4. Generate summary for new document
4.1. Step 2a: Generate CSS’s

The first substep is to generate CSS’s for the new docu-
ment. Again, here we use the corpus CMP-LG compris-
ing 178 documents. Also in this case, we use 3-way cross-
validation: the classifier derived in one of the three runs at
the previous step by using2/3 of the documents is used to
generate the CSS’s for documents in the test set (1/3 or the
rest of the corpus) for that run. We first build the cross-
product of all the sentences in it and the feature vectors for
these pairs; then those vectors are run through the decision
tree classifier just described.
Those pairs which are labelled as “1” will then be merged
to form the final CSS’s. One pairp will be merged into set
s if and only if the cross product, of the sentences fromp
and the sentences froms, contains only positive sentence
pairs. In other words, in the sentence set after merging, any
two sentences must form a positive pair.
Since the indices of sentences are sequentially labelled
across the document, and so are the pairs, the formation
of the CSS’s will also exhibit a natural order, i.e., the first
CSS will contain a fragmentf1 which appears earlier in the
source document than any fragments in the second CSS;
and so on for the rest of CSS’s.

4We experimented with four different kernels. The best results
were obtained with the radial basis function kernel.

4.2. Step 2b: Realize Summary

As mentioned earlier, once we have obtained the CSS’s
for a document to be summarized, we use two methods
to realize the summary: Simple Quasi-abstractive (SQa)
and Quasi-abstractive with Salient Topics (QaST). Both are
based on computing n-grams, even if in QaST those n-
grams are anchored in salient NPs. We did not adopt a
more sophisticated generation approach because, as often
happens in a text-to-text generation circumstance, our ap-
plication does not have access to the kind of information
that generic NLG systems require as input (Soricut and
Marcu, 2005), e.g., deep subject-verb or verb-object rela-
tions as required by Penman (Matthiessen and Bateman,
1991) or FUF (Elhadad, 1991), or the shallow syntactic re-
lations needed by HALogen (Langkilde, 1998).
We present each of our methods in turn.

4.2.1. SQa realization
The SQa method uses n-gram probabilities to generate the
actual sentences in the abstract. A simple quasi-abstractive
summary is generated as shown in Algorithm 2. To gen-
erate a new sentence, first we compute n-gram probabil-
ities based on each CSS predicted by the CSS generator.
Then given a word sequence which begins with a start-of-
sentence symbol, a new word, which has the highest prob-
ability given the previousN − 1 words, is appended to the
sentence until an end-of-sentence symbol is encountered.
This process is repeated for each CSS.

Algorithm 2 SQa Summary Realization
procedure GenerateSQA()

/S/: start-of-sentence symbol
2: /E/: end-of-sentence symbol

NSi: thei-th new sentence
4: for i = 1 to n do

NGrami:=BuildNGramModel(CSSi);
6: t:= /S/w1 . . . wN−2;

NSi:=t;
8: wi:=null;

while wi 6= /E/ do
10: wi:=NGrami.getNext(t);

t:= t.removeFirstWord();
12: t:= t.appendWord(wi);

NSi:= NSi.appendWord(wi);
14: end while

end for

4.2.2. QaST realization
The n-gram based language generation model is built solely
on statistical information of word sequences from a text.
Even if the model is “filtered” by the CSS’s so to speak
(i.e., only the conditional probabilities of words that ap-
pear in that CSS are used), it is very difficult, if not im-
possible, to generate a good summary for that text without
additional knowledge. For a summary to be a summary, it
should include the most salient information from the source
and exclude the redundant. For a text document to be infor-
mative, it should address some topics and regard them as
the foci. In our previous work (Xie, 2005), we proposed

193

a new text feature,noun phrase centrality, which repre-
sents the prominence of a noun phrase within a certain text.
The value of the NP centrality is obtained by applying cen-
trality measures upon a NP network. The NP network is
constructed by connecting NPs at the utterance level. We
showed in (Xie, 2005) that the salient topics in the forms
of NPs from the text can be predicted highly accurately (F-
measure = 0.883) by using decision trees that include sev-
eral features of NPs, including NP centrality.
Here we extend the basic summary generator by anchoring
the generation of a new summary sentence in a salient NP
predicted in the way described in (Xie, 2005). Our aug-
mented summary generator comprises:

1. Generate salient NPs via topic prediction

2. Sort predicted salient NPs according to their lengths.
Longer NPs cause less variation in the sentence gen-
eration process.

3. For each sentenceSi to be generated, traverse the
lists of NPs and of CSS-based n-gram probabilities in
parallel (these sets of probabilities are ordered, since
they’re derived from the CSS’s which are ordered).
GenerateSi by using the highest ranked NP which has
not been used yet, and the first model where this NP
is found. If a certain NP does not exist in any n-gram
model, it is discarded.

A sentence is generated by using the highest ranked
NP which has not been used and a specific submodel
as follows: the NP constitutes the starting sequence
wiwi+1 . . . wi+k; repeatedly, words are prepended to the
sequence at the front according to

arg max
i−1

P (wi−1|wi+N−2
i)

until /S/ has been encountered; then repeatedly, words are
appended to the sequence at the end according to

arg max
i+k+1

P (wi+k+1|wi+k
i+k−N+2)

until /E/ has been found.
To estimate the complexity of our model, the first thing to
see is that we are actually performing depth-first search
here. The complexity of a general depth-first search is
O(bm), whereb is the branching factor andm is the max-
imal depth. In our situation since the CSS’s is not that big
and hence the n-gram obtained from the CSS’s will have
b = 1 in most cases. The actual running time was very
short although we did not record it.

5. Experiments and Results
We compare four different models: two baseline mod-
els, a lead-based extractive summary (Lead), and ADAMS,
the extractive summarizer we developed in previous work
(Xie et al., 2006); and two models,SQa (Simple Quasi-
abstractive) andQaST(Quasi-abstractive with Salient Top-
ics), built according to the methodology just described.

Lead: Selects the first sentence from each of the firstm
paragraphs.

ADAMS: Selects the topm sentences ranked according to
a sentence ranking function ADAMS has previously
learned.

SQa: Uses n-gram probabilities over the firstm discovered
candidate sentence sets to generate the sentences in the
summary.

QaST: Anchors the choice of the specific set of n-gram
probabilities in salient topics. Stops afterm sentences
have been generated.

Let m be the number of sentences in the summary of the
text to be summarized. In real life, the user would set the
value ofm. In our experiments, in order to compare the
machine-generated summary with the human-written ab-
stract, we set the value ofm to be the number of sentences
in the abstract. Note that, since we limit the number of
sentences rather than words, the generated summary can be
longer or shorter than the abstract. Moreover, we intend to
lift this simplification in future experiments. One of the best
sentences generated by QaST is shown in Figure 3. The NP
“the plan construction” is the starting word sequence for
that new sentence. Using the sentence generation method
described above, the resulting sentence is almost a perfect
one which combines two original sentences from the text.
However, undoubtedly, using the n-gram model only does
not guarantee the grammaticality of the generated summary
sentences, as shown e.g. by the missing “)” in this exam-
ple. It remains for us to further explore this problem in our
future work.
The summaries generated from those four models are com-
pared with the corresponding abstracts. The evaluation
metrics are the mean cosine similarity value, ROUGE-1,
and ROUGE-2 scores. The results are listed in Table 2 —
we report the best results, obtained withn = 4 for comput-
ing n-gram probabilities. It turns out that the average co-
sine similarity and ROUGE-2 score of the SQa summaries
to the abstracts is 0.293 and 0.078 respectively, which are
even lower than the performance of the Lead system respec-
tively (0.330 and 0.098). Our previous experiments with
ADAMS had achieved a much better performance of in all
three metrics: 0.375, 0.426, and 0.135 (+13.6%, +27.9%,
and +37.8% improvement over Lead respectively). Using
simple n-grams over the candidate sentence sets is too sim-
plistic. Our QaST model was given additional knowledge
so that its performance is much better than the SQa model.
The three evaluation scores for summaries produced by
QaST is 0.427, 0.438, and 0.161, which are 29.4%, 31.5%,
and 64.3% better than the Lead system; and 13.9%, 2.8%,
and 19.3% better than ADAMS. Except the 2.8% improve-
ment in ROUGE-1, these differences are statistically signif-
icant by using two sample t-tests on the results.

Lead ADAMS SQa QaST

Cosine Similarity 0.330 0.375 0.293 0.427
ROUGE-1 Score 0.333 0.426 0.334 0.438
ROUGE-2 Score 0.098 0.135 0.078 0.161

Table 2: Experimental Results

194

New In collaborative expert-consultation dialogues, two participants (executing agent and the consultant bring tothe plan
construction task different knowledge about the domain and the desirable characteristics of the resulting domain plan.

Original In collaborative expert-consultation dialogues, two participants (executing agent and consultant) work together to
construct a plan for achieving the executing agent’s domain goal. The executing agent and the consultant bring to the plan
construction task different knowledge about the domain and the desirable characteristics of the resulting domain plan.

Figure 3: An Example Sentence Generated by the QaST Model

6. Related Work

(Jing, 2002) is the first study of decomposition of abstract
sentences which goes well beyond previous approaches
based on sentence alignment (Kupiec et al., 1995; Marcu,
1999; Teufel and Moens, 1997), where an abstract sentence
is considered to be re-written from a single sentence from
the text. Jing showed that an abstract sentence may consist
of fragments found in multiple sentences, and developed
an HMM to find those fragments; however, she did not use
the patterns found during the decomposition process to pre-
dict what fragments shall be used to compose a sentence in
the summary, as we do here. Our approach is very similar
to Sentence Fusion(Barzilay and McKeown, 2005): a new
sentence is generated by finding the common theme from
a set of similar sentences coming from different documents
and computing how the sentences can be fused, based on
their dependency tree representations. The similar sen-
tences are found from multiple source articles. However,
our approach differs fromsentence fusionin that our sys-
tem generates a new sentence from a CSS. Each CSS con-
tains a set of sentences from a single source article, which
do not necessarily have a common theme. More recently,
(Wan et al., 2007) proposed aGlobal Revisionapproach
to improve the coherence of the summaries. They used a
Maximal Spanning (Dependency) Tree to structure a new
sentence and combined with four-gram language model for
surface realization. This approach is the most similar one
to ours that we have seen so far. Our approach differs from
theirs in two aspects. First, our goal is to improve the over-
all similarity of the summaries to human-written abstracts;
while their goal is to improve the overall fluency. Second,
we provided a complete end-to-end system of constructing
a quasi-abstractive summary, from building a CSS model to
find the input content, to combining the CSS with a salient
NP to finally produce a new sentence; while their approach
only concerned about using a set of input words/phrases to
build a new sentence without considering how to obtain the
input.
Other approaches relevant to ours, since they all aim at de-
riving summaries that are not extractive, include sentence
compression (Knight and Marcu, 2000), and models for
headline generation (Banko et al., 2000; Soricut and Marcu,
2006). Our approach differs from theirs in that we try to
simulate the process of composing a new sentence by find-
ing the correspondence between fragments of sentences in
the abstracts and sentences in the documents, rather than
directly manipulating the sentences in the document. (Sori-
cut and Marcu, 2006) also exploitstopic keywordsextracted
from the document.

7. Conclusions

In this paper we have proposed a new type of machine
generated summary, the quasi-abstractive summary. Quasi-
abstractive summaries differ from human-written abstracts
in two aspects: on the surface we do not add new words
or phrases; and in the core we have not tried to apply text
understanding. Despite these limitations, this new type of
summary goes well beyond the traditional extractive sum-
maries, as it uses fragments, but not whole sentences, from
the source. We showed that the simpler model, that uses
N-gram models over the CSS’s returned by a decision tree
classifier, is not effective. However, when we anchored the
N-gram model with the NPs which were predicted to be
salient topics in the text to be summarized, we obtained a
much better outcome — the average cosine similarity value
improved by 29.4% when compared to Lead, and 13.9%
when compared to ADAMS. ROUGE-1 score is 31.5% bet-
ter than Lead and 2.8% better than ADAMS. ROUGE-2
score has the most significant improvement, which is 64.3%
higher than Lead and 19.3% higher than ADAMS.

We are currently investigating additional methods for each
of the four substeps in our approach. For example, in step
1b, to obtain a better CSS’s classifier, we are investigating
other ways, such as cost-sensitive classifiers (Domingos,
1999; Ting, 2002; Turney, 2000), to improve the perfor-
mance of classifier without changing the class distribution.
We are also investigating the features used for classification
in step 1b, by considering the selection metrics discussed
in (Zheng et al., 2004). Improving the performance of the
CSS’s classifier may engender better results in the summary
generation step. And for step 2b, generation, we are look-
ing into models that ensure the grammaticality of the result-
ing sentences. As a first pass we intend to impose filters on
the outcomes of this step, e.g. by parsing each sentence as
it is generated to catch major grammar mistakes. The ap-
proach presented in (Wan et al., 2007) seems to be a good
candidate and we will see what results we can get by com-
bining it with ours. In addition, sentences generated by our
summarizer are generally rather long; a simple cutoff may
be effective.

8. Acknowledgments

This work was supported by award N000140010640 from
Office of Naval Research, and partly awards IIS-0133123
and ALT-0536968 from the National Science Foundation.
We would also like to thank anonymous reviewers for their
valuable feedback on this paper.

195

9. References
Rehan Akbani, Stephen Kwek, and Nathalie Japkowicz.

2004. Applying support vector machines to imbalanced
datasets. InProceedings of ECML 2004, pages 39–50.

Michele Banko, Vibhu O. Mittal, and Michael J. Witbrock.
2000. Headline generation based on statistical transla-
tion. In Proceedings of the 38th Annual Meeting on As-
sociation for Computational Linguistics, pages 318–325.

Regina Barzilay and Kathleen R. McKeown. 2005. Sen-
tence fusion for multidocument news summarization.
Computational Linguistics, 31(3):297–328.

Christian Borgelt. 1999. A naive bayes classifier plug-in
for dataengine. InProceedings of the 3rd Data Analysis
Symposium, pages 87–90.

Nitesh V. Chawla, Kevin W. Bowyer, Lawrence O. Hall,
and W. Philip Kegelmeyer. 2002. Smote: Synthetic mi-
nority over-sampling technique.Journal of Artificial In-
telligence and Research, 16:321–357.

Nitesh V. Chawla, Nathalie Japkowicz, and Aleksander
Kotcz, editors. 2003.Proceedings of the ICML’2003
Workshop on Learning from Imbalanced Data Sets.

Nitesh V. Chawla, Nathalie Japkowicz, and Aleksander
Kotcz. 2004. Editorial: special issue on learning from
imbalanced data sets.SIGKDD Explorations Newsletter,
6(1):1–6.

Hoa Trang Dang. 2005. Overview of duc 2005. InPro-
ceedings of the Document Understanding Conference
(DUC05).

Pedro Domingos. 1999. Metacost: a general method for
making classifiers cost-sensitive. InProceedings of the
Fifth ACM SIGKDD, pages 155–164, New York, NY,
USA. ACM Press.

Michael Elhadad. 1991. FUF user manual - version 5.0.
Technical Report CUCS-038-91.

Nathalie Japkowicz. 2000a. The class imbalance problem:
Significance and strategies. InProceedings of the 2000
International Conference on Artificial Intelligence (IC-
AI’2000), volume 1, pages 111–117.

Nathalie Japkowicz, editor. 2000b.Proceedings of the
AAAI’2000 Workshop on Learning from Imbalanced
Data Sets, AAAI Tech Report WS-00-05. AAAI.

Hongyan Jing. 2002. Using hidden markov modeling to
decompose human-written summaries.Computational
Linguistics, 28(4):527–543.

Thorsten Joachims. 2002.Learning to Classify Text using
Support Vector Machines.

Kevin Knight and Daniel Marcu. 2000. Statistics-based
summarization - step one: Sentence compression. In
Proceedings of the Seventeenth National Conference on
Artificial Intelligence and Twelfth Conference on Inno-
vative Applications of Artificial Intelligence, pages 703–
710. AAAI Press / The MIT Press.

Julian Kupiec, Jan O. Pedersen, and Francine Chen. 1995.
A trainable document summarizer. InProceedings of the
18th ACM-SIGIR Conference, pages 68–73.

Irene Langkilde. 1998. An empirical verification of cover-
age and correctness for a general-purpose sentence gen-
erator.

Chin-Yew Lin. 2004. Rouge: a package for automatic

evaluation of summaries. InProceedings of the ACL-
04 Workshop on Text Summarization Branches Out (WAS
2004), pages 74–81.

Daniel Marcu. 1999. The automatic construction of large-
scale corpora for summarization research. InSIGIR ’99:
Proceedings of the 22nd annual international ACM SI-
GIR conference on Research and development in infor-
mation retrieval, pages 137–144.

Christian M. I. M. Matthiessen and John A. Bateman.
1991. Text generation and systemic-functional linguis-
tics: experiences from English and Japanese.

Salvatore Ruggieri. 2004. Yadt: Yet another decision
tree builder. InProceedings of 16th IEEE International
Conference on Tools with Artificial Intelligence (ICTAI
2004), pages 260–265.

Radu Soricut and Daniel Marcu. 2005. Towards develop-
ing generation algorithms for text-to-text applications.
In Proceedings of the 43rd Annual Meeting of the Associ-
ation for Computational Linguistics, pages 66–74, June.

Radu Soricut and Daniel Marcu. 2006. Stochastic lan-
guage generation using widl-expressions and its applica-
tion in machine translation and summarization. InPro-
ceedings of the 44rd Annual Meeting of the Association
for Computational Linguistics, pages 1105–1112, July.

Simone Teufel and Marc Moens. 1997. Sentence ex-
traction as a classification task. InProceedings of
Workshop on Intelligent Scalable Text Summarization
(ACL97/EACL97), pages 58–65.

Kai Ming Ting. 2002. An instance-weighting method to in-
duce cost-sensitive trees.IEEE Transactions on Knowl-
edge and Data Engineering, 14(3):659–665.

Peter D. Turney. 2000. Types of cost in inductive concept
learning. InProceedings of the ICML’2000 Workshop on
Cost-Sensitive Learning, pages 15–21.

Stephen Wan, Robert Dale, Mark Dras, and Cécile Paris.
2007. Global revision in summarisation: Generating
novel sentences with prim’s algorithm. InProceedings
of PACLING 2007 - 10th Conference of the Pacific Asso-
ciation for Computational Linguistics, pages 226–235,
Melbourne, Australia.

Stanley Wasserman and Katherine Faust. 1994.Social Net-
work Analysis : Methods and Applications. Cambridge
University Press.

Zhuli Xie, Barbara Di Eugenio, and Peter C. Nelson. 2006.
Adaptive learning in machine summarization. InPro-
ceedings of the Nineteenth International FLAIRS Con-
ference, pages 180–181, May.

Zhuli Xie. 2005. Centrality measures in text mining: Pre-
diction of noun phrases that appear in abstracts. InPro-
ceedings of the ACL Student Research Workshop, pages
103–108, June.

Zhaohui Zheng, Xiaoyun Wu, and Rohini Srihari. 2004.
Feature selection for text categorization on imbalanced
data.SIGKDD Explorations Newsletter, 6(1):80–89.

196

