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Abstract
The ultimate goal when building dialogue systems is to satisfy the needs of real users, but quality assurance for dialogue strategies is
a non-trivial problem. The applied evaluation metrics and resulting design principles are often obscure, emerge by trial-and-error, and
are highly context dependent. This paper introduces data-driven methods for obtaining reliable objective functions for system design. In
particular, we test whether an objective function obtained from Wizard-of-Oz (WOZ) data is a valid estimate of real users’ preferences.
We test this in a test-retest comparison between the model obtained from the WOZ study and the models obtained when testing with real
users. We can show that, despite a low fit to the initial data, the objective function obtained from WOZ data makes accurate predictions
for automatic dialogue evaluation, and, when automatically optimising a policy using these predictions, the improvement over a strategy
simply mimicking the data becomes clear from an error analysis.

1. Introduction
The ultimate goal when building dialogue systems is to sat-
isfy the needs of real users, but quality assurance for dia-
logue strategies is a non-trivial problem. In conventional di-
alogue design the dialogue often is designed following ‘best
practises’ which are often obscure and emerge by trial-and-
error (Paek, 2007). In addition, user preferences are highly
context dependent (Hu et al., 2007). This is why dialogue
strategy design is often referred to as being more of an art
than a science (Jones and Galliers, 1996; Pieraccini, 2002)
Over recent years, data-driven statistical optimisation meth-
ods (e.g. Reinforcement Learning (RL)) for dialogue strat-
egy design have become more and more popular (Lemon
and Pietquin, 2007). One major advantage of RL-based di-
alogue strategy development is that the dialogue strategy
can be automatically trained and evaluated using the same
objective function (Walker, 2005). In the context of RL the
objective function is also called the “reward” (Sutton and
Barto, 1998). Despite its central aspect for RL, quality as-
surance for objective functions has received little attention
so far. In fact, the reward function is one of the most hand-
coded aspects in RL (Paek, 2006).
In this paper we propose a new method for meta-evaluation
of the objective function. We bring together two strands of
research: one strand uses Reinforcement Learning to au-
tomatically optimise dialogue strategies, e.g. (Singh et al.,
2002), (Henderson et al., 2008), (Rieser and Lemon, 2008a;
Rieser and Lemon, 2008b); the other other focuses on auto-
matic evaluation of dialogue strategies, e.g. the PARADISE
framework (Walker et al., 1997), and meta-evaluation of di-
alogue metrics, e.g. (Engelbrecht and Möller, 2007; Paek,
2007). Clearly, automatic optimisation and evaluation of
dialogue policies, as well as quality control of the objec-
tive function, are closely inter-related problems: how can
we make sure that we optimise a system according to real
users’ preferences?
In particular, we construct a data-driven objective function
using the PARADISE framework, and use it for automatic
dialogue strategy optimisation following pioneering work
by (Walker et al., 1998). However, it is not clear how re-

liable such a predictive model is, i.e. if it indeed estimates
real user preferences. The models obtained with PARADISE
usually fit the data poorly (Engelbrecht and Möller, 2007).
It is also not clear how general they are across different sys-
tems and user groups (Walker et al., 2000), (Paek, 2007).
Furthermore, it is not clear how they perform when be-
ing used for automatic strategy optimisation within the RL
framework.
In the following we evaluate different aspects of an ob-
jective function obtained from Wizard-of-Oz (WOZ) data
(Rieser and Lemon, 2008b). We proceed as follows: The
next Section shortly summarises the overall dialogue sys-
tem design. In Section 3. we test the model stability in a
test-retest comparison across different user populations and
data sets. In Section 4. we measure prediction accuracy. In
Section 5. we conduct a detailed error analysis where we
test the relationship between improved user ratings and di-
alogue behaviour, i.e. we investigate which factors lead the
users to give higher scores, and whether this was correctly
reflected in the original objective function.

2. Overall framework
2.1. Dialogue System Design

Our application domains are multimodal information seek-
ing dialogue systems as an interface to an in-car MP3
player. The structure of information seeking dialogues con-
sists of an information acquisition dialogue and an informa-
tion presentation sub-dialogue (see Figure 1).
For information acquisition the task of the dialogue policy
is to gather ‘enough’ search constraints from the user, and
then, ‘at the right time’, to start the information presenta-
tion phase where the task is to present ‘the right amount’
of information – either on the screen or listing the items
verbally. What this actually means depends on the dia-
logue context and the preferences of our users as reflected
in the objective function. We therefore formulate dialogue
learning as a hierarchical optimisation problem (Rieser and
Lemon, 2008b). The applied objective function follows this
structure as well.
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info. acquisition:



User: I am searching for a song by Radiohead.

System: Searching for music by Radiohead. Which album?

User: Kid A.

info. presentation:

[
System: A list of songs is shown on the screen.

User: (selects an item)

]
System: You will now hear Optimistic by Radiohead.

Are you happy with this option?

User: Yes. (music)




Figure 1: Hierarchical dialogue structure for information seeking multimodal systems.

2.2. Method
In the following the overall method is shortly summarised.
Please see (Rieser and Lemon, 2008b; Rieser, 2008) for
details.

1. We obtain an objective function from the WOZ data
of (Rieser et al., 2005) according to the PARADISE
framework. In PARADISE multivariate linear regres-
sion is applied to experimental dialogue data in order
to develop predictive models of user preferences (ob-
tained from questionnaires) as a linear weighted func-
tion of dialogue performance measures (such as dia-
logue length). This predictive model is used to auto-
matically evaluate dialogues. For RL this function is
used as the “reward” for training.

2. We train an RL-based dialogue system with the ob-
tained model. The hypothesis is that, by using the ob-
tained quality measures as a reward function for RL,
we will be able to learn an improved strategy over
a policy which simply mimics observed patterns (i.e.
the human wizard behaviour) in the data. The base-
line policy is therefore constructed using Supervised
Learning (SL) on the WOZ data. We then test both
strategies (SL and RL) with real users using the same
objective/evaluation function.

3. Since the objective function plays such a central role
in automatic dialogue design, we need to find methods
that ensure its quality. In this paper, we evaluate the
obtained function in a test-retest comparison between
the model obtained from the WOZ study and the one
obtained when testing the real system as described in
the following.

3. Model Stability
For the information acquisition phase we applied stepwise
multivariate linear regression to select the dialogue features
which are most predictive for perceived Task Ease. Task
Ease is a measure from the user questionnaires obtained by
taking the average of two user ratings on a 5-point Likert
scale.

1. The task was easy to solve.

2. I had no problems finding the information I wanted.

We choose Task Ease as the ultimate measure to be opti-
mised following (Clark, 1996)’s principle of the least effort
which says: “All things being equal, agents try to minimize
their effort in doing what they intend to do”.
The PARADISE regression model is constructed from 3 dif-
ferent corpora: the SAMMIE WOZ experiment (Rieser et
al., 2005), and the iTalk system used for the user tests
(Rieser and Lemon, 2008b) running the supervised baseline
policy and the RL-based policy. By replicating the regres-
sion model on different data sets we test whether the auto-
matic estimate of Task Ease generalises beyond the condi-
tions and assumptions of a particular experimental design.
The resulting models are shown in Equations 1-3 , where
TaskEaseWOZ is the regression model obtained from the
WOZ data, TaskEaseSL is obtained from the user test
data running the supervised policy, and TaskEaseRL is
obtained from the user test data running the RL-based pol-
icy. They all reflect the same trends: longer dialogues
(measured in turns) predict a lower Task Ease, whereas a
good performance in the multimodal information presenta-
tion phase (multimodal score) will positively influence Task
Ease. For the iTalk user tests almost all the tasks were com-
pleted; therefore task completion was only chosen to be a
predictive factor for the WOZ model.

TaskEaseWOZ = 1.58 + .12 ∗ taskCompl

+.09 ∗mmScore− .20 ∗ dialogueLength (1)

TaskEaseSL = 3.50 + .54 ∗mmScore

−.34 ∗ dialogueLength; (2)

TaskEaseRL = 3.80 + .49 ∗mmScore

−.36 ∗ dialogueLength; (3)

To evaluate the obtained regression models we use two
measures: how well they fit the data (goodness-of-fit) and
how close the functions are to each other (model replica-
bility). For the WOZ model the data fit was rather low
(R2

WOZ = .03), 1 whereas for the models obtained from
the iTalk system the fit has improved (R2

RL = .48, and
R2

SL = .55).
To directly compare the functions we plotted them in 3D
space (the 4th dimension for TaskEaseWOZ was omitted),
see Figure 2. While the models obtained with the iTalk sys-
tem show almost perfect overlap (R2 = .98), the (reduced)
WOZ model differs (R2 = .22) in the sense that it assigns

1for R2 we use the adjusted values.
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less weight to dialogue length and the multimodal presen-
tation score.

Figure 2: 3D Visualisation of the objective functions ob-
tained from WOZ data and real user data using a SL and
RL-based strategy.

4. Model Performance: Prediction Accuracy
We now investigate how well these models generalise by
testing their prediction accuracy. Previous research eval-
uated two aspects: how well a given objective function is
able to predict unseen events from the original system (En-
gelbrecht and Möller, 2007), and how well it is able to pre-
dict unseen events of a new/different system (Walker et al.,
2000). We evaluate these two aspects as well, the only
difference is that we use the Root Mean Standard Error
(RMSE) instead of R2 for measuring the models prediction
accuracy. RMSE is (as we argue) more robust for small
data sets. In particular, we argue that, by correcting for
variance, R2 can lead to artificially good results when using
small tests sets (which typically vary more) and is sensitive
to outliers (see Equation 4). RMSE instead measures the
(root) mean difference between actual and predicted values
(see Equation 5).

R2 = 1−
∑n

i=1
(yi − ŷi)

2∑n

i=1
(y − y)

(4)

RMSE =

√√√√ 1

n

n∑
i=1

(yi − ŷi)2 (5)

First, we measure the predictive power of our models within
the same data set using 10-fold cross validation, and across
the different systems by testing models trained on one sys-
tem to predict perceived Task Ease for another system, fol-
lowing a method introduced by (Walker et al., 2000).
The results for comparing the RMSE (max.7 for SL/RL,
and max.5 for WOZ) for training and testing within data
sets (ID 1-3) and across data sets (ID 4,5) are shown in
Table 1. In order to present results from different scales we
also report the percentage of the RMSE of the maximum
error (% error). The results show that predictions according
to PARADISE can lead to accurate test results despite the
low data fit. While for the regression model obtained from
the WOZ data the fit was 10-times lower than for SL/RL,

the prediction performance is comparably good (see Table
1, ID 1–3). The models also generalise well across systems
(see Table 1, ID 4–5).

ID train test RMSE % error
1 WOZ SAMMIE WOZ SAMMIE 0.82 16.42
2 SL iTalk SL iTalk 1.27 18.14
3 RL iTalk RL iTalk 1.06 15.14
4 RL iTalk SL iTalk 1.23 17.57
5 SL iTalk RL iTalk 1.03 14.71

Table 1: Prediction accuracy for models within (1-3) and
across data sets (4,5).

In addition, we evaluate model accuracy following a
method introduced by (Engelbrecht and Möller, 2007).
They suggest to compare model performance by plotting
mean values for predicted and true ratings by averaging
over conditions. We replicate this method, averaging mean
ratings for observed and predicted Task Ease over number
of turns. The resulting graphs in Table 2 show that the pre-
dicted mean values per turn are fairly accurate for the SL
and RL objective functions (first two graphs from the left).
For the WOZ data, the predictions are less accurate espe-
cially for low numbers of turns (graph on the right). This is
due to the fact that for low numbers of turns only very few
observations are in the training set: 25% of the dialogues
are between 5 and 6 turns long (where the predictions are
close to the observations) and 42% of dialogue are over 14
turns long (where the curves converge again). Only 33%
covers the span between 7-13 turns, where the graphical
comparison indicates low prediction performance. How-
ever, these results are misleading for small data sets (as we
argue). Quite the contrary is the case: the predicted val-
ues show that the linear model does well for the majority of
the cases and is not sensitive to outliers, i.e. the graph only
diverges if there are too little obeservations. It therefore
generalises well.

5. Error Analysis
In previous work we showed that the RL-based policy sig-
nificantly outperforms the supervised policy in terms of
improved user ratings and dialogue performance measures
(Rieser and Lemon, 2008b). Here, we test the relationship
between improved user ratings and dialogue behaviour, i.e.
we investigate which factors lead the users to give higher
scores, and whether this was correctly reflected in the orig-
inal reward function.
We concentrate on the information presentation phase,
since there is a simple two-way relationship between user
scores and the number of presented items. To estimate this
relationship we use curve fitting, which is used as an alter-
native model to linear regression in cases where the rela-
tionship between two variables can also be non-linear. For
each presentation mode (verbal vs. multimodal) we select
the (simplest) model with the closest fit to the data (R2).

5.1. Training
We first use this method to construct the reward function
for policy learning from the WOZ data. Figure 3 shows
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Table 2: Average Task Ease ratings for dialogues of different length (in turns); the solid lines are the true ratings and the
dashed line the predicted values.

the employed reward function for information presentation
modelled from the WOZ data. The straight line presents the
objective function for verbal presentation and the quadratic
curve the one for multimodal presentation.
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Figure 3: WOZ objective function for the information pre-
sentation phase

In the WOZ experiments wizards never presented more
than 3 items using speech, resulting in a linearly decreasing
line. This fact was captured by the learning schemes in dif-
ferent ways. SL extracted the rule “never present more than
3 items using speech”. For RL the extrapolated line assigns
negative values to more than 5 verbally presented items and
intersects with the multimodal reward at 2.62, i.e. for more
than 3 items the returned reward is higher when present-
ing multimodally. Therefore the RL-based strategy learns
to present up to 3 items verbally (on average not more than
2.4 items per dialogue).

5.2. Testing
We now apply the same curve-fitting method on the iTalk
user test data in order to test whether the policy optimisa-
tion had been successful. We therefore compare the curve
fitting model obtained from the system running the RL pol-
icy against the model obtained from the SL policy. The

hypothesis is that if the policy is good (i.e. consistently
making the right decisions), this will result in equally high
scores for all presented items, represented by a straight line;
whereas if the curve is not linear, this indicates that the
policy was sometimes making the right decision and some-
times not.
The estimated relationship between the average number of
items presented verbally and the verbal presentation score
from the user questionnaire is shown in the left column of
Table 3. The straight, slightly declining line indicates that
the policies in general make the right decision, although
the fewer items they present the better. For verbal presenta-
tion both learning schemes (RL and SL) were able to learn
a policy from the WOZ data which received consistently
good ratings from the users (between 6–5 for RL, and 5–4
for SL on a 7-point Likert scale).
For multimodal presentation the WOZ objective function
has a turning point at 14.8 (see Figure 3). The RL-based
policy learned to maximise the returned reward by display-
ing no more than 15 items. The SL policy, in contrast,
did not learn an upper boundary for when to show items
on the screen (since the wizards did not follow a specific
pattern, (Rieser and Lemon, 2008b)). When relating num-
ber of items to user scores, the RL policy produces a linear
(slightly declining) line between 7 and 6 (Table 3, bottom
right), indicating that the applied policy reflected the users’
preferences. Hence, we conclude that the objective func-
tion derived from the WOZ data gave the right feedback to
the learner.
For the SL policy the Logarithmic function best describes
the data.It function indicates that the multimodal presen-
tation strategy received the highest scores if the number
of items presented were just under 15 (Table 3, top right),
which is the turning point of the WOZ objective function.
This again indicates that, for the iTalk users the preferred
multimodal policy was indeed the one reflected in the WOZ
objective function.

6. Conclusion
This paper introduces data-driven methods for obtaining re-
liable objective functions for dialogue system design, and
so steers dialogue design towards science rather than art.
We applied data-driven methods to build objective func-
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corpus verbal multimodal
SL

RL

Table 3: Objective functions for information presentation

tions (for both dialogue policy learning and evaluation)
reflecting the needs of real users. In particular, we de-
rived a non-linear objective function from Wizard-of-Oz
data which is used to automatically train a Reinforcement
Learning-based dialogue strategy, which was then evalu-
ated with real users.
To ensure the quality of the applied objective function we
evaluated its stability, predictive power, and strategy im-
provements in a test-retest comparison. We also conduct a
detailed error analysis.
In sum, according to our measures, an objective function
obtained from WOZ data is a valid first estimate of real
users’ preferences. Despite a low fit to the initial data, the
objective function obtained from WOZ data makes accurate
predictions for automatic dialogue evaluation, and, when
automatically optimising a policy using these predictions,
the improvement over a strategy just mimicking the data
becomes clear from an error analysis. The models obtained
from the tests with a real system follow the same trends,
but can be seen as more reliable estimates of the objective
function in this domain. In future work we will explore

incrementally training a system according to improved rep-
resentations of real user preferences, for example gathered
online from a deployed spoken dialogue system.
This work also introduces non-linear objective functions for
dialogue optimization, which merit further exploration in
future work.
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