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Abstract 
While the Web is facing interesting new changes in the way users access, interact and even participate to its growth, the most 
traditional applications dedicated to its fruition: web browsers, are not responding with the same euphoric boost for innovation, mostly 
relying on third party or open-source community-driven extensions for addressing the new Social and Semantic Web trends and 
technologies. This technological – and decisional – gap, which is probably due to the lack of a strong standardization commitment on 
the one side (Web 2.0/Social Web) and in the delay of massive adherence to new officially approved standards (W3C approved 
Semantic Web languages), has to be filled by successful stories which could lay the path for the evolution of browsers. 
In this work we present a novel web browser extension which combines several features coming from the worlds of terminology and 
information extraction, semantic annotation and knowledge management, to support users in the process of both keeping track of 
interesting information they find on the web, and organizing its associated content following knowledge representation standards 
offered by the Semantic Web. 
 
 

1. Introduction 
In recent years several actions have been undertaken for 
supporting the end user in experiencing Semantic Web 
information through dedicated browsing facilities. This 
kind of “experience” ranges from browsing and editing 
RDF data through user-friendly interaction modalities 
(Fallenstein, 2004; Sauermann, 2005), as well as being 
able to annotate traditional web content with references to 
available and browsable ontologies; example of such tools 
are the Haystack web client (Quan & Karger, May, 2004), 
Magpie (Dzbor, Domingue, & Motta, 2003), Piggy-Bank 
(Huynh, Mazzocchi, & Karger, November, 2005) and 
others. Yet, what is still missing is a really integrated 
environment extending a web browser with (light) 
knowledge management facilities and efficient annotation 
and retrieval of acquired information, all in the hands of 
the user. Moreover, the great success of light web browser 
plug-ins (e.g. the GoogleTM Toolbar, Del.icio.us 
bookmarking extension etc..), if compared to the scarce 
popularity of browsing solutions based on ad-hoc working 
environments like Eclipse, demonstrate that users prefer 
to “expand” their web experience still relying on their 
personal, traditional, web browser and try out new 
features which are not too intrusive for their usual way of 
working. A key requirement today is thus to keep such 
tools as simple, intuitive and efficient as possible, while 
preserving all the rich functionalities required by the 
Semantic Web.  
With such an objective, we have designed – and we are 
currently deploying – a platform for ontology editing and 
automatic web-based ontology population and 
development. Though beneficiating from past lessons, the 
platform offers a novel and unique combination of 
ontology editing and semantic annotation functionalities. 
Users can develop and edit structured semantic 
information, like in traditional ontology editing tools 
(Gennari, et al., 2003; TopBraid Composer), while at the 
same time be able to match it with associated textual 
references on traditional web documents. 

This last activity is not limited to semantic annotation, 
which is usually associated with mere annotation of 
textual data towards a reference ontology vocabulary, 
often bounded to a class hierarchy. Here, we aim at 
providing efficient user interaction modalities for building 
ontological data (from simple object creation to the 
instantiation of attributive and relational properties) while 
the user is naturally exploring and keeping track of web 
content. Our solution tries to get the best from both worlds 
(semantic markup and knowledge management) and 
combine their aspects in a unique approach. Another 
important aspect is the ability to automatically identify, 
extract and present relevant information in a manner that 
it can easily fit into available knowledge patterns inside 
the ontology that is being adopted/edited by the user. 
The paper is organized as follows. In Section 2 we outline 
the general approach and design of the platform. In 
Section 3 we focus on the platform architecture and on its 
main functionalities. In Section 4, we present and evaluate 
its specific modules for ontology learning from texts. 
Finally, in Section 5, we draw final conclusions and 
outline future works. 

2. Approach and Design 
Our focus is to find innovative solutions for collecting, 
managing and retrieving data emerging as relevant while 
surfing the web; then, structuring them by following 
personal criteria. In such view, the main functionalities to 
be provided to the end user relate to: 

− Ontology editing. Creation of an ontology from 
scratch by the user, with possibility of importing 
other ones from file system, web, etc..  

− Ontology learning from text. Semi-automatic 
creation of an ontology from text, acquisition of 
new concepts and relations from text by using 
Natural Language Processing (NLP) techniques. 

− Ontology population. Drag and drop of instances 
as well as their different lexical occurrences from 
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web pages and texts or by use of automatic 
techniques. 

To fulfill these objectives, we have brought new ideas and 
functionalities inside our Semantic Web platform 
Semantic Turkey (Griesi, Pazienza, & Stellato, 2007). 
Semantic Turkey, an extension for the popular web 
browser Mozilla Firefox, can be seen (and has been 
originally conceived) as a personal desktop solution for 
organizing and managing – inside RDF/OWL ontologies – 
the relevant information caught during web navigation, 
thus replacing past ordinary solutions like bookmarks. 
The original intent of Semantic Turkey was to bring 
innovative aspects borrowed from new Semantic Web 
technologies into the everyday life of the typical web user: 
its main paradigmatic innovation, with respect to 
traditional bookmarking, resides in the fact that it defines 
a clear separation between knowledge data (the WHAT) 
and web links (the WHERE), so that the user can focus on 
organizing the collected information according to his 
preferences while keeping it, on a complete different 
perspective, updated with pointers to the web resources 
where it is referenced. 
The requirements and design goals which have been 
satisfied in the first prototype of Semantic Turkey are: 

1. Capturing information from web pages, both by 
considering each page as a whole, as well as by 
annotating portions of its text 

2. Editing of a personal ontology for categorizing 
annotated information and, possibly, for 
exchanging data with other users. Importing and 

combining other existing ontologies into one 
domain space is possible as well. 

3. Navigation of the structured information as an 
underlying semantic net through the links to the 
web sources where it has been annotated. 

4. Clear separation between business model and user 
interface, by adopting a “knowledge service” 
architecture.  

While the main stream of effort was to create a robust, 
usable platform for semantic bookmarking, in this version 
we tried to boost the intelligence of the system, by 
allowing for automatic extraction of information from 
semistructured (web pages in general) and structured data 
(like tables) which still has no explicit semantics 
associated to its content, to populate the working 
ontologies with new instances (both in terms of domain 
objects and relationships) or even increment its domain 
theory with new concepts and relations. 

3. Semantic Turkey Architecture 
The architecture of Semantic Turkey consists of a web 
application, designed using a three layered approach. 

3.1. Presentation Layer 
This layer has been developed as an extension for the web 
browser Firefox (Firefox web browser | Faster, more 
secure, & customizable). This approach has two main 
advantages:  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: semantic annotation and ontology building combined in a few mouse clicks 
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− total reuse of the functionalities of a well 
assessed, stable and complete software for web 
browsing,  

− a non intrusive offer for the user, who can still 
adopt the web browser he has been acquainted 
with.  

3.2. Services Layer 
It has been realized through a collection of Java Web 
Services, published through the embedded Web Server 
“Jetty” (Jetty Java HTTP Servlet Server).  
Jetty is implemented entirely in Java, and the architecture 
foresees its use as an embedded component. This means 
that the Web Server and the Web Application run in the 
same process, without interconnection overheads and 
other sort of complications.  
This solution also allows for a flexible use of the tool, 
since it can both be adopted as a completely autonomous 
web browser extension, as well as a personal access point 
for collaborative web exploration and annotation.  

3.3. Persistence Layer 
The persistence layer includes the component for 
managing the ontology, which is represented in the OWL 
language (Web Ontology Language webpage). This layer 
has been developed by using the Sesame ontology library 
(Broekstra, Kampman, & van Harmelen, 2002) and its 
OWLIM plugin (Kiryakov, Ognyanov, & Manov, 2005). 
Sesame is an open source RDF database with support for 
RDF Schema inference and querying. For what concerns 
the knowledge model of Semantic Turkey, there are two 
different layers of ontological knowledge: Application 
Layer and User Layer.  
The Application Layer contains ontologies required by the 
application for coordinating and organizing its services. 
These ontologies are hidden by default to the user. 
In the core version of Semantic Turkey, this layer includes 
the sole Semantic Annotation ontology, which provides 
concepts and relations for keeping track of user semantic 
bookmarks.  
The User layer includes all the knowledge domain which 
is handled by the user: data imported from the web, 
personally defined data as well as information annotated 
from web pages. 

3.4. Semantic Navigation 
Semantic Navigation option can be accessed as an 
additional feature, letting the user graphically explore the 
ontology. A Java applet will be loaded on a new tab of the 
browser displaying the graph view of the ontology, 
allowing the user to navigate its content and get back to 
the pages related to the annotated knowledge.  
Conversely, Semantic Turkey reports to the user, through 
a dedicated status bar, the pages which have been 
previously annotated.  

4. Learning ontological knowledge from 
texts 

Automatic methods for extracting knowledge from texts 
are today mature enough to be integrated and leveraged in 
real NLP applications, such as our platform. These 
methods include techniques for extracting terminologies 
(Pazienza, Pennacchiotti, & Zanzotto, 2005), concept lists 

(Lin & Pantel, 2002), relations among terms (Pantel & 
Pennacchiotti, 2006), and others.  
Ontology learning from text (Buitelaar & Cimiano, 2008) 
may be considered as a means to (semi-) automatically 
build ontologies from document collections, by using 
unsupervised techniques supported by a final human 
validation over the extracted data. As a matter of fact, in 
recent years many tools have been created for semi-
automatically supporting human experts in the task of 
ontology building from documents, such as KIM (Popov, 
Kiryakov, Kirilov, Manov, Ognyanoff, & Goranov, 2003) 
Text-to-Onto (Mädche, 2000) and more. 
Yet, even if semi-supervised extraction methods guarantee 
a good level of accuracy, they often entail high 
computational and time costs. In facts, they generally 
involve deep syntactic parsing, statistical computations, 
and the exploration of large hierarchies and lexical 
knowledge bases (e.g. WordNet), which require time and 
processing resources. In most cases, these costs prevent a 
successful integration of extraction techniques into 
ontology-related platforms.  
Here, our major challenge is then to integrate modules for 
ontology learning into Semantic Turkey, keeping them 
efficient and fast, while preserving a good level of 
accuracy. To do that, we both focus on the optimization of 
existing and new techniques, and on a careful use of 
shallow NLP tools for text analysis (e.g. lemmatizers, fast 
PoS-taggers) leaving aside deeper and more costly tools 
(e.g. full syntactic and semantic parsers). By following 
this approach, and to support the end user in all steps of 
the learning process, we are integrating in the platform the 
following NLP-based modules:: 

• Terminology Extractor: a module to extract and 
validate terminological expression in web pages;  

• Relation Extractor: a module to harvest binary 
semantic relations from web pages and upload 
them into the ontology; 

• Table Knowledge Extractor: a module to 
automatically extract ontological information 
(classes, instances and properties) from structured 
data. 

In the rest of this section we will describe in detail the 
above modules. 

4.1. Terminology Extractor 
A term is commonly defined as “a surface representation 
of a specific domain concept” (Jacquemin, 1997). Terms 
can be then considered as candidate concept instances for 
an ontology and as fundamental pieces in ontology 
learning. Our terminology extractor is implemented by 
using shallow techniques, based on regular expression 
recognition of candidate terms over PoS-tagged data. This 
guarantees a high level of accuracy, while preserving 
computational efficiency. We use well-assessed regular 
expressions such as (Justeson & Katz, 1995):  

((Adj|Noun)+|((Adj|Noun)*(NounPrep)?)(Adj|Noun)*)Noun 

which allow to capture both simple terms (e.g. 
“underground economy”) and complex ones (e.g. “Iraqi 
National Joint Action Committee for Reforms”). Once 
candidates are extracted, we apply statistical measures 
(e.g. frequency, pmi) to select the most reliable terms, and 
we propose them to the user for final validation 
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4.2. Relation Extractor 
Relation extraction is intended as the task of extracting 
generic and specific binary semantic relations between 
terms from a corpus, such as is-a(bachelor, man) and 
capital-of(Roma, Italy). This can be seen as a second step 
in ontology learning, where relations among concept 
instance are discovered. Our module implements a 
pattern-based technique similar to (Hearst, 1992) and to 
the state of the art (Pantel & Pennacchiotti, 2006), but 
applies specific strategies to keep the algorithm efficient, 
such as the use of simplified statistical measure and of 
shallow analyzers. The module guarantees: (1) minimal 
supervision, by using as input one of few instance(s) 
already in the ontology, and by presenting as output a list 
of ranked instances which can be easily validated and 
uploaded; (2) high accuracy, by adopting a dedicated 
reliability measure to weight the extracted instances; (3) 
easing data sparseness: by implementing specific 
techniques to exploit long distance dependencies; (4) 
generality, as it is applicable to a wide variety of relations. 
Hereafter we present the different components of the 
module. 
Input Interface. This provides to the user the 
functionalities needed for starting the relation extraction 
process, by allowing to select a seed pair s=(xs,ys) for a 
given relation. The pair consists in two entities of the 
ontology, related by an object property. The extraction 

process is then executed as follows. 
Pattern Induction and Expansion. Given an input seed 
instance s, the algorithm looks in the corpus for all 
sentences containing the two terms. These sentences are 
parsed by the Chaos constituent-dependency parser 
(Basili & Zanzotto, 2002). All dependency paths 
connecting the seed words are extracted as patterns P. The 
use of Chaos guarantees two main advantages with 
respect to simple surface approaches such as 
(Ravichandran & Hovy, 2002). First, the use of 
dependency information allows to extract more interesting 
patterns. Second, Chaos explicitly represents ambiguous 
relations between constituents, allowing to infer patterns 
also when the syntactic interpretation is not complete. 
Figure 7 shows a parsed sentence connecting the seed 
s=(Madrid,Spain). The algorithm extracts as patterns the 
paths: “X is the capital of Y” and “X is of Y”, which 
connect the two words. Notice that a simple surface 
approach would have extracted the only irrelevant pattern 
“X since 1561 is the capital of Y”. The dependency 
analysis allows to extract more useful patterns, helping to 
deal with data sparseness. Yet, the algorithm is prone to 
capture too generic patterns such as “X of Y”.A reliability 
measure is applied to cope with this problem. Also, to 
further deal with data sparseness, the algorithm expands 
the patterns P in a bigger set P’, by including different 
morphological variations of the main verb (e.g. “X being 
the capital of Y”, “X was the capital of Y”, etc.). 

 

Figure 2: validation interface of the table knowledge extractor module. 

 

Figure 3: A dependency graph output by Chaos. Lower boxes are constituents. Upper boxes are dependencies, with the 
related plausibility, i.e. a representation of ambiguous relations. 

 

2232



Instance Induction and Reliability Ranking. Given the 
set P’, the algorithm retrieves all sentences containing the 
words of any p∈P’. Each sentence is then parsed by 
Chaos. The constituents connected by a dependency path 
corresponding to a pattern in P’ are extracted as new 
instances I. For example, the new instance (New Delhi, 
India) is extracted from: “New Delhi being the capital of 
India, is an important financial market”. Each instance 
i=(x,y)∈I is assigned a reliability score R(i), accounting 
for the intuition that an instance is reliable, i.e. it is likely 
to be correct, if: (1) it is activated by many patterns; (2) 
the Part-of-Speech (PoS) of the instance and of the seed s 
are the same; (3) the semantic class of x and y are 
respectively similar to those of xs and ys.: 

where Pi are the patterns activating i; POSi is a binary 
value which is 1 if the PoS of i and s are the same, 0 
otherwise; k and j are the depths of the least common 
subsumer respectively between x and xs and between y 
and ys in the WordNet hyperonymy hierarchy. α, β, and γ 
parameters sum to 1, weighting the contribution of 
respectively point (1),(2) and (3).  
Validation Interface and Ontology Uploading. The 
ranked list of extracted instances I is presented to the user, 
via a validation interface, which allows the user to select 
the instances to be uploaded in the ontology. Once 
validation is finished,: x and y of each instance (x,y) are 
inserted in the same ontology class of xs and ys and the 
related object property is activated. For example, if 
xs=Madrid is an instance of the ontology class city and 
ys=Spain is instance of nation, the new ontological 
entities New Delhi and India are added as instances of the 
class city and nation, and related by the object property 
capital-of.  
We measured the performance of the relation extraction 
algorithm on the task of extracting capital-of and located-
in relations instances, over a domain corpus of 80 
Wikipedia pages on European and Asian cities (207,555 
tokens). We set the seed instance to s=(Madrid,Spain), 
and the parameters α, β, and γ  to 0.05, 0.25 and 0.75, by 
estimation on a small annotated development corpus of 10 
pages. As gold standard reference we used a list of 
instances Igs manually extracted from the corpus. We 
measure performance in term of precision P, relative-
recall R, F-measure, and goldStd-recall G at different 
levels of a threshold τ. The set of instances Iτ∈I which 
have a score R(i) above the threshold are taken as 
accepted by the system. At each level of τ, Pτ and Rτ , Fτ 
and Gτ are defined as follows:  

GoldStd-recall is intended to capture the recall over the 
gold standard, while relative-recall captures recall at a 
given threshold over all extracted instances.  

Results for the capital-of relation are reported in 
Figure ??. In all, the algorithm extracted around 50 
instances for both relations. In general our algorithm is 
able to extract instances with high precision and recall. 
For example, at τ=0.5, precision is high (almost 0.90) 

while goldStd recall is still acceptable, about 0.45. 
Precision is up to that obtained by state of the art 
algorithms: for example (Pantel & Pennacchiotti, 2006) 
obtain 0.91 on a chemistry corpus of the same size as our 
for the reaction relation. Yet, our recall is lower, as we do 
not exploit generic patterns. Figures indicates that 
according to the intuition, as the threshold grows, 
precision improves, while recall decreases, indicating that 
our reliability measure is coherent and can be effectively 
used to select correct/incorrect instances. From a 
qualitative perspective, most of the erroneous extracted 
instances correspond to parsing errors or to the induction 
of wrong patterns (e.g. the incorrect instance 
(Antananarivo, University) for the capital-of relation is 
fired by the wrong pattern “X is home of Y”).  

4.3. Table Knowledge Extractor 
Structured information, such as tables and lists, offer a 
rich source of knowledge to enrich ontologies, as they 
have the major advantage that the data they contain are 
coherently organized, making their ontological 
interpretation easier with respect to unstructured texts. 
Also, they typically contain dense meaningful content 
which tends to be ontology-oriented. Despite this, not 
much attention has been paid so far on the extraction of 
ontological information from tables, exception being the 
TARTAR (Pivk, Cimiano, Sure, Gams, Rajkovič, & 
Studer, 2007) and the TANGO (Tiberino, Embley, 
Lonsdale, Ding, & Nagy, 2005) systems, which 
unfortunately are not intended to be integrated in an 
ontology editing architecture, as we would. 
Our module aims at extracting knowledge (namely, 
classes, instances and properties) from tables in HTML 
pages, and then propose a complete ready-for-validation 
ontological interpretation to the user. 
In our framework, a table is intended as a matrix of cells 
(see Figure 5), whose structure can be divided in four 
main areas, which in most cases contain different type of 
information: (1) First row (cells <1,2> …  <1,n>), which 
usually contains a column header, i.e. a short description 
of the information enclosed in each column. (2) First 
column (cells <2,1> … <2,m> ), typically containing a 

 
 

Figure 4: Precision, Relative-Recall, F-measure and 
GoldStd-Recall at different levels of τ for the relation 

capital-of. 

<1,1> <1,2> <1,3> … <1,n> 
<2,1> <2,2> <2,3> … <2,n> 

… … … … … 
<m,1> <m,2> <m,3> … <m,n> 

Figure 5: Structure of a nxm table 
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row header, describing the content of a single row. (3) 
First cell (cell <1,1>), sometimes used to give a short 
indication on the type of data contained in the table (table 
header); in other cases, it is part of the first row or the 
first column. (4) Internal cells (other cells), containing the 
actual data of the table, whose meaning is described by 
the related cells in the first row/column.1 The structure 
indicates that from an information-content perspective, a 
table is either: three-dimensional, containing row header, 
column header and data; or two-dimensional, when either 
the row or column header is not present.2 Also, we can 
assume two basic facts: (a) in most cases tables contain 
simple flat non-hierarchical knowledge; (b) a table cannot 
contain knowledge about more than one class, as this 
would imply the table to have a fourth dimension to 
represent class names. Following these assumptions we 
can ontologically classify tables in three categories: 

• Class Tables: containing a class definition and a 
set of its instances. The information that has to be 
enclosed in the table are: property names, instance 
names and property values. The table must then 
be three-dimensional, i.e. it must have row header 
and column header. Property names and instance 
names can be either reported in the row or column 
headers. Property values are reported in the 
internal cells, while the class name, if present, is 
typically in the table header.  

• Instance Tables: containing information about a 
single instance. The information enclosed in the 
table are property name and property value. These 
tables are typically two dimensional and have 
either exactly two columns or rows. The column 
(row) header indicates the name of the properties, 
while the second column contains the property 
values.. 

• Empty tables: these are tables which do not 
contain any ontological interesting content 
(e.g.graphical elements). 

Our module leverages the above classification to extract 
knowledge performing the following steps. 
Table extraction and selection. Given an input Web 
page displayed in the browser, the module. extracts all 
well-formed tables. In the case of nested tables, the 
outermost is retained as most informative (inner tables 
tend to contain in most cases graphical objects). The user 
can then selects in the graphical interface, the set of tables 
to analyse. 
Table type identification. Given an input table, the 
module applies a cascade of heuristics to classify it either 
as class table, if it is three-dimensional, or as instance 
table, if it is two-dimensional. The heuristics do so by 
analyzing the number of columns, and by checking the 
presence of column and row headers considering textual 
and stylistic properties. For example, if the first row and 
column have a background colour different from the other 
cells, they are respectively identified as column and row 
header; then, the table is classified as three-dimensional – 
i.e. as class table. 

                                                   
1 Though this typical structure is verified in most cases, our 
module is able to detect and treat exceptions. 
2 Mono-dimensional tables are seldom, as the value of internal 
rows and columns must be somehow described by a header. 

Ontological analysis. Given a classified table, the module 
infers the contained ontological entities. In the case of 
class tables entities are: properties’ names of the class, 
instances’ names and related property values. Instance and 
property names can be alternatively coded in the row or in 
the column headers, while the property values are in the 
internal cells. The issue is then to understand which 
header contains which names. For this purpose, the 
assumption is that an ontological property has always the 
same range: if the column header contains the property 
names, the first element of a column (property name) 
must be followed by cells of the same data type (property 
values). The same observation stands for the row header. 
If all internal cells are of the same data type, the system 
simply guesses as default that the column header 
represents the property names. In the case of instance 
tables the analysis is straightforward: the left column (row 
header) contains property names, and the right column 
containing the properties’ values (internal cells). At the 
end of the ontological analysis, each cell in the tables is 
assigned an ontological type. 
Validation and Ontology Uploading. The results of the 
ontological analysis are shown to the user (see Figure 2), 
that can then decide either to reject the table as not 
interesting, to accept completely the interpretation, or to 
modify it. In the latter case, the user is provided with 
different tools to change the ontological type of cells. 
Once the correct ontological interpretation of the table is 
decided, the information is automatically uploaded in the 
ontology. In this last phase the user has to specify the 
class/instance name, and the ontological attachment (the 
parent class for class tables, the referring class for 
instance table ).  
We verified the performance of the relation extraction 
module on a corpus of 100 Web pages of European and 
Asian capitals from Wikipedia, amounting to 207 tables. 
We computed the accuracy on table type identification (i.e 
classification in class or instance table), and the accuracy 
on ontological interpretation (i.e. predicting a completely 
correct interpretation of the table, in all cells). We 
obtained respectively accuracy of 0.91 and 0.77. Results 
show that the systems’ heuristics are very accurate in 
predicting the correct table type, and highly reliable on the 
ontological interpretation, revealing that the simple 
heuristics implemented are effective. 

5. Conclusions and future work 
In this paper we presented a novel architecture for 
collaborative ontology editing, which offers a unique 
combination of ontology editing and semantic annotation 
functionalities, and focusing on the use of “light” NLP 
techniques for semi-automatically supporting the ontology 
building process. We described three of these NLP 
modules, which extract ontological information from Web 
texts, guaranteeing an high level of accuracy. 
In the future, we plan to make available the architecture 
and its NLP modules to the community. We are also 
planning to integrate new NLP engines, to extract other 
type of ontological knowledge, such us events and 
situational frames. 
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