
A Web Browser Extension for growing-up
Ontological Knowledge from Traditional Web Content

Maria Teresa Pazienzaa, Marco Pennacchiottib, Armando Stellatoa

a) AI Research Group, DISP
University of Rome, Tor Vergata

{pazienza, stellato}@info.uniroma2.it

b) Computational Linguistics
Saarland University, Germany.
pennacchiotti@coli.uni-sb.de

Abstract
While the Web is facing interesting new changes in the way users access, interact and even participate to its growth, the most
traditional applications dedicated to its fruition: web browsers, are not responding with the same euphoric boost for innovation, mostly
relying on third party or open-source community-driven extensions for addressing the new Social and Semantic Web trends and
technologies. This technological – and decisional – gap, which is probably due to the lack of a strong standardization commitment on
the one side (Web 2.0/Social Web) and in the delay of massive adherence to new officially approved standards (W3C approved
Semantic Web languages), has to be filled by successful stories which could lay the path for the evolution of browsers.
In this work we present a novel web browser extension which combines several features coming from the worlds of terminology and
information extraction, semantic annotation and knowledge management, to support users in the process of both keeping track of
interesting information they find on the web, and organizing its associated content following knowledge representation standards
offered by the Semantic Web.

1. Introduction
In recent years several actions have been undertaken for
supporting the end user in experiencing Semantic Web
information through dedicated browsing facilities. This
kind of “experience” ranges from browsing and editing
RDF data through user-friendly interaction modalities
(Fallenstein, 2004; Sauermann, 2005), as well as being
able to annotate traditional web content with references to
available and browsable ontologies; example of such tools
are the Haystack web client (Quan & Karger, May, 2004),
Magpie (Dzbor, Domingue, & Motta, 2003), Piggy-Bank
(Huynh, Mazzocchi, & Karger, November, 2005) and
others. Yet, what is still missing is a really integrated
environment extending a web browser with (light)
knowledge management facilities and efficient annotation
and retrieval of acquired information, all in the hands of
the user. Moreover, the great success of light web browser
plug-ins (e.g. the GoogleTM Toolbar, Del.icio.us
bookmarking extension etc..), if compared to the scarce
popularity of browsing solutions based on ad-hoc working
environments like Eclipse, demonstrate that users prefer
to “expand” their web experience still relying on their
personal, traditional, web browser and try out new
features which are not too intrusive for their usual way of
working. A key requirement today is thus to keep such
tools as simple, intuitive and efficient as possible, while
preserving all the rich functionalities required by the
Semantic Web.
With such an objective, we have designed – and we are
currently deploying – a platform for ontology editing and
automatic web-based ontology population and
development. Though beneficiating from past lessons, the
platform offers a novel and unique combination of
ontology editing and semantic annotation functionalities.
Users can develop and edit structured semantic
information, like in traditional ontology editing tools
(Gennari, et al., 2003; TopBraid Composer), while at the
same time be able to match it with associated textual
references on traditional web documents.

This last activity is not limited to semantic annotation,
which is usually associated with mere annotation of
textual data towards a reference ontology vocabulary,
often bounded to a class hierarchy. Here, we aim at
providing efficient user interaction modalities for building
ontological data (from simple object creation to the
instantiation of attributive and relational properties) while
the user is naturally exploring and keeping track of web
content. Our solution tries to get the best from both worlds
(semantic markup and knowledge management) and
combine their aspects in a unique approach. Another
important aspect is the ability to automatically identify,
extract and present relevant information in a manner that
it can easily fit into available knowledge patterns inside
the ontology that is being adopted/edited by the user.
The paper is organized as follows. In Section 2 we outline
the general approach and design of the platform. In
Section 3 we focus on the platform architecture and on its
main functionalities. In Section 4, we present and evaluate
its specific modules for ontology learning from texts.
Finally, in Section 5, we draw final conclusions and
outline future works.

2. Approach and Design
Our focus is to find innovative solutions for collecting,
managing and retrieving data emerging as relevant while
surfing the web; then, structuring them by following
personal criteria. In such view, the main functionalities to
be provided to the end user relate to:

− Ontology editing. Creation of an ontology from
scratch by the user, with possibility of importing
other ones from file system, web, etc..

− Ontology learning from text. Semi-automatic
creation of an ontology from text, acquisition of
new concepts and relations from text by using
Natural Language Processing (NLP) techniques.

− Ontology population. Drag and drop of instances
as well as their different lexical occurrences from

2229

web pages and texts or by use of automatic
techniques.

To fulfill these objectives, we have brought new ideas and
functionalities inside our Semantic Web platform
Semantic Turkey (Griesi, Pazienza, & Stellato, 2007).
Semantic Turkey, an extension for the popular web
browser Mozilla Firefox, can be seen (and has been
originally conceived) as a personal desktop solution for
organizing and managing – inside RDF/OWL ontologies –
the relevant information caught during web navigation,
thus replacing past ordinary solutions like bookmarks.
The original intent of Semantic Turkey was to bring
innovative aspects borrowed from new Semantic Web
technologies into the everyday life of the typical web user:
its main paradigmatic innovation, with respect to
traditional bookmarking, resides in the fact that it defines
a clear separation between knowledge data (the WHAT)
and web links (the WHERE), so that the user can focus on
organizing the collected information according to his
preferences while keeping it, on a complete different
perspective, updated with pointers to the web resources
where it is referenced.
The requirements and design goals which have been
satisfied in the first prototype of Semantic Turkey are:

1. Capturing information from web pages, both by
considering each page as a whole, as well as by
annotating portions of its text

2. Editing of a personal ontology for categorizing
annotated information and, possibly, for
exchanging data with other users. Importing and

combining other existing ontologies into one
domain space is possible as well.

3. Navigation of the structured information as an
underlying semantic net through the links to the
web sources where it has been annotated.

4. Clear separation between business model and user
interface, by adopting a “knowledge service”
architecture.

While the main stream of effort was to create a robust,
usable platform for semantic bookmarking, in this version
we tried to boost the intelligence of the system, by
allowing for automatic extraction of information from
semistructured (web pages in general) and structured data
(like tables) which still has no explicit semantics
associated to its content, to populate the working
ontologies with new instances (both in terms of domain
objects and relationships) or even increment its domain
theory with new concepts and relations.

3. Semantic Turkey Architecture
The architecture of Semantic Turkey consists of a web
application, designed using a three layered approach.

3.1. Presentation Layer
This layer has been developed as an extension for the web
browser Firefox (Firefox web browser | Faster, more
secure, & customizable). This approach has two main
advantages:

Figure 1: semantic annotation and ontology building combined in a few mouse clicks

2230

− total reuse of the functionalities of a well
assessed, stable and complete software for web
browsing,

− a non intrusive offer for the user, who can still
adopt the web browser he has been acquainted
with.

3.2. Services Layer
It has been realized through a collection of Java Web
Services, published through the embedded Web Server
“Jetty” (Jetty Java HTTP Servlet Server).
Jetty is implemented entirely in Java, and the architecture
foresees its use as an embedded component. This means
that the Web Server and the Web Application run in the
same process, without interconnection overheads and
other sort of complications.
This solution also allows for a flexible use of the tool,
since it can both be adopted as a completely autonomous
web browser extension, as well as a personal access point
for collaborative web exploration and annotation.

3.3. Persistence Layer
The persistence layer includes the component for
managing the ontology, which is represented in the OWL
language (Web Ontology Language webpage). This layer
has been developed by using the Sesame ontology library
(Broekstra, Kampman, & van Harmelen, 2002) and its
OWLIM plugin (Kiryakov, Ognyanov, & Manov, 2005).
Sesame is an open source RDF database with support for
RDF Schema inference and querying. For what concerns
the knowledge model of Semantic Turkey, there are two
different layers of ontological knowledge: Application
Layer and User Layer.
The Application Layer contains ontologies required by the
application for coordinating and organizing its services.
These ontologies are hidden by default to the user.
In the core version of Semantic Turkey, this layer includes
the sole Semantic Annotation ontology, which provides
concepts and relations for keeping track of user semantic
bookmarks.
The User layer includes all the knowledge domain which
is handled by the user: data imported from the web,
personally defined data as well as information annotated
from web pages.

3.4. Semantic Navigation
Semantic Navigation option can be accessed as an
additional feature, letting the user graphically explore the
ontology. A Java applet will be loaded on a new tab of the
browser displaying the graph view of the ontology,
allowing the user to navigate its content and get back to
the pages related to the annotated knowledge.
Conversely, Semantic Turkey reports to the user, through
a dedicated status bar, the pages which have been
previously annotated.

4. Learning ontological knowledge from
texts

Automatic methods for extracting knowledge from texts
are today mature enough to be integrated and leveraged in
real NLP applications, such as our platform. These
methods include techniques for extracting terminologies
(Pazienza, Pennacchiotti, & Zanzotto, 2005), concept lists

(Lin & Pantel, 2002), relations among terms (Pantel &
Pennacchiotti, 2006), and others.
Ontology learning from text (Buitelaar & Cimiano, 2008)
may be considered as a means to (semi-) automatically
build ontologies from document collections, by using
unsupervised techniques supported by a final human
validation over the extracted data. As a matter of fact, in
recent years many tools have been created for semi-
automatically supporting human experts in the task of
ontology building from documents, such as KIM (Popov,
Kiryakov, Kirilov, Manov, Ognyanoff, & Goranov, 2003)
Text-to-Onto (Mädche, 2000) and more.
Yet, even if semi-supervised extraction methods guarantee
a good level of accuracy, they often entail high
computational and time costs. In facts, they generally
involve deep syntactic parsing, statistical computations,
and the exploration of large hierarchies and lexical
knowledge bases (e.g. WordNet), which require time and
processing resources. In most cases, these costs prevent a
successful integration of extraction techniques into
ontology-related platforms.
Here, our major challenge is then to integrate modules for
ontology learning into Semantic Turkey, keeping them
efficient and fast, while preserving a good level of
accuracy. To do that, we both focus on the optimization of
existing and new techniques, and on a careful use of
shallow NLP tools for text analysis (e.g. lemmatizers, fast
PoS-taggers) leaving aside deeper and more costly tools
(e.g. full syntactic and semantic parsers). By following
this approach, and to support the end user in all steps of
the learning process, we are integrating in the platform the
following NLP-based modules::

• Terminology Extractor: a module to extract and
validate terminological expression in web pages;

• Relation Extractor: a module to harvest binary
semantic relations from web pages and upload
them into the ontology;

• Table Knowledge Extractor: a module to
automatically extract ontological information
(classes, instances and properties) from structured
data.

In the rest of this section we will describe in detail the
above modules.

4.1. Terminology Extractor
A term is commonly defined as “a surface representation
of a specific domain concept” (Jacquemin, 1997). Terms
can be then considered as candidate concept instances for
an ontology and as fundamental pieces in ontology
learning. Our terminology extractor is implemented by
using shallow techniques, based on regular expression
recognition of candidate terms over PoS-tagged data. This
guarantees a high level of accuracy, while preserving
computational efficiency. We use well-assessed regular
expressions such as (Justeson & Katz, 1995):

((Adj|Noun)+|((Adj|Noun)*(NounPrep)?)(Adj|Noun)*)Noun

which allow to capture both simple terms (e.g.
“underground economy”) and complex ones (e.g. “Iraqi
National Joint Action Committee for Reforms”). Once
candidates are extracted, we apply statistical measures
(e.g. frequency, pmi) to select the most reliable terms, and
we propose them to the user for final validation

2231

4.2. Relation Extractor
Relation extraction is intended as the task of extracting
generic and specific binary semantic relations between
terms from a corpus, such as is-a(bachelor, man) and
capital-of(Roma, Italy). This can be seen as a second step
in ontology learning, where relations among concept
instance are discovered. Our module implements a
pattern-based technique similar to (Hearst, 1992) and to
the state of the art (Pantel & Pennacchiotti, 2006), but
applies specific strategies to keep the algorithm efficient,
such as the use of simplified statistical measure and of
shallow analyzers. The module guarantees: (1) minimal
supervision, by using as input one of few instance(s)
already in the ontology, and by presenting as output a list
of ranked instances which can be easily validated and
uploaded; (2) high accuracy, by adopting a dedicated
reliability measure to weight the extracted instances; (3)
easing data sparseness: by implementing specific
techniques to exploit long distance dependencies; (4)
generality, as it is applicable to a wide variety of relations.
Hereafter we present the different components of the
module.
Input Interface. This provides to the user the
functionalities needed for starting the relation extraction
process, by allowing to select a seed pair s=(xs,ys) for a
given relation. The pair consists in two entities of the
ontology, related by an object property. The extraction

process is then executed as follows.
Pattern Induction and Expansion. Given an input seed
instance s, the algorithm looks in the corpus for all
sentences containing the two terms. These sentences are
parsed by the Chaos constituent-dependency parser
(Basili & Zanzotto, 2002). All dependency paths
connecting the seed words are extracted as patterns P. The
use of Chaos guarantees two main advantages with
respect to simple surface approaches such as
(Ravichandran & Hovy, 2002). First, the use of
dependency information allows to extract more interesting
patterns. Second, Chaos explicitly represents ambiguous
relations between constituents, allowing to infer patterns
also when the syntactic interpretation is not complete.
Figure 7 shows a parsed sentence connecting the seed
s=(Madrid,Spain). The algorithm extracts as patterns the
paths: “X is the capital of Y” and “X is of Y”, which
connect the two words. Notice that a simple surface
approach would have extracted the only irrelevant pattern
“X since 1561 is the capital of Y”. The dependency
analysis allows to extract more useful patterns, helping to
deal with data sparseness. Yet, the algorithm is prone to
capture too generic patterns such as “X of Y”.A reliability
measure is applied to cope with this problem. Also, to
further deal with data sparseness, the algorithm expands
the patterns P in a bigger set P’, by including different
morphological variations of the main verb (e.g. “X being
the capital of Y”, “X was the capital of Y”, etc.).

Figure 2: validation interface of the table knowledge extractor module.

Figure 3: A dependency graph output by Chaos. Lower boxes are constituents. Upper boxes are dependencies, with the
related plausibility, i.e. a representation of ambiguous relations.

2232

Instance Induction and Reliability Ranking. Given the
set P’, the algorithm retrieves all sentences containing the
words of any p∈P’. Each sentence is then parsed by
Chaos. The constituents connected by a dependency path
corresponding to a pattern in P’ are extracted as new
instances I. For example, the new instance (New Delhi,
India) is extracted from: “New Delhi being the capital of
India, is an important financial market”. Each instance
i=(x,y)∈I is assigned a reliability score R(i), accounting
for the intuition that an instance is reliable, i.e. it is likely
to be correct, if: (1) it is activated by many patterns; (2)
the Part-of-Speech (PoS) of the instance and of the seed s
are the same; (3) the semantic class of x and y are
respectively similar to those of xs and ys.:

where Pi are the patterns activating i; POSi is a binary
value which is 1 if the PoS of i and s are the same, 0
otherwise; k and j are the depths of the least common
subsumer respectively between x and xs and between y
and ys in the WordNet hyperonymy hierarchy. α, β, and γ
parameters sum to 1, weighting the contribution of
respectively point (1),(2) and (3).
Validation Interface and Ontology Uploading. The
ranked list of extracted instances I is presented to the user,
via a validation interface, which allows the user to select
the instances to be uploaded in the ontology. Once
validation is finished,: x and y of each instance (x,y) are
inserted in the same ontology class of xs and ys and the
related object property is activated. For example, if
xs=Madrid is an instance of the ontology class city and
ys=Spain is instance of nation, the new ontological
entities New Delhi and India are added as instances of the
class city and nation, and related by the object property
capital-of.
We measured the performance of the relation extraction
algorithm on the task of extracting capital-of and located-
in relations instances, over a domain corpus of 80
Wikipedia pages on European and Asian cities (207,555
tokens). We set the seed instance to s=(Madrid,Spain),
and the parameters α, β, and γ to 0.05, 0.25 and 0.75, by
estimation on a small annotated development corpus of 10
pages. As gold standard reference we used a list of
instances Igs manually extracted from the corpus. We
measure performance in term of precision P, relative-
recall R, F-measure, and goldStd-recall G at different
levels of a threshold τ. The set of instances Iτ∈I which
have a score R(i) above the threshold are taken as
accepted by the system. At each level of τ, Pτ and Rτ , Fτ
and Gτ are defined as follows:

GoldStd-recall is intended to capture the recall over the
gold standard, while relative-recall captures recall at a
given threshold over all extracted instances.

Results for the capital-of relation are reported in
Figure ??. In all, the algorithm extracted around 50
instances for both relations. In general our algorithm is
able to extract instances with high precision and recall.
For example, at τ=0.5, precision is high (almost 0.90)

while goldStd recall is still acceptable, about 0.45.
Precision is up to that obtained by state of the art
algorithms: for example (Pantel & Pennacchiotti, 2006)
obtain 0.91 on a chemistry corpus of the same size as our
for the reaction relation. Yet, our recall is lower, as we do
not exploit generic patterns. Figures indicates that
according to the intuition, as the threshold grows,
precision improves, while recall decreases, indicating that
our reliability measure is coherent and can be effectively
used to select correct/incorrect instances. From a
qualitative perspective, most of the erroneous extracted
instances correspond to parsing errors or to the induction
of wrong patterns (e.g. the incorrect instance
(Antananarivo, University) for the capital-of relation is
fired by the wrong pattern “X is home of Y”).

4.3. Table Knowledge Extractor
Structured information, such as tables and lists, offer a
rich source of knowledge to enrich ontologies, as they
have the major advantage that the data they contain are
coherently organized, making their ontological
interpretation easier with respect to unstructured texts.
Also, they typically contain dense meaningful content
which tends to be ontology-oriented. Despite this, not
much attention has been paid so far on the extraction of
ontological information from tables, exception being the
TARTAR (Pivk, Cimiano, Sure, Gams, Rajkovič, &
Studer, 2007) and the TANGO (Tiberino, Embley,
Lonsdale, Ding, & Nagy, 2005) systems, which
unfortunately are not intended to be integrated in an
ontology editing architecture, as we would.
Our module aims at extracting knowledge (namely,
classes, instances and properties) from tables in HTML
pages, and then propose a complete ready-for-validation
ontological interpretation to the user.
In our framework, a table is intended as a matrix of cells
(see Figure 5), whose structure can be divided in four
main areas, which in most cases contain different type of
information: (1) First row (cells <1,2> … <1,n>), which
usually contains a column header, i.e. a short description
of the information enclosed in each column. (2) First
column (cells <2,1> … <2,m>), typically containing a

Figure 4: Precision, Relative-Recall, F-measure and
GoldStd-Recall at different levels of τ for the relation

capital-of.

<1,1> <1,2> <1,3> … <1,n>
<2,1> <2,2> <2,3> … <2,n>

… … … … …
<m,1> <m,2> <m,3> … <m,n>

Figure 5: Structure of a nxm table

+++=

jk
POS

i
P

iR i
i 11)(γβα

τ

τ

τ I

II
P gs∩

=
I

II
R gs∩

= τ
τ

ττ

ττ
τ RP

RPF
+
∗= 2

gs

gs

I

II
G

∩
=

τ
τ

2233

row header, describing the content of a single row. (3)
First cell (cell <1,1>), sometimes used to give a short
indication on the type of data contained in the table (table
header); in other cases, it is part of the first row or the
first column. (4) Internal cells (other cells), containing the
actual data of the table, whose meaning is described by
the related cells in the first row/column.1 The structure
indicates that from an information-content perspective, a
table is either: three-dimensional, containing row header,
column header and data; or two-dimensional, when either
the row or column header is not present.2 Also, we can
assume two basic facts: (a) in most cases tables contain
simple flat non-hierarchical knowledge; (b) a table cannot
contain knowledge about more than one class, as this
would imply the table to have a fourth dimension to
represent class names. Following these assumptions we
can ontologically classify tables in three categories:

• Class Tables: containing a class definition and a
set of its instances. The information that has to be
enclosed in the table are: property names, instance
names and property values. The table must then
be three-dimensional, i.e. it must have row header
and column header. Property names and instance
names can be either reported in the row or column
headers. Property values are reported in the
internal cells, while the class name, if present, is
typically in the table header.

• Instance Tables: containing information about a
single instance. The information enclosed in the
table are property name and property value. These
tables are typically two dimensional and have
either exactly two columns or rows. The column
(row) header indicates the name of the properties,
while the second column contains the property
values..

• Empty tables: these are tables which do not
contain any ontological interesting content
(e.g.graphical elements).

Our module leverages the above classification to extract
knowledge performing the following steps.
Table extraction and selection. Given an input Web
page displayed in the browser, the module. extracts all
well-formed tables. In the case of nested tables, the
outermost is retained as most informative (inner tables
tend to contain in most cases graphical objects). The user
can then selects in the graphical interface, the set of tables
to analyse.
Table type identification. Given an input table, the
module applies a cascade of heuristics to classify it either
as class table, if it is three-dimensional, or as instance
table, if it is two-dimensional. The heuristics do so by
analyzing the number of columns, and by checking the
presence of column and row headers considering textual
and stylistic properties. For example, if the first row and
column have a background colour different from the other
cells, they are respectively identified as column and row
header; then, the table is classified as three-dimensional –
i.e. as class table.

1 Though this typical structure is verified in most cases, our
module is able to detect and treat exceptions.
2 Mono-dimensional tables are seldom, as the value of internal
rows and columns must be somehow described by a header.

Ontological analysis. Given a classified table, the module
infers the contained ontological entities. In the case of
class tables entities are: properties’ names of the class,
instances’ names and related property values. Instance and
property names can be alternatively coded in the row or in
the column headers, while the property values are in the
internal cells. The issue is then to understand which
header contains which names. For this purpose, the
assumption is that an ontological property has always the
same range: if the column header contains the property
names, the first element of a column (property name)
must be followed by cells of the same data type (property
values). The same observation stands for the row header.
If all internal cells are of the same data type, the system
simply guesses as default that the column header
represents the property names. In the case of instance
tables the analysis is straightforward: the left column (row
header) contains property names, and the right column
containing the properties’ values (internal cells). At the
end of the ontological analysis, each cell in the tables is
assigned an ontological type.
Validation and Ontology Uploading. The results of the
ontological analysis are shown to the user (see Figure 2),
that can then decide either to reject the table as not
interesting, to accept completely the interpretation, or to
modify it. In the latter case, the user is provided with
different tools to change the ontological type of cells.
Once the correct ontological interpretation of the table is
decided, the information is automatically uploaded in the
ontology. In this last phase the user has to specify the
class/instance name, and the ontological attachment (the
parent class for class tables, the referring class for
instance table).
We verified the performance of the relation extraction
module on a corpus of 100 Web pages of European and
Asian capitals from Wikipedia, amounting to 207 tables.
We computed the accuracy on table type identification (i.e
classification in class or instance table), and the accuracy
on ontological interpretation (i.e. predicting a completely
correct interpretation of the table, in all cells). We
obtained respectively accuracy of 0.91 and 0.77. Results
show that the systems’ heuristics are very accurate in
predicting the correct table type, and highly reliable on the
ontological interpretation, revealing that the simple
heuristics implemented are effective.

5. Conclusions and future work
In this paper we presented a novel architecture for
collaborative ontology editing, which offers a unique
combination of ontology editing and semantic annotation
functionalities, and focusing on the use of “light” NLP
techniques for semi-automatically supporting the ontology
building process. We described three of these NLP
modules, which extract ontological information from Web
texts, guaranteeing an high level of accuracy.
In the future, we plan to make available the architecture
and its NLP modules to the community. We are also
planning to integrate new NLP engines, to extract other
type of ontological knowledge, such us events and
situational frames.

2234

6. References
Basili, R., & Zanzotto, F. (2002). Parsing engineering and

empirical robustness. Natural Language Engineering
8/2-3 , 1245-1262.

Broekstra, J., Kampman, A., & van Harmelen, F. (2002).
Sesame: A Generic Architecture for Storing and
Querying RDF and RDF Schema. The Semantic Web -
ISWC 2002: First International Semantic Web
Conference (p. 54-68). Sardinia, Italy: Springer Berlin /
Heidelberg.

Buitelaar, P., & Cimiano, P. (2008). Ontology Learning
and Population: Bridging the Gap between Text and
Knowledge. IOS Press.

Dzbor, M., Domingue, J., & Motta, E. (2003). Magpie:
Towards a Semantic Web Browser. 2nd International
Semantic Web Conference (ISWC03). Florida, USA.

Fallenstein, B. (2004). Fentwine: A navigational RDF
browser and editor. 1st Workshop on Friend of a
Friend, Social Networking and the Semantic Web
(FOAF). Galway.

Firefox web browser | Faster, more secure, &
customizable. (n.d.). Retrieved from
http://www.mozilla.com/en-US/firefox/

Gennari, J., Musen, M., Fergerson, R., Grosso, W.,
Crubézy, M., Eriksson, H., et al. (2003). The evolution
of Protégé-2000: An environment for knowledge-based
systems development,. International Journal of
Human-Computer Studies , 58 (1), 89–123.

Griesi, D., Pazienza, M. T., & Stellato, A. (2007).
Semantic Turkey - a Semantic Bookmarking tool
(System Description). 4th European Semantic Web
Conference (ESWC 2007). Innsbruck, Austria.

Hearst, M. (1992). Automatic acquisition of hyponyms
from large text corpora. Proceedings of COLING-92,
(pp. 539-545). Nantes, France.

Huynh, D., Mazzocchi, S., & Karger, D. (November,
2005). Piggy Bank: Experience the Semantic Web
Inside Your Web Browser. Fourth International
Semantic Web Conference (ISWC05), (p. 413-430).
Galway, Ireland.

Jacquemin, C. (1997). Variation terminologique:
Reconnaissance et acquisition automatiques de termes
et de leurs variantes en corpus. Universitè de
Nantes,France: Mémoire d'Habilitation à Diriger des
Recherches en informatique fondamentale.

Jetty Java HTTP Servlet Server. (n.d.). Retrieved from
http://jetty.mortbay.org/jetty/

Justeson, J., & Katz, S. (1995). Technical Terminology:
some linguistic properties and an algorithm for
identification in text. Natural Language Engineering, 1
, 9-27.

Kiryakov, A., Ognyanov, D., & Manov, D. (2005).
OWLIM – a Pragmatic Semantic Repository for OWL.
Int. Workshop on Scalable Semantic Web Knowledge
Base Systems (SSWS 2005), WISE 2005. New York
City, USA.

Lin, D., & Pantel, P. (2002). Concept discovery from text.
20th International Conference on Computational
Linguistics (COLING-02), (p. 577–583). Taipei,
Taiwan.

Mädche, A. (2000). The TextToOnto Ontology Learning
Environment. ICCS 2000. Darmstadt: Vortrag.

Pantel, P., & Pennacchiotti, M. (2006). Espresso: A
Bootstrapping Algorithm for Automatically Harvesting

Semantic Relations. COLING/ACL-06. . Sydney,
Australia.

Pazienza, M., Pennacchiotti, M., & Zanzotto, F. (2005).
Terminology extraction: an analysis of linguistic and
statistical approaches. In S. (Ed.), Knowledge Mining, ,
Series: Studies in Fuzziness and Soft Computing,, (p.
Vol.185). Springer .

Pivk, A., Cimiano, P., Sure, Y., Gams, M., Rajkovič, V.,
& Studer, R. (2007). Transforming arbitrary tables into
logical form with TARTAR. Data & Knowledge
Engineering, 60:3 .

Popov, B., Kiryakov, A., Kirilov, A., Manov, D.,
Ognyanoff, D., & Goranov, M. (2003). KIM –
Semantic Annotation Platform. 2nd International
Semantic Web Conference (ISWC2003). 2870, p. 834-
849. Florida, USA: Springer-Verlag Berlin Heidelberg.

Quan, D., & Karger, D. (May, 2004). How to Make a
Semantic Web Browser. Thirteenth International World
Wide Web Conference (WWW2004). New York City,
USA.

Ravichandran, D., & Hovy, E. (2002). Learning surface
text patterns for a question answering system.
Proceedings of ACL-2002, (pp. 41-47). Philadelphia,
PA.

Sauermann, L. (2005). The Gnowsis Semantic Desktop
for Information Integration. 1st Workshop on Intelligent
Office Appliances(IOA 2005): Knowledge-Appliances
in the Office of the Future. Kaiserslautern, Germany.

Tiberino, A., Embley, D., Lonsdale, D., Ding, Y., &
Nagy, G. (2005). Towards Ontology Generation from
Tables. World Wide Web: Internet and Web
Information Systems:8 , 261-285.

TopBraid Composer. (n.d.). Retrieved from
http://topbraidcomposer.info/

Web Ontology Language webpage. (n.d.). Retrieved from
W3C: http://www.w3.org/TR/owl-features/

2235

