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Abstract
Chemistry research papers are a primary source of information about chemistry, as in any scientific field. The presentation of the data
is, predominantly, unstructured information, and so not immediately susceptible to processes developed within chemical informatics for
carrying out chemistry research by information processing techniques. At one level, extracting the relevant information from research
papers is a text mining task, requiring both extensive language resources and specialised knowledge of the subject domain. However,
the papers also encode information about the way the research is conducted and the structure of the field itself. Applying language
technology to research papers in chemistry can facilitate eScience on several different levels.

The SciBorg project sets out to provide an extensive, analysed corpus of published chemistry research. This relies on the coop-
eration of several journal publishers to provide papers in an appropriate form. The work is carried out as a collaboration involving
the Computer Laboratory, Chemistry Department and eScience Centre at Cambridge University, and is funded under the UK eScience
programme.

1. Language Resources for Scientific Text
We treat the text of the chemistry research papers as natural
language populated to varying degrees by unfamiliar terms
and notations, e.g.:

Dialkyl 9-chloro-3H-pyrrolo[1,2-a]indole-2,3-
dicarboxylates are obtained in excellent yields
from the 1 : 1 : 1 addition reaction between
triphenylphosphine, dialkyl acetylenedicar-
boxylates and 3-chloroindole-2-carbaldehyde;
dimethyl 9-chloro-3H-pyrrolo[1,2-a]indole-2,3-
dicarboxylate is converted to dimethyl 9-oxo-
9H-pyrrolo[1,2-a]indole-2,3-dicarboxylate.

We do not address the problem of parsing chemistry as such
but rather augment existing parsing tools, extending their
coverage to chemistry as an example of scientific text.
We, therefore, require domain-independent analysis tools
for English and specialised components for recognising and
analysing chemical terms and notation. We adopt a multi-
engine approach to analysing such a large corpus, to op-
timise both the quality and the coverage of the analyses.
Multiple parsers are only complementary if they implement
contrasting techniques and produce compatible results.
We make use of two parsing systems:

PET (Callmeier, 2002) is an efficient parsing system for
HPSG grammars which is used with the ERG, English
Resource Grammar (Flickinger, 2002). This is based
on a detailed grammar and lexicon and provides anal-
yses in the underspecified semantic formalism, RMRS.
While the grammar and lexicon are handcoded, the
disambiguation model is trained on a body of preferred
analyses.

RASP (Briscoe et al., 2006) is a shallower analysis com-
ponent based on a statistical CFG. It does not require a
predefined lexicon, relying on POS tagging. RASP has

been trained on a balanced corpus of English. Pars-
ing results from the RASP system can take the form of
trees or grammatical dependency relations. We con-
vert RASP syntax trees to RMRS representations.

We, therefore, have a compatible parsing results and two
existing parsing systems providing language resources for
English, but we need to augment these with specialised
analysis of the chemistry terms. The integration of results
is carried out in an architecture that requires three key rep-
resentations.

1.1. SciXML: XML Mark Up for Scientific Text
Fortunately, we have access to the XML markup of the
chemistry papers provided by three major journal publish-
ers. Each publisher’s markup schema performs essentially
the same function but includes individual customisations.
We find it expedient to transform the markup to a common
schema designed to represent the logical structure of sci-
entific papers, SciXML (Rupp et al., 2006). With all the
papers under a common schema, we know which SciXML
elements contain text to be analysed. The transformation
to SciXML can be performed by XSLT scripts and of-
fers the possibility of extension of our tools to related do-
mains. To this end, we have also defined an XSLT mapping
from the NLM DTD, used for archiving PubMed papers, to
SciXML.
<annot type=’rasp_token’ id=’t2540’
from=’18190’ to=’18195’ deps=’s87’
source=’v2778’ target=’v2779’ value=’fatty’/>

<annot type=’pos’ id=’p2327’ from=’18190’
to=’18201’ deps=’ro69’ value=’NN2’/>

<annot type=’oscar’ id=’ro69’ from=’18190’
to=’18201’ source=’v2778’ target=’v2780’ value=’CM’/>

Figure 1: SAF annotations for token, type and NER infor-
mation in XML format.
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Figure 2: A chart for the tokenisation and tagging of: “α,β-unsaturated fatty acids”

1.2. SAF: Standoff Annotation Formalism
The combination of results from different analysers is
founded on the ability to record results in a cumulative
manner. In practice, we use SAF (Waldron and Copestake,
2006) standoff annotations which form a lattice of partial
analyses at each level. We take the SciXML markup to be
primary, indexing on that representation by character po-
sition. The efficiency of access to the lattice during pro-
cessing is enhanced by encoding the annotations in an SQL
database. For the more general representation and export
of the information in the SAF annotations we use an XML
format shown in Figure 1.
Figure 2 shows a partial SAF lattice containing informa-
tion from various components in the SciBorg architecture,
presented in Section 2.).

1.3. RMRS: Robust Underspecified Semantics
The robustness of Robust Minimal Recursion Seman-
tics (Copestake, 2003) lies in the ability to represent vary-
ing degrees of resolution in semantic analyses. This allows
us to work with the information available rather than gen-
erating redundant distinctions that cannot be substantiated.
Put simply, “deep” (PET/ERG) and “shallow” (RASP), pars-
ing results can be represented in the same form. In fact,
even a sequence of lexical POS tags can be represented in
an RMRS form.

1.4. OSCAR3: The recognition of Chemical Terms
Named entity recognition is a key problem in this system.
As well as being of great interest to end users, named enti-
ties represent a source of words that may present difficulties
to domain-independent parsing components. To assist with
this, we have developed an extensive set of manual annota-
tion guidelines, covering five classes of named entity. (Cor-
bett et al., 2007) We have demonstrated that these guide-
lines can be applied to a range of chemistry papers with
high inter-annotator agreement (F=0.93). We have studied
the automated recognition of these entities using HMM-
based systems. Significant gains were made by customisa-
tion of the tokenisation subsystems, the use of gazetteers
of chemical names and the the use of character-level n-
grams, allowing an F score for named entity recognition of
0.74. Current research suggests further improvements can
be made via the use of Maximum Entropy Markov Models.
The next step after detecting named entities is to assign se-
mantics to them. In chemistry, this is complicated by a form
of regular polysemy in which a chemical name can stand in
for a specific compound, a class of compounds or a part
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Figure 3: Parsing architecture of the SciBorg system

of a compound. (Corbett et al., 2008) We have produced
a set of manual annotation guidelines to address these am-
biguities and have demonstrated acceptable inter-annotator
agreement (86.0% accuracy, kappa = 0.784). A simple
machine-learning system with a small feature set can make
these distinctions with accuracy and kappa of 67.4% and
0.470.
We can also assign chemical structures to named entities,
partly by reference to databases and partly by machine
interpretation of systematic chemical names (Corbett and
Murray-Rust, 2006). This allows for new Information Re-
trieval techniques where keyword searches can be com-
bined with searches for compounds containing particular
structural motifs.
The utility of chemical named entity recognition has been
demonstrated through our collaboration with the Royal
Society of Chemistry, where our named-entity software
OSCAR3 (Corbett and Murray-Rust, 2006) has been in-
tegrated into scientific publishing work-flows, to pro-
duce semantically-enriched chemistry papers in the award-
winning Project Prospect system. (Batchelor and Corbett,
2007)

2. An Architecture for Integrating Results
To augment the two parsing systems with information pro-
vided by OSCAR3 about the form and function of chemical
terms, we have factored them into their component mod-
ules. We do not alter the functionality of these modules,
but we construct an integrated architecture which combines
OSCAR3 results in the messages passed between the inter-
nal interfaces (see Figure 3). This architecture relies on the
lattice of SAF annotations as a common representation of
intermediate results. It also permits a closer integration of
the two parser enhancing overall coverage and robustness.
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The RASP system components provide the backbone of the
architecture, as they instantiate each of the functions re-
quired for the complete parsing architecture: sentence split-
ter, tokeniser, POS tagger and syntactic parser. PET uses a
distinct tokeniser and a core parsing module. OSCAR3 can
be seen as providing a tokenisation, in recognising chemi-
cal terms, and a form of tagging in classifying their func-
tion.
As an example, the (partial) SAF lattice, represented in Fig-
ure 2, contains edges from the RASP tokeniser, the ERG to-
keniser, OSCAR3 and the RASP POS tagger. The words of
the input string appear between the corresponding lattice
nodes. The OSCAR3 classification of the chemical terms
also appears on those edge labels. Where the RASP token
edge and POS edge coincide a single edge bears both labels.
The second isolated POS edge arises from the selection of
edges to submit to the POS tagger.
The RASP parser requires a single sequence of tagged to-
kens, so incorporating OSCAR3 terms amounts to selecting
a path through the SAF lattice, based on confidence values
from OSCAR3 and the RASP tagger. For PET we exploit
an unknown word mechanism which can approximate lex-
ical type information based on a tagging, or, by extension,
an OSCAR3 classification. As PET allows multiple tokeni-
sations in the parser input, also forming a lattice, we can
submit both the OSCAR3 terms and RASP tags on this in-
terface, to be used in the absence of a predefined lexical
entry. This liberates the parser from its dependence on a
static lexicon.

3. Discourse Analysis of Scientific Literature
In Sciborg, we are developing a discourse analysis of scien-
tific papers that is based on the rhetorical role of citations,
determination of scientific attribution for specific intellec-
tual content and Argumentative Zoning (AZ).

3.1. Scientific Attribution
Scientific papers revolve around citations, and for many
discourse level tasks one needs to know whose work is be-
ing talked about at any point in the discourse. For instance,
in citation function classification (see Section 3.2.), the task
is to find out if a citation is described as flawed or as useful.
Consider:

Most computational models of discourse are based pri-
marily on an analysis of the intentions of the speakers
[Cohen and Perrault, 1979][Allen and Perrault,
1980][Grosz and Sidner, 1986]WEAK. The speaker
will form intentions based on his goals and then act
on these intentions, producing utterances. The hearer
will then reconstruct a model of the speaker’s inten-
tions upon hearing the utterance. This approach has
many strong points, but does not provide a very sat-
isfactory account of the adherence to discourse con-
ventions in dialogue.

In this example, the three citations are described as flawed
(detectable by “does not provide a very satisfactory ac-
count”), but in order to find out, one must first realise that
this approach refers to the three cited papers. A contrast-
ing hypothesis could be that the citations are used; the cue
phrase “based on” might make us think so (as in the con-
text “our work is based on”). This, however, can be ruled

out if we know that the speaker is not referring to some
aspect of the current paper.
For other information access and retrieval purposes, the rel-
evance of a citation within a paper can be crucial. One
can estimate how important a citation is by simply counting
how often it occurs in the paper. But as Kim and Webber
(2006) argue, this ignores many expressions in text which
refer to the cited author’s work but which are not as easy
to recognise as citations. In Siddharthan and Teufel (2007),
we define the scientific attribution task in relation to stan-
dard anaphora resolution tasks and show that a range of lin-
guistic expressions including definite descriptions and pro-
nouns can be attributed to citations with Krippendorff’s Al-
pha of 0.67 and percentage agreement greater than 85%.
We further show that information about scientific attribu-
tion can be directly converted to features that boost the per-
formance of our AZ classifier.

3.2. Citation Analysis
In Teufel et al. (2006), we describe a rhetorical scheme for
annotating citation function. Our scheme has 12 categories,
which broadly identify the citation as being supported or
used, criticised, compared or contrasted, or just neutrally
described:

• Agreement/usage/compatibility with other work (6
categories)

PBAS: basis or starting point
PUSE: usage of some aspect
PMODI: usage with modification
PMOT: motivating problem or choice of solution
PSIM: similarity of approach or goal
PSUP: support or compatibility

• WEAK: Explicit statement of weakness

• Contrast or comparison with other work (4 categories)

COCOGM: contrasts in methods or goals
COCOR0: neutral comparison of results
COCO-: superiority to cited work
COCOXY: contrasts between two different cited
works

• NEUT: A neutral category.

Some examples follow to illustrate the categories:

WEAK: Most previous EIS studies of biological bind-
ing have used multilayer films or other complex struc-
tures, [cit17] [cit23] that have made it difficult to
achieve a fundamental understanding of the electrical
signal transduction process, particularly in the case of
proteins.

COCO-: The immediate impact of the dmphen ligand-
support was that the reaction could be performed with
1 molpercent of Pd(ii), down from 10 molpercent in
the absence of the ligand. [cit3d]
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PUSE: The steady-state equilibrium binding constants
and kinetic constants of corroles 3, 5 with duplex
and quadruplex DNA were both measured under pre-
viously described experimental conditions. [cit16a]
[cit16b]

PSUP: This result is consistent with electromagnetic
theory [cit3] [cit8] where coupling and shifting of sur-
face plasmons occur in aggregated particles relative
to the case of an isolated particle.

PMODI: In our synthesis of 4-pyridinium corrole 3,
we obtained this compound in two steps by a modifi-
cation of the reported method. [cit12]

Inter-annotator agreement was Kappa=.72 (12 classes;548
instances; 3 annotators)1 and for automatic classification
using features based on linguistic features, cue phrases and
context, we got accuracy of 77% and Kappa=.57. Current
work includes the incorporation of attribution information
into our automatic rhetorical citation function analysis, and
the adaptation of the entire discourse module to the chem-
istry domain.

3.3. AZ: Argumentative Zoning
Another use of discourse analysis for searching concerns
the rhetorical status of entire sentences or larger segments.
For instance, if we can identify that a particular sentence
in a paper describes a conclusion rather than part of the
methodology, this can be used for detection of contradic-
tions between the main findings of papers. Lisacek et al.
(2005) apply a similar thought to genetics papers.
AZ (Teufel, 2000; Teufel and Moens, 2002) is a theory de-
scribing high-level argumentation in scientific articles and
how it relates to descriptions of the authors’ own and other
people’s work.
An automatic recogniser for AZ exists, which is based on a
set of 15 recognisable features and a machine learning com-
ponent. Automatic annotation in Teufel and Moens (2002)
achieved an agreement of 78% (Kappa=.45) with human
gold standard annotation. AZ was originally devised for
articles in the computational linguistics domain. However,
we cannot simply assume that the AZ-recogniser for com-
putational linguistics articles will perform well on chem-
istry articles.
In SciBorg, we port Argumentative Zoning on the basis of
redefined categories. We have subdivided the OWN cat-
egory (description of novel knowledge claim) into meth-
ods, conclusions and (objectively measurable) results. One
other new search task we identified concerns the detection
of failed problem solving activities, as in

OWN FAIL: Unfortunately, the observed low yields
of the crystalline samples have prevented the use of
NMR measurments.

1Following Carletta (1996), we measure agreement in Kappa,
which follows the formula K =

P (A)−P (E)
1−P (E)

where P(A) is ob-
served, and P(E) expected agreement. Kappa ranges between -1
and 1. K=0 means agreement is only as expected by chance. Gen-
erally, Kappas of 0.8 are considered stable, and Kappas of .69 as
marginally stable, according to the strictest scheme applied in the
field.

The automatic detection of such segments supports
searches for synthesis methods which do not work, a com-
mon information need for synthetic chemists. Some deeper
discourse analysis is necessary here, because not only do
we need to identify that a failed problem solving activity
took place, we also need to find out that it is not associated
with other researchers, but with the paper authors them-
selves.
We have also introduced more detail by subdividing the BA-
SIS and CONTRAST categories. The old BASIS category has
been replaced by two separate categories for (a) usage of
others’ tools, products or methodology and (b) support for
others’ findings or theories:

USE: The complexes were synthesised following the
procedure previously reported (citation).

SUPPORT: This value is consistent with several liter-
ature reports for the first protonation constant of cate-
chol (citations) included in Table 2.

The old CONTRAST is now separate categories for (a) state-
ments of weakness in other peoples’s work, and gaps in the
literature (b) statements contradicting the theory or find-
ings of others and (c) neutral statements of comparsions
and contrasts of current work to others’:

GAP: Benzotelluretes have to the best of our knowl-
edge never been synthesized.

ANTI SUPPORT: The combined results above sug-
gest that leaching tests (citations) that have used DDW
or aqueous solutions containing only inorganic anions
(e.g., SPLP) likely have underestimated actual cop-
per leaching from brake wear debris during rainfa ll
events and/or in storm water runoff.

COMPARISON: In contrast, the measurements that
we report here were obtained at the open circuit po-
tential, where the net current flow is zero.

Manual annotation with the redefined categories is cur-
rently underway for articles from several sub-areas of
chemistry in our corpus.

4. Conclusion
We have described an ongoing research project that relies
on combining generally available language resources with
specialised knowledge of both chemistry and the nature of
scientific literature. This project should yield an analysed
corpus of chemistry research which will provide a resource
for chemical informatics. Since citations can be mapped
across the corpus it may also provide a resource for further
study of the structure of the field. The methodology should
be applicable to providing eScience resources in other do-
mains in science.
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